IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Long term variations in insolation and their effects on climate, the LLN experiments
Berger, A.; Loutre, M.F. (1997). Long term variations in insolation and their effects on climate, the LLN experiments. Surveys in Geophysics 18(2-3): 147-161
In: Surveys in Geophysics. Kluwer Academic Publishers: Dordrecht; Tokyo; Lancaster; Boston. ISSN 0169-3298, more
Peer reviewed article  

Available in Authors 
    VLIZ: Open Repository 280427 [ OMA ]

Keyword
    Marine

Authors  Top 
  • Berger, A., more
  • Loutre, M.F.

Abstract
    Used to test the Milankovitch theory over the last glacial-interglacial cycles, the Louvain-la-Neuve two-dimension Northern Hemisphere climate model shows that orbital and CO2 variations induce, in the climate system, feedbacks sufficient to generate the low frequency part of the climatic variations over the last 200 kyr. Initiation and termination of glacial cycles cannot indeed be explained without invoking both the fast feedbacks associated with atmospheric processes (water vapor, cloud, snow and sea ice) and the slower feedbacks associated with coupling to other parts of the climate system, in particular the land ice-sheet buildup and disintegration. This model shows that longterm changes in the Earth's orbital parameters lead to variations in the amount of solar radiation received at the top of the atmosphere, which in turn act as a pacemaker for climatic variations at the astronomical frequencies, through induced albedo-temperature and greenhouse gases-temperature feedbacks. Spectral analysis of the Northern Hemisphere global ice volume variations simulated under both insolation and CO2 forcings reproduces correctly the relative intensity of the peaks at the orbital frequencies as seen in SPECMAP data. Except for variations with time scales shorter than 5 kyr, the simulated long-term variations of total ice volume are comparable to that reconstructed from deep-sea cores. For example, the model simulates glacial maxima of similar amplitudes at 134 kyr BP and 15 kyr BP, followed by abrupt deglaciations.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors