IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Genetic diversity of total, active and culturable marine bacteria in coastal seawater
Bernard, L.; Schäfer, H.; Joux, F.; Courties, C.; Muyzer, G.; Lebaron, P. (2000). Genetic diversity of total, active and culturable marine bacteria in coastal seawater. Aquat. Microb. Ecol. 23(1): 1-11
In: Aquatic Microbial Ecology. Inter-Research: Oldendorf/Luhe. ISSN 0948-3055, more
Peer reviewed article  

Available in  Authors 

Keywords
    Activity; Activity; Bacteria; Coastal zone; Community composition; Culture media; Ecosystems; Genetic diversity; Laboratory culture; Marine organisms; Mediterranean Sea; Mediterranean sea; Microbiological culture; Microorganisms; Polymerase chain reaction; Sea water; ANE, Mediterranean Water [Marine Regions]; Marine

Authors  Top 
  • Bernard, L.
  • Schäfer, H.
  • Joux, F.
  • Courties, C.
  • Muyzer, G., more
  • Lebaron, P., correspondent, more

Abstract
    The genetic diversity of marine bacteria from coastal Mediterranean water was analyzed using denaturing gradient gel electrophoresis (DGGE) and comparative sequence analysis of PCR-amplified 16S rRNA genes. The diversity of the whole bacterial assemblage was compared to the diversity of the fraction of actively respiring bacterial cells and of culturable bacteria. Culturable bacteria were isolated on agar plates using 4 different culture media, as well as in filtered autoclaved seawater following dilution to extinction. The cell fractions exhibited varied genetic diversity. High similarity between DGGE patterns obtained from the whole bacterial assemblage and those obtained from the active cell fraction (representing only 3% of total cells) indicated the simultaneous presence of both active and inactive cells within populations corresponding to numerous bacterial phylotypes defined as DGGE bands. Furthermore, an important source of genetic diversity corresponding to viable organisms, detected by culturability on agar media and in dilution culture with unamended seawater, was not detectable by DGGE patterns obtained from total cells. Most of the strains isolated by dilution cultures were different from those isolated on solid agar media. These results suggest that studies on the structure of complex marine bacterial communities do not necessarily reflect the physiological heterogeneity of ecologically important populations and may ignore populations present at low relative abundance that can play a key ecological role.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors