IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Deep-sea benthic communities and oxygen fluxes in the Arctic Fram Strait controlled by sea-ice cover and water depth
Hoffmann, R.; Braeckman, U.; Hasemann, C.; Wenzhöfer, F. (2018). Deep-sea benthic communities and oxygen fluxes in the Arctic Fram Strait controlled by sea-ice cover and water depth. Biogeosciences 15(16): 4849-4869. https://hdl.handle.net/10.5194/bg-15-4849-2018
In: Gattuso, J.P.; Kesselmeier, J. (Ed.) Biogeosciences. Copernicus Publications: Göttingen. ISSN 1726-4170; e-ISSN 1726-4189, more
Peer reviewed article  

Available in  Authors 

Authors  Top 
  • Hoffmann, R., more
  • Braeckman, U., more
  • Hasemann, C.
  • Wenzhöfer, F., more

Abstract
    Arctic Ocean surface sea-ice conditions are linked with the deep sea benthic oxygen fluxes via a cascade of interdependencies across ecosystem components such as primary production, food supply, activity of the benthic community, and their functions. Additionally, each ecosystem component is influenced by abiotic factors such as light availability, temperature, water depth, and grain size structure. In this study, we investigated the coupling between surface sea-ice conditions and deep-sea benthic remineralization processes through a cascade of interdependencies in the Fram Strait. We measured sea-ice concentrations, a variety of different sediment characteristics, benthic community parameters, and oxygen fluxes at 12 stations of the LTER HAUSGARTEN observatory, Fram Strait, at water depths of 275–2500m. Our investigations reveal that the Fram Strait is bisected into two long-lasting and stable regions: (i) a permanently and highly sea-ice-covered area and (ii) a seasonally and low sea-ice-covered area. Within the Fram Strait ecosystem, sea-ice concentration and water depth are two independent abiotic factors, controlling the deep-sea benthos. Sea-ice concentration correlated with the available food and water depth with the oxygen flux. In addition, both abiotic factors sea-ice concentration and water depth correlate with the macrofauna biomass. However, at water depths >1500m the influence of the surface sea-ice cover is minimal with water depth becoming more dominant. Benthic remineralization across the Fram Strait on average is  ∼ 1mmol Cm−2d−1. Our data indicate that the portion of newly produced carbon that is remineralized by the benthos is 5% in the seasonally low sea-ice-covered eastern part of Fram Strait but can be 14% in the permanently high sea-ice-covered western part of Fram Strait. Here, by comparing a permanently sea-ice-covered area with a seasonally sea-ice-covered area, we discuss a potential scenario for the deep-sea benthic ecosystem in the future Arctic Ocean, in which an increased surface primary production may lead to increasing benthic remineralization at water depths <1500m.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors