IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Biofilm interactions-bacteria modulate sexual reproduction success of the diatom Seminavis robusta
Cirri, E.; Vyverman, W.; Pohnert, G. (2018). Biofilm interactions-bacteria modulate sexual reproduction success of the diatom Seminavis robusta. FEMS Microbiol. Ecol. 94(11): fiy161. https://hdl.handle.net/10.1093/femsec/fiy161
In: FEMS Microbiology Ecology. Federation of European Microbiological Societies: Amsterdam. ISSN 0168-6496; e-ISSN 1574-6941, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine
Author keywords
    chemical ecology; pheromones; diatoms; bacteria; cross-kingdominteractions; biofilms

Authors  Top 
  • Cirri, E.
  • Vyverman, W., more
  • Pohnert, G.

Abstract
    Marine biofilms are complex multi-species communities where chemical signaling regulates a substantial share of interactions. The involved natural products represent targets for competition strategies by signal interference. Diatoms, that often dominate biofilms, rely on a complex pheromone system during sexual reproduction, involving synchronizing and attracting metabolites. The present study addresses the effect of bacteria on sexual reproduction of the model pennate diatom Seminavis robusta. We observe that sexual reproduction is most efficient under axenic conditions. Bacteria isolated from field collected biofilms modulate sexual reproduction in the algae. A species-specific effect on the diatom mating efficiency could be observed, with Maribactersp. and Marinobactersp. significantly reducing the sexual reproduction rate. Spent medium from these bacteria has the same effect, demonstrating that chemically mediated cross kingdom interactions take place. In contrast, proportion of auxospores. We further observed a lower concentration of the diatom attraction pheromone diproline in the presence of bacteria compared to axenic conditions. In agreement, the Seminavis-associated bacterial community as well as isolated bacterial strains degraded the pheromone over time. Our results highlight that the pheromone system of diatoms is subject to interference strategies of the associated bacterial community by modulation of the signal landscape.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors