IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Effects of organic carbon, organic nitrogen, inorganic nutrients, and iron additions on the growth of phytoplankton and bacteria during a brown tide bloom
Gobler, Ch.J.; Sañudo-Wilhelmy, S.A. (2001). Effects of organic carbon, organic nitrogen, inorganic nutrients, and iron additions on the growth of phytoplankton and bacteria during a brown tide bloom. Mar. Ecol. Prog. Ser. 209: 19-34
In: Marine Ecology Progress Series. Inter-Research: Oldendorf/Luhe. ISSN 0171-8630; e-ISSN 1616-1599, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal

Authors  Top 
  • Gobler, Ch.J.
  • Sañudo-Wilhelmy, S.A.

Abstract
    Although nutrient inputs are the most commonly cited cause of brown tide blooms of Aureococcus anophagefferens on Long Island, New York, there is no consensus as to which nutrient(s) stimulates A. anophagefferens growth in the field. To evaluate the ability of dissolved organic carbon (DOC as glucose), dissolved organic nitrogen (DON as urea), nitrate, phosphate and iron to enhance A. anophagefferens growth during blooms, 10 nutrient enrichment experiments were conducted over the course of a brown-tide bloom during May, June and July of 1998 in West Neck Bay (WNB), Long Island, USA, using whole bay water. During the experiments, A. anophagefferens densities ranged from 1 x 104 to 5 x 105 cells ml-1, representing between 2 and 90% of algal biomass. Brown tide growth changed as a function of ambient nutrient levels during experiments, as the bloom shifted from organic carbon to N-limitation when nitrate levels in WNB decreased from elevated (2 to 20 µM) to low (<0.5 µM) levels. Contrary to current hypotheses that organic nitrogen fuels A. anophagefferens bloom formation and inorganic nitrogen can repress it, brown tide growth in response to equimolar nitrate and urea additions was nearly identical during experiments. Additions of nitrate or urea either had no effect or significantly decreased the relative abundance of the brown tide among the algal community during experiments. In contrast, augmentation of A. anophagefferens growth and decreases in non-brown-tide phytoplankton (NBTP) growth during organic carbon (glucose) additions resulted in significant increases in the relative abundance of brown tide among phytoplankton. Simultaneous enhancement of bacterial growth by glucose additions indicated a possible A. anophagefferens-NBTP-bacterial interaction by which monospecific brown tides may be initiated. Therefore, it is hypothesized that processes introducing copious amounts of labile DOC during A. anophagefferens blooms, such as leakage or remineralization of NBTP blooms, could promote monospecific brown tides.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors