IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Acidification of the phagosome in Crassostrea virginica hemocytes following engulfment of zymosan
Beaven, A.E.; Paynter, K.T. (1999). Acidification of the phagosome in Crassostrea virginica hemocytes following engulfment of zymosan. Biol. Bull. 196(1): 26-33
In: Biological Bulletin. Marine Biological Laboratory: Lancaster, Pa. etc.. ISSN 0006-3185, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine

Authors  Top 
  • Beaven, A.E.
  • Paynter, K.T.

Abstract
    Phagocytic hemocytes are responsible for engulfing and internally degrading foreign organisms within the hemolymph and tissue of the eastern oyster, Crassostrea virginica. Since rapid acidification of the phagosome lumen is typically essential for activation of hydrolytic and reactive oxygen intermediate (ROI) producing enzymes in vertebrate cells, we measured phagosomal pH in oyster hemocytes by using the emission fluorescence of two fluorescent probes, rhodamine and Oregon Green 488 (OG 488), conjugated to zymosan to determine whether oyster hemocyte phagosomes become acidified after phagocytosis of zymosan. The average pH of 1079 phagosomes within 277 hemocytes 1 h after phagocytosis of zymosan was 3.9 +/- 0.03. Observations of 141 hemocytes with internalized zymosan by light microscopy revealed that, over a 60-min time period, 51% of highly granular hemocytes became partially granular, and 29% became agranular. In addition, 83% of partially granular hemocytes containing zymosan at time = 0 became agranular within 60 min. A comparison revealed that the phagosomes of agranular hemocytes were much more acidic (pH 3.1 +/- 0.02) than those of highly granular hemocytes (4.9 +/- 0.02; P < 0.05). These values are significantly lower than most reported in the literature for blood cells from metazoan organisms. Phagocytic hemocytes are responsible for engulfing and internally degrading foreign organisms within the hemolymph and tissue of the eastern oyster, Crassostrea virginica. Since rapid acidification of the phagosome lumen is typically essential for activation of hydrolytic and reactive oxygen intermediate (ROI) producing enzymes in vertebrate cells, we measured phagosomal pH in oyster hemocytes by using the emission fluorescence of two fluorescent probes, rhodamine and Oregon Green 488 (OG 488), conjugated to zymosan to determine whether oyster hemocyte phagosomes become acidified after phagocytosis of zymosan. The average pH of 1079 phagosomes within 277 hemocytes 1 h after phagocytosis of zymosan was 3.9 +/- 0.03. Observations of 141 hemocytes with internalized zymosan by light microscopy revealed that, over a 60-min time period, 51% of highly granular hemocytes became partially granular, and 29% became agranular. In addition, 83% of partially granular hemocytes containing zymosan at time = 0 became agranular within 60 min. A comparison revealed that the phagosomes of agranular hemocytes were much more acidic (pH 3.1 +/- 0.02) than those of highly granular hemocytes (4.9 +/- 0.02; P < 0.05). These values are significantly lower than most reported in the literature for blood cells from metazoan organisms.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors