IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Phytoplankton and bacterioplankton production in a reed-covered water body
Vörös, L.; V.-Balogh, K.; Koncz, E.; Kovács, A. (2003). Phytoplankton and bacterioplankton production in a reed-covered water body. Aquat. Bot. 77(2): 99-110.
In: Aquatic Botany. Elsevier Science: Tokyo; Oxford; New York; London; Amsterdam. ISSN 0304-3770, more
Peer reviewed article  

Available in  Authors 

    Aquatic plants; Dissolved organic matter; Hypertrophy; Nannoplankton; Oxygen depletion; Phytoplankton; Primary production; Shading; Phragmites australis (Cav.) Trin. ex Steud. [WoRMS]; Hungary, Balaton L. [Marine Regions]; Fresh water

Authors  Top 
  • Vörös, L.
  • V.-Balogh, K.
  • Koncz, E.
  • Kovács, A.

    Between 1996 and 1998 phytoplanktonic primary production and bacterioplankton production were measured monthly at five sampling stations in the lower Kis-Balaton reservoir. The open water area of the reservoir was rich in phytoplankton and had hypertrophic characteristics, but inside the reed stand (80% of the surface area) phytoplankton biomass and production were substantially (30-50 times) lower. The algal removal efficiency of the lower Kis-Balaton reservoir was 96%. The reservoir had a considerably smaller effect on bacterioplankton removal than on the phytoplankton. The decrease of biomass and production of bacterioplankton in the through-flowing water was approximately 60%. Inside the reed stand the biomass and the production of planktonic bacteria exceeded that of the phytoplankton by several times, suggesting that the release of biodegradable dissolved organic (humic) substances from macrophytes stimulated the metabolism of bacterioplankton. The significant reduction of phytoplankton inside the dense reed stand was primarily the result of the shading effect of the reeds. In the open water area a shading experiment demonstrated that a 1-week residence period for planktonic algae in the reed-covered area was sufficient for their complete elimination. The decomposition of planktonic algae, reed material and the lack of primary production inside the reed stand created oxygen-deficient and phosphorus-rich conditions during the vegetative period. These results suggest that reed-covered water bodies can effectively retain suspended solids and planktonic algae, but because of decomposition processes they cannot retain biologically-available phosphorus.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors