IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Zooplankton biomass in the Oosterschelde (SW Netherlands) before, during and after the construction of a storm-surge barrier
Bakker, C.; Van Rijswijk, P. (1994). Zooplankton biomass in the Oosterschelde (SW Netherlands) before, during and after the construction of a storm-surge barrier, in: Nienhuis, P.H. et al. (Ed.) The Oosterschelde Estuary (The Netherlands): a case-study of a changing ecosystem. Hydrobiologia, 97: pp. 127-143
In: Nienhuis, P.H.; Smaal, A.C. (Ed.) (1994). The Oosterschelde Estuary (The Netherlands): a case-study of a changing ecosystem. Reprinted from Hydrobiologia, vols 282/283. Hydrobiologia, 97. Kluwer Academic: Dordrecht. 597 pp., more
In: Hydrobiologia. Springer: The Hague. ISSN 0018-8158, more
Peer reviewed article  

Also published as
  • Bakker, C.; Van Rijswijk, P. (1994). Zooplankton biomass in the Oosterschelde (SW Netherlands) before, during and after the construction of a storm-surge barrier. Hydrobiologia 282-283: 127-143, more

Available in Authors 

Keywords
    Abundance; Phytoplankton; Retention time; Temora; Copepoda [WoRMS]; Pleurobrachia Fleming, 1822 [WoRMS]; Pleurobrachia pileus (O. F. Müller, 1776) [WoRMS]; Temora longicornis (Müller O.F., 1785) [WoRMS]; ANE, Netherlands, Oosterschelde [Marine Regions]; Marine; Brackish water
Author keywords
    Copepods; Zooplankton biomass; Bayes; Eastern scheldt; Pleurobrachia; Benthic larvae; Southern north-sea; Seston food quality; Nova-scotia; Ctenophore pleurobrachia-pileus; Continuous plankton records; Temora-longicornis; Bed sediments; Estuary; Estuarium

Authors  Top 
  • Bakker, C.
  • Van Rijswijk, P., more

Abstract
    The hydrodynamic consequences of large coastal engineering (barrier-construction) works in the Oosterschelde were: prolonged residence times of the water, increased sinking of particulate material, and higher water transparencies. This strongly influenced the phytoplankton (Bakker et al., 1990; 1994) and phytoplankton biomass increased in the shallow Eastern compartment of the Oosterschelde (Bakker & Vink, 1994) while phytoplankton concentration of the seston rose. Zooplankton biomass, especially of copepods (Temora) and meroplankton (barnacle larvae) increased during the post-barrier period in the Eastern compartment. It is hypothesized that this is caused by the improved feeding conditions and the increased retention times in this area. The barrier years 1985 and 1986 were characterized by low current velocities. In the Eastern compartment, this may have favoured the development of the rotifer Synchaeta (Bakker, 1994) and of the important copepod predator Pleurobrachia (Ctenophora). In the Western compartment, zooplankton developments in the post-barrier years were rather similar to those in the pre-barrier period. This led to the disappearance of the previously existing biomass gradients West-East (maxima in West). At present a trend in the opposite direction (maxima in East) is observed.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors