IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene?
Codispoti, L.A.; Brandes, J.A.; Christensen, J.P.; Devol, A.H.; Naqvi, S.W.A.; Paerl, H.W.; Yoshinari, T. (2001). The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene?, in: Gili, J.-M. et al. (Ed.) A Marine Science Odyssey into the 21st Century. Scientia Marina (Barcelona), 65(Suppl. 2): pp. 85-105
In: Gili, J.-M.; Pretus, J.L.; Packard, T.T. (Ed.) (2001). A Marine Science Odyssey into the 21st Century. Scientia Marina (Barcelona), 65(Suppl. 2). Institut de Ciències del Mar: Barcelona. 326 pp., more
In: Scientia Marina (Barcelona). Consejo Superior de Investigaciones Científicas. Institut de Ciènces del Mar: Barcelona. ISSN 0214-8358, more
Peer reviewed article  

Also published as
  • Codispoti, L.A.; Brandes, J.A.; Christensen, J.P.; Devol, A.H.; Naqvi, S.W.A.; Paerl, H.W.; Yoshinari, T. (2001). The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci. Mar. (Barc.) 65(Suppl. 2): 85-105, more

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Codispoti, L.A.
  • Brandes, J.A.
  • Christensen, J.P.
  • Devol, A.H.
  • Naqvi, S.W.A.
  • Paerl, H.W.
  • Yoshinari, T.

Abstract
    New data force us to raise previous estimates of oceanic denitrification. Our revised estimate of ~ 450 Tg N yr-1 (Tg = 1012 g) produces an oceanic fixed N budget with a large deficit (~ 200 Tg N yr-1) that can be explained only by positing an ocean that has deviated far from a steady-state, the need for a major upwards revision of fixed N inputs, particularly nitrogen fixation, or both. Oceanic denitrification can be significantly altered by small re-distributions of carbon and dissolved oxygen. Since fixed N is a limiting nutrient, uncompensated changes in denitrification affect the ocean´s ability to sequester atmospheric CO2 via the "biological pump". We have also had to modify our concepts of the oceanic N2O regime to take better account of the extremely high N2O saturations that can arise in productive, low oxygen waters. Recent results from the western Indian Shelf during a period when hypoxic, suboxic and anoxic waters were present produced a maximum surface N2O saturation of > 8000%, a likely consequence of "stop and go" denitrification. The sensitivity of N2O production and consumption to small changes in the oceanic dissolved oxygen distribution and to the "spin-up" phase of denitrification suggests that the oceanic source term for N2O could change rapidly.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors