IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Faecal pellet production by Arctic under-ice amphipods: transfer of organic matter through the ice/water interface
Werner, I. (2000). Faecal pellet production by Arctic under-ice amphipods: transfer of organic matter through the ice/water interface, in: Liebezeit, G. et al. (Ed.) Life at Interfaces and Under Extreme Conditions: Proceedings of the 33rd European Marine Biology Symposium, Wilhelmshaven, Germany, 7-11 September 1998. Hydrobiologia, 426(1-3): pp. 89-96
In: Liebezeit, G.; Dittmann, S.; Kröncke, I. (Ed.) (2000). Life at Interfaces and Under Extreme Conditions: Proceedings of the 33rd European Marine Biology Symposium, Wilhelmshaven, Germany, 7-11 September 1998. Hydrobiologia, 426(1-3). Kluwer Academic: Dordrecht. 210 pp., more
In: Hydrobiologia. Springer: The Hague. ISSN 0018-8158, more
Peer reviewed article  

Also published as
  • Werner, I. (2000). Faecal pellet production by Arctic under-ice amphipods: transfer of organic matter through the ice/water interface. Hydrobiologia 426: 89-96, more

Available in Author 
Document type: Conference paper

Keywords
    Faecal pellets; Ice-water interface; Amphipoda [WoRMS]; Apherusa glacialis (Hansen, 1888) [WoRMS]; Gammarus wilkitzkii Birula, 1897 [WoRMS]; Onisimus Boeck, 1871 [WoRMS]; PN, Arctic [Marine Regions]; Marine

Author  Top 
  • Werner, I.

Abstract
    The underside of Arctic sea ice is inhabited by several autochthonous amphipod species (Apherusa glacialis, Onisimus spp., Gammarus wilkitzkii). The amphipods graze on ice-bound organic matter, such as ice algae, detritus and ice fauna, and release faecal pellets into the underlying water column, thus forming a direct link between the sea ice and the pelagic ecosystems. Experiments on faecal pellet production rates showed species-specific differences, which were related to size of the animals. The smallest species, A. glacialis, produced the highest mean number of pellets (15.4 pellets ind.-1 d-1), followed by Onisimus spp. (2.7 pellets ind.-1 d-1) and the largest species, G. wilkitzkii (1.1 pellets ind.-1 d-1). Relative carbon content of the pellets was very similar in all species (21.2-22.6% dry mass). Juvenile amphipods (Onisimus spp., G. wilkitzkii) produced more pellets with less POC than adults. Based on field determinations of the POC concentration in the lowermost 2 cm of the sea ice (mean: 36.4 mg C m-2) and mean amphipod abundances (A. glacialis: 33.8 ind. m-2, Onisimus spp.: 0.5 ind. m-2, G, wilkitzkii: 9.4 ind. m-2) in the Greenland Sea in summer 1994, the amount of POC transferred from the ice to the water by faecal pellet production was estimated (0.7 mg C m-2 d-1 or almost 2% of ice-bound carbon). Since this process probably takes place in all ice-covered Arctic regions as well as during all seasons, grazing and pellet production by under-ice amphipods contributes significantly to matter flux across the ice/water interface.

All data in IMIS is subject to the VLIZ privacy policy Top | Author