IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

The influence of prey abundance on the feeding ecology of two piscivorous species of coral reef fish
Beukers-Stewart, B.D.; Jones, G.P. (2004). The influence of prey abundance on the feeding ecology of two piscivorous species of coral reef fish. J. Exp. Mar. Biol. Ecol. 299(2): 155-184
In: Journal of Experimental Marine Biology and Ecology. Elsevier: New York. ISSN 0022-0981, more
Peer reviewed article  

Available in  Authors 


Authors  Top 
  • Beukers-Stewart, B.D.
  • Jones, G.P.

    Despite the potential importance of predation as a process structuring coral reef fish communities, few studies have examined how the diet of piscivorous fish responds to fluctuations in the abundance of their prey. This study focused on two species of rock-cod, Cephalopholis cyanostigma (Valenciennes, 1828) and Cephalopholis boenak (Bloch, 1790) (Serranidae), and monitored their diet in two different habitats (patch and contiguous reef) at Lizard Island on the northern Great Barrier Reef, Australia, over a 2-year period. The abundance of the rock-cods and the abundance and family composition of their prey were monitored at the same time. Dietary information was largely collected from regurgitated samples, which represented approximately 60% of the prey consumed and were unbiased in composition. A laboratory experiment showed that fish were digested approximately four times faster than crustaceans, leading to gross overestimation of the importance of crustaceans in the diet. When this was taken into account fish were found to make up over 90% of the diet of both species. Prey fish of the family Apogonidae, followed by Pomacentridae and Clupeidae, dominated the diet of both species of rock-cod. The interacting effect of fluctuations in prey abundance and patterns of prey selection caused dietary composition to vary both temporally and spatially. Mid-water schooling prey belonging to the families Clupeidae and to a lesser extent Caesionidae were selected for over other families. In the absence of these types of prey, apogonids were selected for over the more reef-associated pomacentrids. A laboratory experiment supported the hypothesis that such patterns were mainly due to prey behaviour. Feeding rates of both species of rock-cod were much higher in summer than in winter, and in summer they concentrated on small recruit sized fish. However, there was little variation in feeding rates between habitats, despite apparent differences in prey abundance. In summary, our observations of how the feeding ecology of predatory fish responded to variation in prey abundance provide potential mechanisms for how predation may affect the community structure of coral reef fishes.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors