IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [58433]
A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations
Hays, G.C. (2003). A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations, in: Jones, M.B. et al. Migrations and dispersal of marine organisms: Proceedings of the 37th European Marine Biology Symposium held in Reykjavik, Iceland, 5-9 August 2002. Developments in Hydrobiology, 174: pp. 163-170. https://dx.doi.org/10.1007/978-94-017-2276-6_18
In: Jones, M.B. et al. (2003). Migrations and dispersal of marine organisms: Proceedings of the 37th European Marine Biology Symposium held in Reykjavik, Iceland, 5-9 August 2002. Reprinted from Hydrobiologia 503. Developments in Hydrobiology, 174. Springer Science+Business Media: Dordrecht. ISBN 978-90-481-6480-6; e-ISBN 978-94-017-2276-6. XII, 262 pp. https://dx.doi.org/10.1007/978-94-017-2276-6, more
In: Dumont, H.J. (Ed.) Developments in Hydrobiology. Kluwer Academic/Springer: The Hague; London; Boston; Dordrecht. ISSN 0167-8418, more
Related to:
Hays, G.C. (2003). A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503: 163-170. https://dx.doi.org/10.1023/B:HYDR.0000008476.23617.b0, more

Available in  Author 
Document type: Conference paper

Keywords
    Cycles > Chemical cycles > Geochemical cycle > Biogeochemical cycle
    Layers > Discontinuity layers > Scattering layers
    Predator prey interactions
    Temporal variations > Periodic variations > Diurnal variations
    Marine/Coastal

Author  Top 
  • Hays, G.C.

Abstract
    Diel vertical migration (DVM) by zooplankton is a universal feature in all the World's oceans, as well as being common in freshwater environments. The normal pattern involves movement from shallow depths at night to greater depths during the day. For many herbivorous and omnivorous mesozooplankton that feed predominantly near the surface on phytoplankton and microzooplankton, minimising the risk of predation from fish seems to be the ultimate factor behind DVM. These migrants appear to use deep water as a dark daytime refuge where their probability of being detected and eaten is lower than if they remained near the surface. Associated with these vertical movements of mesozooplankton, predators at higher trophic levels, including invertebrates, fish, marine mammals, birds and reptiles, may modify their behaviour to optimise the exploitation of their vertically migrating prey. Recent advances in biotelemetry promise to allow the interaction between migrating zooplankton and diving air-breathing vertebrates to be explored in far more detail than hitherto.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author