IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Seasonal productivity dynamics in the pelagic central Benguela System inferred from the flux of carbonate and silicate organisms
Romero, O.; Boeckel, B.; Donner, B.; Lavik, G.; Fischer, G.; Wefer, G. (2002). Seasonal productivity dynamics in the pelagic central Benguela System inferred from the flux of carbonate and silicate organisms. J. Mar. Syst. 37(4): 259-278.
In: Journal of Marine Systems. Elsevier: Tokyo; Oxford; New York; Amsterdam. ISSN 0924-7963, more
Peer reviewed article  

Available in  Authors 

    Carbonate minerals; Coccoliths; Diatoms; Foraminifera; Particulate flux; Primary production; Seasonal variations; Silicate minerals; Upwelling; ASE, Benguela Current [Marine Regions]; PSW, Benguela Upwelling; Marine

Authors  Top 
  • Romero, O.
  • Boeckel, B.
  • Donner, B.
  • Lavik, G.
  • Fischer, G.
  • Wefer, G.

    Flux of bulk components, carbonate- and silicate-bearing skeleton organisms, and the deltaN-isotopic signal were investigated on a 1-year time-series sediment trap deployed at the pelagic NU mooring site (Namibia Upwelling, ca. 29°S, 13°E) in the central Benguela System. The flux of bulk components mostly shows bimodal seasonality with major peaks in austral summer and winter, and moderate to low export in austral fall and spring. The calcium carbonate fraction dominates the export of particulates throughout the year, followed by lithogenic and biogenic opal. Planktonic foraminifera and coccolithophorids are major components of the carbonate fraction, while diatoms clearly dominate the biogenic opal fraction. Bulk delta15N isotopic composition of particulate matter is positively correlated with the total mass flux during summer and fall, while negatively correlated during winter and spring. Seasonal changes in the intensity of the main oceanographic processes affecting the NU site are inferred from variations in bulk component flux, and in the flux and diversity patterns of individual species or group of species. Influence from the Namaqua (Hondeklip) upwelling cell through offshore migration of chlorophyll filaments is stronger in summer, while the winter flux maximum seems to reflect mainly in situ production, with less influence from the coastal and shelf upwelling areas. On a yearly basis, dominant microorganisms correspond well with the flora and fauna of tropical/subtropical waters, with minor contribution of near-shore organisms. The simultaneous occurrence of species with different ecological affinities mirrors the fact that the mooring site was located in a transitional region with large hydrographic variability over short-time intervals.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors