IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames)
Borges, A.V.; Delille, B.; Schiettecatte, L.-S.; Gazeau, F.; Abril, G.; Frankignoulle, M. (2004). Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames). Limnol. Oceanogr. 49(5): 1630-1641. dx.doi.org/10.4319/lo.2004.49.5.1630
In: Limnology and Oceanography. American Society of Limnology and Oceanography: Waco, Tex., etc.. ISSN 0024-3590, more
Peer reviewed article  

Available in Authors | Dataset 
    VLIZ: Open Repository 59666 [ OMA ]

Keyword
    Marine

Project Top | Authors | Dataset 
  • Carbon and nutrients cycles in the inner Scheldt estuary (Sainte-Anna), more

Authors  Top | Dataset 
  • Borges, A.V., more
  • Delille, B., more
  • Schiettecatte, L.-S., more

Abstract
    We measured the flux of CO2 across the air–water interface using the floating chamber method in three European estuaries with contrasting physical characteristics (Randers Fjord, Scheldt, and Thames). We computed the gas transfer velocity of CO2 (k) from the CO2 flux and concomitant measurements of the air–water gradient of the partial pressure of CO2 (pCO2). There was a significant linear relationship between k and wind speed for each of the three estuaries. The differences of the y-intercept and the slope between the three sites are related to differences in the contribution of tidal currents to water turbulence at the interface and fetch limitation. The contribution to k from turbulence generated by tidal currents is negligible in microtidal estuaries such as Randers Fjord but is substantial, at low to moderate wind speeds, in macrotidal estuaries such as the Scheldt and the Thames. Our results clearly show that in estuaries a simple parameterization of k as a function of wind speed is site specific and strongly suggest that the y-intercept of the linear relationship is mostly influenced by the contribution of tidal currents, whereas the slope is influenced by fetch limitation. This implies that substantial errors in flux computations are incurred if generic relationships of the gas transfer velocity as a function of wind speed are employed in estuarine environments for the purpose of biogas air–water flux budgets and ecosystem metabolic studies.

Dataset
  • EUROTROPH project dataset: Nutrients Cycling and the Trophic Status of Coastal Ecosystems, more

All data in IMIS is subject to the VLIZ privacy policy Top | Authors | Dataset