IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

How to be perfect host : Co2 and HS- accumulation and H- elimination in the hydrothermal vent tube-worm Riftia pachyptila
Goffredi, S.K.; Childress, J.J.; Lallier, F.; Desaulniers, N.T. (1998). How to be perfect host : Co2 and HS- accumulation and H- elimination in the hydrothermal vent tube-worm Riftia pachyptila, in: Proceedings of the First International Symposium on Deep-Sea Hydrothermal Vent Biology: Funchal, Madeira, Portugal 20-24 October 1997. Cahiers de Biologie Marine, 39(3-4): pp. 297-300
In: (1998). Proceedings of the First International Symposium on Deep-Sea Hydrothermal Vent Biology: Funchal, Madeira, Portugal 20-24 October 1997. Cahiers de Biologie Marine, 39(3-4). Station Biologique de Roscoff: Roscoff. 219-392 pp., more
In: Cahiers de Biologie Marine. Station Biologique de Roscoff: Paris. ISSN 0007-9723, more
Peer reviewed article  

Also published as
  • Goffredi, S.K.; Childress, J.J.; Lallier, F.; Desaulniers, N.T. (1998). How to be perfect host : Co2 and HS- accumulation and H- elimination in the hydrothermal vent tube-worm Riftia pachyptila. Cah. Biol. Mar. 39(3-4): 297-300, more

Available in Authors 

Keyword
    Marine

Authors  Top 
  • Goffredi, S.K.
  • Childress, J.J.
  • Lallier, F.
  • Desaulniers, N.T.

Abstract
    In order to be successful in the vent environment, Riftia pachyptila must meet the biochemical demands of the bacterial symbionts. It has become specialized in coping with the uptake and transport of CO2 and HS+, as well as the elimination of hydrogen ions. These animals are able to take up large amounts of inorganic carbon via CO2 diffusion, facilitated by an intracellular carbonic anhydrase and the maintenance of an alkaline internal pH. These animals take up HS-, which is a completely novel strategy in the animal kingdom. It is also apparent that R. pachyptila is using high concentrations of H+ -ATPases to cope with the production of protons internally. These mechanisms illustrate the great autotrophic potential of this symbiosis, which enables the worm to grow rapidly, quickly dominating communities around newly established vents along the East Pacific Rise.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors