IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Zebrafish cDNA encoding multifunctional fatty acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids
Agaba, M.; Tocher, D.R.; Dickson, C.A.; Dick, J.R.; Teale, A.J. (2004). Zebrafish cDNA encoding multifunctional fatty acid elongase involved in production of eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Mar. Biotechnol. 6(3): 251-261. dx.doi.org/10.1007/s10126-003-0029-1
In: Marine Biotechnology. Springer-Verlag: New York. ISSN 1436-2228, more
Peer reviewed article  

Available in Authors 

Keywords
    Polyunsaturated fatty acids; Saturated; Zebrafish; Marine

Authors  Top 
  • Agaba, M.
  • Tocher, D.R.
  • Dickson, C.A.
  • Dick, J.R.
  • Teale, A.J.

Abstract
    Enzymes that increase the chain length of fatty acids are essential for biosynthesis of highly unsaturated fatty acids. The gLELO gene encodes a protein involved in the elongation of polyunsaturated fatty acids in the fungus Mortierella alpina. A search of the GenBank database identified several expressed sequence tag sequences, including one obtained from zebrafish (Danio rerio), with high similarity to gLELO. The full-length transcript ZfELO, encoding a polypeptide of 291 amino acid residues, was isolated from zebrafish liver cDNA. The predicted amino acid sequence of the open reading frame shared high similarity with the elongases of Caenorhabditis elegans and human. When expressed in Saccharomyces cerevisiae, the zebrafish open reading frame conferred the ability to lengthen the chain of a range of C18, C20, and C22 polyunsaturated fatty acids, indicating not only that biosynthesis of 22:6n-3 from 18:3n-3 via a 24-carbon intermediate is feasible, but also that one elongase enzyme can perform all three elongation steps required. The zebrafish enzyme was also able to elongate monounsaturated and saturated fatty acids, and thus demonstrates a greater level of promiscuity in terms of substrate use than any elongase enzyme described previously.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors