IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration
Gülden, M.; Mörchel, S.; Seibert, H. (2005). Comparison of mammalian and fish cell line cytotoxicity: impact of endpoint and exposure duration. Aquat. Toxicol. 71(3): 229-236. dx.doi.org/10.1016/j.aquatox.2004.11.006
In: Aquatic Toxicology. Elsevier Science: Tokyo; New York; London; Amsterdam. ISSN 0166-445X, more
Peer reviewed article  

Available in  Authors 

Keywords
    Cells; Cytotoxicity; Fish; Toxicity; Marine

Authors  Top 
  • Gülden, M.
  • Mörchel, S.
  • Seibert, H.

Abstract
    Comparisons of acute toxic concentrations of chemicals to fish in vivo and cytotoxic concentrations to fish cell lines in vitro reveal rather good correlations of the toxic potencies in vitro and in vivo, but a clearly lower sensitivity of the fish cells. To examine whether the low sensitivity is specific for fish cells, cytotoxic potencies of reference chemicals from the Multicenter Evaluation of In Vitro Cytotoxicity program (MEIC) reported for the fish cell lines R1 and RTG-2 were compared with those obtained with the mouse Balb/c 3T3 cell line. Cytotoxic potencies (EC50 values) for MEIC reference chemicals were determined with exponentially growing Balb/c 3T3 cells using three different test protocols. To assess both endpoints, cell proliferation and cell survival, EC50 values were measured for the decrease in final cell protein after 24 and 72 h of exposure and for the reduction of cell protein increase during 24 h of exposure. EC50 values obtained with the fish cell lines R1 and RTG-2 using cell survival as endpoint were taken from the MEIC data base. The comparison of cytotoxic potencies shows that, in general, the fish cell lines and the mammalian cell line are almost equally sensitive towards the cytotoxic action of chemicals. The mammalian cell line assay, however, becomes considerably more sensitive, by factors of 3.4-8.5, than the fish cell line assays, if cell growth instead of cell survival is used as endpoint. It is concluded, that cell proliferation might be a better endpoint than cell survival and that mammalian cell lines might be suited to assess fish acute toxicity.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors