IMIS | Flanders Marine Institute
 

Flanders Marine Institute

Platform for marine research

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

The effects of NH4+ and NO3- on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima
Tylova-Munzarova, E.; Lorenzen, B.; Brix, H.; Votrubova, O. (2005). The effects of NH4+ and NO3- on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquat. Bot. 81(4): 326-342. dx.doi.org/10.1016/j.aquabot.2005.01.006
In: Aquatic Botany. Elsevier Science: Tokyo; Oxford; New York; London; Amsterdam. ISSN 0304-3770, more
Peer reviewed article  

Available in  Authors 

Keywords
    Eutrophication; Glyceria; Phragmites Adans. [WoRMS]; Fresh water

Authors  Top 
  • Tylova-Munzarova, E.
  • Lorenzen, B.
  • Brix, H.
  • Votrubova, O.

Abstract
    The effects of NH4+ or NO3- on growth, resource allocation and nitrogen (N) uptake kinetics of two common helophytes Phragmites australis (Cav.) Trin. ex Steudel and Glyceria maxima (Hartm.) Holmb. were studied in semi steady-state hydroponic cultures. At a steady-state nitrogen availability of 34 μM the growth rate of Phragmites was not affected by the N form (mean RGR = 35.4 mg g−1 d−1), whereas the growth rate of Glyceria was 16% higher in NH4+-N cultures than in NO3--N cultures (mean = 66.7 and 57.4 mg g−1 d−1 of NH4+ and NO3- treated plants, respectively). Phragmites and Glyceria had higher S/R ratio in NH4+ cultures than in NO3-− cultures, 123.5 and 129.7%, respectively. Species differed in the nitrogen utilisation. In Glyceria, the relative tissue N content was higher than in Phragmites and was increased in NH4+ treated plants by 16%. The tissue NH4+ concentration (mean = 1.6 μmol g fresh wt−1) was not affected by N treatment, whereas NO3-− contents were higher in NO3- (mean = 1.5 μmol g fresh wt−1) than in NH4+ (mean = 0.4 μmol g fresh wt−1) treated plants. In Phragmites, NH4+ (mean = 1.6 μmol g fresh wt−1) and NO3- (mean = 0.2 μmol g fresh wt−1) contents were not affected by the N regime. Species did not differ in NH4+ (mean = 56.5 μmol g−1 root dry wt h−1) and NO3- (mean = 34.5 μmol g−1 root dry wt h−1) maximum uptake rates (Vmax), and Vmax for NH4+ uptake was not affected by N treatment. The uptake rate of NO3- was low in NH4+ treated plants, and an induction phase for NO3- was observed in NH4+ treated Phragmites but not in Glyceria. Phragmites had low Km (mean = 4.5 μM) and high affinity (10.3 l g−1 root dry wt h−1) for both ions compared to Glyceria (Km = 6.3 μM, affinity = 8.0 l g−1 root dry wt h−1). The results showed different plasticity of Phragmites and Glyceria toward N source. The positive response to NH4+-N source may participates in the observed success of Glyceria at NH4+ rich sites, although other factors have to be considered. Higher plasticity of Phragmites toward low nutrient availability may favour this species at oligotrophic sites.

All data in IMIS is subject to the VLIZ privacy policy Top | Authors