IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (1): add | show Print this page

one publication added to basket [74963]
Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae
Kremer, P. (2005). Ingestion and elemental budgets for Linuche unguiculata, a scyphomedusa with zooxanthellae. J. Mar. Biol. Ass. U.K. 85(3): 613-625
In: Journal of the Marine Biological Association of the United Kingdom. Cambridge University Press/Marine Biological Association of the United Kingdom: Cambridge. ISSN 0025-3154; e-ISSN 1469-7769, more
Peer reviewed article  

Available in  Author 

Keywords
    Linuche unguiculata (Swartz, 1788) [WoRMS]
    Marine/Coastal

Author  Top 
  • Kremer, P.

Abstract
    Specific rations for the zooxanthellae-bearing medusa, Linucheunguiculata, were calculated using two approaches: (a) gut contents of field collected medusae combined with experimental measurements of digestion time; and (b) experimental feeding studies combined with estimates of ambient prey biomass. Estimates of specific daily ration from gut contents averaged 5% for carbon, 6% for nitrogen, and 4% for phosphorus for the dominant size of medusae. Of the 868 medusae examined, 86% contained recognizable prey with an average of 3.6 items per medusa. Copepods dominated the gut contents (51%) as well as the ambient zooplankton prey (82%), but there was an over-representation of shelled prey, larval molluscs and foraminifera, in the gut (33%) compared with their availability (4%). Digestion times for crustaceans ranged from 1—4 h with longer times for larger prey. Ambient prey concentrations in areas of abundant L.unguiculata ranged from 0.2—4.0 prey l-1, with an average of 1.7 and no measurable day—night differences. There were also no measurable day—night differences in ingestion rates for field or laboratory fed medusae. Feeding studies showed a linear relationship between ingestion and prey concentration up to 400 prey l-1. Rations determined from experimental feeding studies were higher but less than double the ration estimates based on field gut contents. Specific ration decreased with increased medusa size in both field and laboratory results. Heterotrophy was calculated to be a major source of both nitrogen and phosphorus, but only a minor source of carbon. Elemental budgets for carbon, nitrogen and phosphorus were calculated using measured inputs of photosynthesis, ingestion, and dissolved nutrients and measured outputs of respiration, excretion, reproduction and tissue growth. Total measured outputs balanced the inputs, within the uncertainty associated with egg production.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Author