IMIS | Flanders Marine Institute

Flanders Marine Institute

Platform for marine research


Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Printer-friendly version

Geophysics in offshore site investigation: a review of the state of the art
Davis, A.M. (1996). Geophysics in offshore site investigation: a review of the state of the art, in: De Batist, M. et al. (Ed.) Geology of siliciclastic shelf seas. pp. 323-338
In: De Batist, M.; Jacobs, P. (Ed.) (1996). Geology of siliciclastic shelf seas. Geological Society Special Publication, 117. The Geological Society (London): London, UK. ISBN 1-897799-67-5. 345 pp., more
In: Hartley, A.J. et al. (Ed.) Geological Society Special Publication. Geological Society of London: Oxford; London; Edinburgh; Boston, Mass.; Carlton, Vic.. ISSN 0305-8719, more
Peer reviewed article  

Available in Author 
    VLIZ: Meteorology and Climatology [9241]


Author  Top 
  • Davis, A.M.

    Geophysical techniques for seabed and sub-seabed site investigation can be divided into two categories: those providing information on gross structural (geological) and stratigraphical relations, and those producing quantitative data which can be used to predict sediment behaviour under applied loading. The past few years have seen key developments in both fields which have come about through fundamental improvements in data acquisition (technological and procedural), and through an improved understanding of geophysical-geotechnical property relations. For example, high-resolution seismic reflection signatures are now routinely recorded in digital format, and, given the appropriate data quality and processing software, it is now possible to extract geotechnically significant information from the reflection response. Seismic refraction techniques are also beginning to be more widely used to provide quantitative information on the engineering properties of seafloor materials; the seismic shear wave velocity is of particular interest, since it is now being recognized as an indicator of sediment strength and stiffness. From a review of available data and the results of validation exercises, it would seem that offshore engineering and environmental surveys could reap considerable benefit from these and a range of other related geophysical developments.

All data in IMIS is subject to the VLIZ privacy policy Top | Author