Flanders Marine Institute

Platform for marine research

In:

IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
report an error in this recordbasket (0): add | show Printer-friendly version

Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands
Temmerman, S.; Govers, G.; Wartel, S.; Meire, P. (2005). Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands, in: (2005). VLIZ Coll. Rep. 33-34(2003-2004). VLIZ Collected Reprints: Marine and Coastal Research in Flanders, 33-34: pp. chapter 48 [Subsequent publication]
In: (2005). VLIZ Coll. Rep. 33-34(2003-2004). VLIZ Collected Reprints: Marine and Coastal Research in Flanders, 33-34. Flanders Marine Institute (VLIZ): Oostende, more
In: VLIZ Collected Reprints: Marine and Coastal Research in Flanders. Vlaams Instituut voor de Zee: Oostende. ISSN 1376-3822, more

Also published as
  • Temmerman, S.; Govers, G.; Wartel, S.; Meire, P. (2003). Spatial and temporal factors controlling short-term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands. Earth Surf. Process. Landforms 28(7): 739-755. hdl.handle.net/10.1002/esp.495, more

Available in Authors 
    VLIZ: Open Repository 99973 [ OMA ]

Keywords
    Fresh water; Resuspended sediments; Salt marshes; Sedimentation; Belgium, Schelde ; Belgium, Zeeschelde [gazetteer]; Marine
Author keywords
    saltmarsh; freshwater marsh; suspended sediment concentration; sediment deposition; Schelde river

Authors  Top 

Abstract
    During a one-year period temporal and spatial variations in suspended sediment concentration (SSC) and deposition were studied on a salt and freshwater tidal marsh in the Scheldt estuary (Belgium, SW Netherlands) using automatic water sampling stations and sediment traps. Temporal variations were found to be controlled by tidal inundation. The initial SSC, measured above the marsh surface at the beginning of inundation events, increases linearly with inundation height at high tide. In accordance with this an exponential relationship is observed between inundation time and sedimentation rates, measured over 25 spring-neap cycles. In addition both SSC and sedimentation rates are higher during winter than during summer for the same inundation height or time. Although spatial differences in vegetation characteristics are large between and within the studied salt and freshwater marsh, they do not affect the spatial sedimentation pattern. Sedimentation rates however strongly decrease with increasing (1) surface elevation, (2) distance from the nearest creek or marsh edge and (3) distance from the marsh edge measured along the nearest creek. Based on these three morphometric parameters, the spatio-temporal sedimentation pattern can be modelled very well using a single multiple regression model for both the salt and freshwater marsh. A method is presented to compute two-dimensional sedimentation patterns, based on spatial implementation of this regression model.

 Top | Authors