IMIS

Publications | Institutes | Persons | Datasets | Projects | Maps
[ report an error in this record ]basket (0): add | show Print this page

Ship collision analysis on offshore wind turbine monopile foundations
Bela, A.; Le Sourne, H.; Buldgen, L.; Rigo, P. (2017). Ship collision analysis on offshore wind turbine monopile foundations. Mar. Struct. 51: 220-241. https://dx.doi.org/10.1016/j.marstruc.2016.10.009
In: Marine Structures. Elsevier: Oxford. ISSN 0951-8339; e-ISSN 1873-4170, more
Peer reviewed article  

Available in  Authors 

Keyword
    Marine/Coastal
Author keywords
    Offshore wind turbine; Ship collision; Monopile; Nonlinear finiteelement analysis; Crashworthiness

Authors  Top 
  • Bela, A., more
  • Le Sourne, H.
  • Buldgen, L., more
  • Rigo, P., more

Abstract
    An offshore wind farm can be located close to traffic lanes of commercial and passenger ships, which may lead to possible collision. The work presented in this paper aims to understand both the crushing behaviour and the nacelle dynamics of a monopile offshore wind turbine when impacted by a ship. Another objective was to deeply investigate the influence of various parameters like ship impact velocity and location, wind direction, soil stiffness and deformability of the striking ship. First, nonlinear numerical simulations of ship - Offshore Wind Turbine (OWT) collisions have been carried out with a rigid striking ship for a better understanding of the OWT's structural behaviour during collision. Different configurations for the wind turbine's structure have been used in order to highlight the modifications in behaviour induced by changing the soil conditions or the loading scenario. The resulting resistant force and internal energies have been compared as well as the tower top (nacelle) displacements and accelerations. Then, another series of simulations have been performed with a deformable ship in order to investigate the influence of the deformability of the striking ship on the OWT's behaviour. It was shown that a slight variation of the impact velocity can lead to consequences ranging from minor damage of the OWT to collapse. Furthermore, the behaviour of the OWT during collision is highly sensitive to wind loads as it was shown that in some cases the OWT can collapse for an impact velocity of only 3 m/s and, in the worst case, can fall directly on the ship. The results obtained showed that it is important to account for the soil flexibility when performing collision simulations because considering the monopile as being clamped at the base would lead to an overestimation of the plastic deformation of the collided structure. Moreover, when the OWT is collided by a deformable striking ship, the deformations of the OWT are 2 times smaller comparing to the deformations caused by impact with a rigid ship and the structure can withstand collisions without collapsing with an impact velocity up to 6 mks.

All data in the Integrated Marine Information System (IMIS) is subject to the VLIZ privacy policy Top | Authors