This is a postprint of:


Published version: dx.doi.org/10.1016/j.orggeochem.2016.09.003

Link NIOZ Repository: www.vliz.be/nl/imis?module=ref&refid=281677
Des-A-lupane in an East African lake sedimentary record as a new proxy for C3-plant stable carbon isotopic composition

L.G.J. van Bree\textsuperscript{a,h}, W.I.C. Rijpstra\textsuperscript{a}, N.A. Al-Dhabi\textsuperscript{c}, D. Verschuren\textsuperscript{d}, J.S. Sinninghe Damst\textsuperscript{e,a,b}, J.W. de Leeuw\textsuperscript{a,b}

\textsuperscript{a} NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, PO Box 59, 1790 AB Den Burg, The Netherlands.

\textsuperscript{b} Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.115, 3508 TC Utrecht, The Netherlands.

\textsuperscript{c} Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

\textsuperscript{d} Ghent University, Limnology Unit, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.

*Corresponding author. Utrecht University, Faculty of Geosciences, Department of Earth Sciences, PO Box 80.115, 3508 TC Utrecht, The Netherlands. L.G.J.vanBree@uu.nl. +31 30 253 52 32

To be submitted to Organic Geochemistry
Abstract

We studied the high-resolution and well-dated 25,000 year sedimentary record of Lake Challa, a deep tropical crater lake in equatorial East Africa, to explore new proxies for paleoenvironmental and paleohydrological change. Sedimentary biomarker analysis revealed the presence of des-A-triterpenoids with oleanane, ursane and lupane carbon skeletons, microbial degradation products of angiosperm plant triterpenoids. Their increased influx from 16,000 years ago corresponds with previously documented changes in the terrestrial vegetation of the Lake Challa basin during postglacial warming, in particular the relative increase in C_3/C_4 plant ratio inferred from the stable carbon isotopic signature (δ^{13}C) of sedimentary n-alkanes derived from plant leaf waxes. In contrast to this n-alkane δ^{13}C, the δ^{13}C of des-A-lupane maintains a constant value of -27.4±1.1‰ across the glacial–interglacial transition. Since des-A-lupane is derived from C_3 plants, its δ^{13}C signature is here proposed to represent a novel and independent proxy for the time-variable carbon isotopic composition of local terrestrial C_3 plants, which can improve estimates of the C_3/C_4 plant ratio based on two-end member mixing models of n-alkane δ^{13}C values.

Keywords

1. Introduction

Non-hopanoid pentacyclic triterpenoids preserved in lake and marine sediments are relatively well studied biomarkers, and used in organic geochemistry as a proxy for the input of terrestrial angiosperm plants (e.g. Rullkötter et al., 1982; Freeman et al., 1994; Sabel et al., 2005). These wax components are synthesized almost exclusively by higher plants as a defense mechanism against insects, pathogens and herbivores (Langenheim, 1994). Pentacyclic triterpenoids with, for example, lupane, oleanane and ursane skeletons, are widely accepted as general biomarkers for angiosperms, yet most of these triterpenoids are not species-specific (e.g. Ohmoto et al., 1970; ten Haven and Rullkötter, 1988; Regnery et al., 2013). Des-A-triterpenoids, in turn, are diagenetic products of triterpenoid A-ring degradation (Trendel et al., 1989), a process probably mediated by microorganisms under anoxic conditions (Lohmann et al., 1990).

Plant wax lipids, such as n-alkanes, can be used as indicators of the composition of local vegetation, as their compound-specific stable carbon isotopic value (δ^{13}C) depends on the dominant biochemical pathway used by plants for photosynthesis. Higher plants usually fix CO₂ by either the C₃ (Calvin-Benson) or C₄ (Hatch-Slack) cycle. In C₄ photosynthesis, atmospheric CO₂ entering the plant stomata is pre-concentrated, resulting in less carbon isotopic depletion. In tropical Africa, lowland vegetation consists mostly of C₄ grasses and C₃ trees and shrubs, and (seasonal) moisture availability is the dominant control on the distribution and abundance of these C₄ grasses across the modern-day landscape. On glacial-interglacial time scales, variation in atmospheric pCO₂ exerted important control on the composition of savanna vegetation of East Africa (Sinninghe Damsté et al., 2011). When pCO₂ varies little, as within the Holocene, the distribution of C₃ and C₄ vegetation can be used as a measure of past water availability (Castañeda et al., 2007).
During an earlier high-resolution stratigraphic study of \( n \)-alk-1-enes in the continuous and well-dated 25,000-year (25 kyr) sedimentary record of Lake Challa, a deep crater lake in equatorial East Africa (van Bree et al., 2014), we also encountered a wide range of \( des \)-A-triterpenoids. In this paper, we report our findings regarding the origin and potential paleoenvironmental application of the pentacyclic triterpenoid degradation products derived from higher plants. A study of \( des \)-A-arborenes/fernenes also present in Lake Challa sediments, but of microbial origin, will be published separately.

2. Material and Methods

2.1 Study area

Lake Challa (3°19’S, 37°42’E) is a relatively unproductive, tropical freshwater lake, situated ~880 m above sea level on the lower south-eastern slope of Mt. Kilimanjaro (Fig. 1). Shared by Kenya and Tanzania, it has a surface area of 4.5 km\(^2\), a steep-sided crater catchment of ~3.4 km\(^2\) and a maximum depth of ~90 m. Rainfall seasonality is mainly determined by the semi-annual passing of the Inter-Tropical Convergence Zone (ITCZ), resulting in moderate ‘long rains’ (March-May) and more intense ‘short rains’ (October-December) separated by a long dry season during Southern Hemisphere winter (June-September). Since the local balance between precipitation and evaporation is negative by three to one, the lake’s water budget must be maintained by substantial groundwater inflow, derived from rainfall on the forested mid-elevation slopes of Mt. Kilimanjaro. Also temporary creek discharge breaching the crater’s northwestern rim can occur during very heavy rains (Buckles et al., 2014). Daily wind-driven mixing of the water column is limited to the uppermost 15-20 m year-round. Seasonal deeper mixing (June-September) extends to 40-60 m, implying a permanently stratified lower water column. Given limited density stratification, the possibility of complete mixing cannot be excluded but its recurrence frequency is likely decadal or longer, rather than
inter-annual (Wolff et al., 2011, 2014). Wind-blown (aeolian) particles, supplemented by soil and litter input from the steep-sided inner slopes of the crater, contribute allochthonous organic matter to Lake Challa sediments. The vegetation outside the crater and on top of the rim is a woodland-savannah with shrubs, trees and C4 grasses, while inside the crater rim a more varied vegetation occurs, including CAM plants in a dry succulent forest occupying the middle slopes, and a fringe of evergreen forest around the lake shore (Hemp, 2006; Sinninghe Damsté et al., 2011).

2.2 Study material

A 21.65 m composite core of mostly finely-laminated organic muds was retrieved from the center of Lake Challa (Fig. 1) during coring activities in 2003 and 2005 (Verschuren et al., 2009). This yielded, after excision of five turbidites, a 20.82 m long master sequence covering the last 25 kyr of continuous offshore lacustrine sedimentation. The age-depth model is based on a smoothed spline through INTCAL04-calibrated AMS $^{14}$C ages of 164 bulk organic carbon samples (Blaauw et al., 2011). For this study, a total of 148 sediment samples with 4-cm thickness were extracted and processed for biomarker analysis, generally at ~200-year intervals, with a higher resolution of ~50 year intervals in the youngest 3.2 kyr. In addition, we analyzed the compound-specific $\delta^{13}$C of selected biomarkers in 52 sediment samples distributed throughout the sequence.

In order to trace the origin of the biomarkers found in Lake Challa sediments, we further analyzed soil and litter samples from around the lake, suspended particulate matter (SPM) and settling particles collected by a sediment trap (Sinninghe Damsté et al. 2009; Buckles et al. 2014). This sediment trap was deployed at 35 m water depth in a most often suboxic part of the water column, and samples were retrieved at ca. 4-week intervals between November 2006 and December 2007 (Sinninghe Damsté et al., 2009). The SPM sampling was
conducted on 10–11 September 2006 along a vertical profile in the center of the lake, every 5 m between 0 and 30 m, and every 10 m between 30 and 90 m water depth. The water samples (4 to 9 L) were filtered through GF/F filters and stored frozen until processing. Eight soil samples were collected from within the catchment area of Lake Challa in 2005 (Sinninghe Damsté et al., 2009; Fig. 1). Sampling of litter in September 2012 included three near-shore samples representing leaf and fruit remains from forest trees and shrubs, and two samples from just below the crater rim consisting of leaf and twig remains and small non-diagnostic organic debris. These samples were also stored frozen until analysis.

2.3 Lipid extraction

The freeze-dried and powdered sediment samples were extracted with a Dionex™ Accelerated Solvent Extractor (ASE), using a dichloromethane (DCM)/methanol (9:1, v/v) mixture at high temperature (100°C) and pressure (7.6 x 106 Pa) (Sinninghe Damsté et al., 2011). The total extracts were separated over an activated Al₂O₃ column into an apolar and a polar fraction with hexane/DCM (9:1, v/v) and DCM/MeOH (1:1, v/v), respectively.

Accumulation rates of apolar compounds (in mg m⁻² yr⁻¹) were calculated based on their concentration, the wet weight and water content of the sediment samples, and the sediment’s age-depth profile. For analysis of stable carbon isotopic composition, a subset of the apolar fractions were separated into a saturated and an unsaturated hydrocarbon fraction using a small Ag⁺-impregnated silica column with hexane and ethyl acetate as eluents, respectively.

SPM and sediment trap samples were extracted previously (Sinninghe Damsté et al., 2009). Fluxes of apolar compounds (in mg m⁻² yr⁻¹) in the sediment trap samples were calculated using the concentration of each of these components relative to total particle flux.

Litter and soil samples were extracted ultrasonically with DCM/MeOH (2:1, v/v), after cutting the larger leaf, stem or fruit remains into small pieces. The extracts were evaporated to
dryness, methylated with diazomethane in diethyl ether and separated over an activated Al₂O₃ column into apolar, ketone and polar fractions, using hexane/DCM (9:1, v/v), hexane/DCM (1:1, v/v) and DCM/MeOH (1:1, v/v) as eluents, respectively.

2.4 Lipid identification and quantification

The apolar fractions of sediments, SPM, sediment trap, soil and litter extracts were analyzed by gas chromatography (GC) and GC-mass spectrometry (GC/MS), after addition of a known amount of internal standard. A few polar fractions of sediment and SPM samples were methylated, silylated and screened for functionalized triterpenoids.

GC was performed using a Hewlett-Packard (HP6890) instrument equipped with an on-column injector and a flame ionization detector (FID). A fused silica capillary column (25 m x 0.32 mm) coated with CP Sil-5 CB (film thickness 0.12 µm) was used with helium as carrier gas. The samples were injected at 70°C and the oven temperature was programmed to rise at 20°C/min to 130°C, and then at 4°C/min to 320°C, at which it was held for 20 min.

GC-MS was performed on a Finnigan Trace DSQ mass spectrometer operated at 70 eV with a mass range of m/z 40 to 800 and a cycle time of 1.7 s. The gas chromatograph was equipped with a fused silica capillary column as described above. The carrier gas was helium and the same oven temperature program as for GC was used. Identification of the des-A-triterpenoids and other triterpenoid hydrocarbons is based on relative retention times, published mass spectra (including the NIST98 spectral library), and interpretation of observed fragmentation patterns. Quantification of compounds was performed by peak area integration of appropriate peaks (including that of the internal standard) in the FID chromatograms.

2.5 Compound-specific carbon isotope analyses
We subjected 52 saturated hydrocarbon fractions to compound-specific δ¹³C analysis using an Agilent 6800 GC coupled to a ThermoFisher Delta V isotope-ratio monitoring mass spectrometer. The isotope values were measured with reference to a calibrated external reference gas, and performance of the instrument was monitored daily by injections of a mixture of a C₂₀ and a C₂₄ perdeuterated n-alkane with known isotopic composition. The δ¹³C values are reported in standard delta notation against the Vienna Pee Dee Belemnite (VPDB).

All samples were run at least in duplicate, allowing estimation of the standard deviation of these measurements. δ¹³C values of the n-alkanes in these same samples have been published previously (Sinninghe Damsté et al., 2011).

3. Results

3.1 The sedimentary record of des-A-triterpenoids in Lake Challa

Our analysis of the apolar fractions of 148 biomarker extracts from Lake Challa sediments covering the last 25 kyr showed the presence of n-alkanes, n-alk-1-enes, phytadienes, aromatic triterpenoids, hopanes, and a suite of des-A-triterpenoid hydrocarbons with lupane, oleanane, ursane, and fernane or arborane skeletons. The stratigraphic distribution, origin and palaeoenvironmental significance of the n-alkanes and n-alk-1-enes have been discussed by Sinninghe Damsté et al. (2011) and van Bree et al. (2014), respectively.

We detected 11 distinct des-A-triterpenoid hydrocarbon compounds on the basis of on their relative retention times, published mass spectra, and interpretation of mass spectrometric fragmentation patterns. The mass spectra of ten des-A-triterpenes and one des-A-triterpane exhibit molecular ions at m/z 324, 326, 328 or 330. In this paper we focus on the distribution, origin and potential paleoenvironmental application of the five des-A-triterpenoids with lupane, oleanane and ursane skeletons (Fig. 2A). The identification and geochemical significance of the other, arborane- or fernane-derived des-A-triterpenoids will be discussed
elsewhere. Next to these des-A-triterpenoids with arborane or fernane skeleton, several other, non-identified des-A-triterpenoids co-elute, occur infrequently or in low relative abundance and are not further discussed.

Compound 1 (M** at m/z 328; Fig. 2B) was identified as des-A-olean-13(18)-ene (Corbet, 1980; Logan and Eglinton, 1994; Jacob et al., 2007; Huang et al., 2008), and compound 2 (M** at m/z 328; Fig. 2B) was tentatively assigned to des-A-olean-12-ene (Corbet, 1980; Logan and Eglinton, 1994; Jacob et al., 2007). Compound 3 (M** at m/z 328; Fig. 2B) was identified as des-A-urs-13(18)-ene (Corbet, 1980; Logan and Eglinton, 1994; Jacob et al., 2007). Compound 4 (M** at m/z 328; Fig. 2B) represents a mixture of des-A-ursenes, which could not be further identified. Des-A-triterpenoid 5 exhibiting an M** at m/z 330 (Fig. 2B) was identified as des-A-lupane (Corbet, 1980; Schmitter et al., 1981; Trendel et al., 1989; Boreham et al., 1994; Jacob et al., 2007; Huang et al., 2008).

Throughout the record, des-A-lupane is more abundant than des-A-ursene, whereas des-A-oleanenes concentration is lowest (Fig. 3). They all exhibit low accumulation rates from 25,000 to 15,000 years ago (the glacial and early post-glacial period) and much higher (on average 5 to 11 times) accumulation rates in last 12,000 years (the Holocene).

The δ¹³C values of des-A-lupane (Fig. 4) vary between -25.1‰ and -29.4‰ (-27.4‰±1.1‰ on average) with no significant trend over time (R²=0.042; n=38; p=0.22). Determinations of δ¹³C of other des-A-triterpenoids of the oleanane and ursane type in the unsaturated hydrocarbon fraction were unsuccessful due to co-elution or low abundances.
3.2 Triterpenoids and des-A-triterpenoids in soil and litter surrounding the lake

No des-A-triterpenoids were identified in the hydrocarbon fraction of extracts from soils and litter. Functionalized triterpenoids in soils along the crater rim (Fig. 1) were identified as urs-12-en-3β-ol (α-amyrin), olean-12-en-3β-ol (β-amyrin), olean-13(18)-en-3β-ol, ursa-9(11),12-dien-3-one, taraxerone, lup-20(29)-en-3-one, lup-20(29)-en-3-ol acetate and friedelan-3-one and, tentatively, methyl-ursa-2,12-dien-28-oate. Also three pentacyclic triterpene methyl ethers (PTMEs) with oleanane and taraxerane skeletons were detected: 3β-methoxy-olean-12-ene (iso-sawamilletin; β-amyrin ME), 3β-methoxy-olean-18-ene ME (miliacin; germanicol ME) and 3β-methoxy-taraxer-14-ene (sawamilletin, crusgallin or taraxerol ME). Litter samples contained the oleanane-type triterpenoids β-amyrinone, olean-18-en-3β-one (germanicone), olean-18-en-3β-ol (germanicol) and β-amyrin acetate. The functionalized ursane-type triterpenoids present were α-amyrinone and α-amyrin acetate. One litter sample contained a lupeol acetate.

3.3 Des-A-triterpenoids in sedimenting particles and suspended particulate matter

In the extracts of sedimenting particles, only low concentrations of des-A-urs-13(18)-ene and des-A-lupane were detected, next to traces of functionalized triterpenoids such as α-amyrin. Hydrocarbon concentrations in the SPM extracts were too low for identification of specific triterpenoid compounds.

4. Discussion

The strong correlation between accumulation rates of des-A-oleanenes, des-A-ursene and des-A-lupane (Fig. 3) suggest a common origin for these des-A-triterpenoids. Higher plant material originates predominantly from washed-in debris of local terrestrial vegetation from...
within the crater catchment, because of the absence of riverine input, the limited amount of leaf waxes deposited from the air, and the near-absence of submerged or emergent aquatic macrophytes due to the steep crater walls both above and below the lake surface (Sinninghe Damsté et al., 2011). While various des-A-triterpenoid hydrocarbons are present both in the sediment record and to some extent in settling particles, these compounds are lacking in the collected litter and soil. Des-A-triterpenoids are thought to result from microbial degradation of functionalized triterpenoids, under anoxic or reducing conditions (e.g. Lohmann et al., 1990; Jacob et al., 2007; Huang et al., 2008); their presence in the sediment trap material indicates that microbial degradation is not restricted to the anoxic lower water column in Lake Challa. One other mechanism for des-A-triterpenoids to enter the system, namely the washing-in of microbial degradation products from (anoxic) soils, is unlikely in Lake Challa, as the studied litter and soils did not contain des-A-triterpenoids.

The principal degradation processes affecting pentacyclic triterpenoids have been described by various authors (e.g. Trendel et al., 1989; Hauke et al., 1992a, 1992b; Jacob et al., 2007), although not all transformation routes are completely established. Early diagenetic degradation of C-3 oxygenated triterpenoids involves either A to D-ring aromatization or the loss of the A-ring, followed by progressive aromatization from ring B to D (Trendel et al., 1989; Lohmann et al., 1990). The dominant transformation pathway of non-hopanoid triterpenoids in Lake Challa sediments is loss of the A-ring. This loss can be initiated by the formation of A-seco-intermediates, a process that can already occur within the vegetation by photochemical or photomimetic influences (Corbet, 1980; Baas, 1985), but in Lake Challa sediments such intermediates were not identified.

4.1 Des-A-oleanenes and des-A-ursenes
Oleanane- and ursane-type triterpenoids are generally considered to be biomarkers of terrestrial higher plants, specifically angiosperms (e.g. Diefendorf et al., 2012). Smetanina et al. (2001) identified miliacin (3β-methoxy-olean-18-ene) in a marine fungus, which would imply that oleanoid-type triterpenoids are not exclusively produced by terrestrial higher plants. However, a new study on this fungal species did not yield any miliacin (Bossard et al., 2013). We therefore consider all oleanane- and ursane-type triterpenoids as angiosperms biomarkers.

Functionalized triterpenoids with ursane and oleanane skeletons occur in the local vegetation, soils and litter of Lake Challa, often as α- or β-amyrin. The accumulation of their des-A-counterparts in the sediments increased markedly from 15 kyr BP onwards (Fig. 3). A comparatively low accumulation of higher plant des-A-triterpenes occurred during the C₄-plant dominated glacial and early late-glacial periods (Sinninghe Damsté et al., 2011; Fig. 4), suggesting that the C₄ grasses which dominated the vegetation inside the crater at that time did not produce (much of these) triterpenoids. The increase in higher plant des-A-triterpenoid accumulation after 15 kyr BP (Fig. 3) broadly coincides with the shift towards a mixed C₃/C₄ vegetation as inferred from δ¹³C signature of n-C₃₁ alkanes (Fig. 4; Sinninghe Damsté et al., 2011) and palynological data (van Geel et al., 2011), following the post-glacial intensification of the region’s monsoon rainfall (Verschuren et al., 2009).

Concentrations of des-A-oleanenes in Lake Challa sediments are relatively low compared to the other des-A-triterpenoids, especially considering the predominance of oleanane-type functionalized triterpenoids in the investigated soils and litter. Future studies on the hydrocarbons in local Lake Challa vegetation might shed light on this apparent discrepancy. Possibly, aromatization of some triterpenoid types is favored over the loss of the A-ring, although the low and infrequent occurrence of aromatic triterpenoids in the sedimentary record does not seem to fit this scenario.
4.2 Des-A-lupane: a tracer of C₃-plant vegetation composition

The only saturated des-A-triterpenoid present in Lake Challa sediments is des-A-lupane, as has also been reported from other late-Quaternary lake-sediment records (see e.g. Jacob et al., 2007; Huang et al., 2008). This saturation may be a result of its specific precursors such as lupeol, lupanol or lupanone, or because des-A-lupane is more resistant to diagenesis compared to other saturated des-A-triterpenoids (Jacob et al., 2007; Huang et al., 2008).

Des-A-lupane records have been interpreted in different ways. Huang et al. (2008), who studied the Dajiuhu peat deposit in China, used des-A-lupane as a proxy for the depositional environment at the time of burial, linking sections of the biomarker record with more des-A-lupane to episodes of limited degradation (i.e. better preservation). This mechanism is less likely to apply to Lake Challa, because of its relatively constant sedimentation rate and continuously anoxic bottom-water conditions. In a study on the Brazilian Lake Caçó, des-A-lupane was thought to be derived from a belt of spike-rush (Eleocharis sp.), an emergent aquatic macrophyte (Jacob et al., 2007). As already mentioned, aquatic macrophytes are not a likely source of organic matter input in Lake Challa, as the shoreline of Lake Challa is rocky and near-vertical (Fig. 1), which largely prevents aquatic macrophyte growth. Even substantial lake-level lowering, which occurred during the early late-glacial period (Moernaut et al. 2010), is not expected to have created more favorable conditions for development of aquatic macrophytes (Sinninghe Damsté et al., 2011). Given the absence of functionalized triterpenoids in the sedimentary record of Lake Challa, we consider the sedimentary des-A-lupane record (Fig. 3) to reflect the input of its precursors in the lake, with a constant transformation of these precursors into des-A-lupane, and minor or no degradation of des-A-lupane over the last 25-kyr.
Most non-hopanoid triterpenoids are not species-specific, and the lupane-type triterpenoids are no exception. Although these compounds occur in both C3 and C4 plants (e.g. Misra et al., 1988; Macías-Rubalcava et al., 2007; Saleem, 2009; Singariya et al., 2012, 2014), the specific $\delta^{13}C$ value of des-A-lupane (-27.4‰ on average, SD=±1.1‰, $n=38$; Fig. 4) clearly indicates a C3-plant origin (cf. Castaña-Eda et al., 2009; Diefendorf et al., 2012).

Regnery et al. (2013) reported a comparable $\delta^{13}C$ signature (ranging from -28‰ to -30.6‰) of des-A-lupane in lake sediments from the Holsteinian interglacial (cf. Marine Isotope Stage 11c) at Dethlingen in Germany, also similar to des-A-lupane isotope values in Tertiary brown coal from China (-28.1±0.6‰; Schoell et al., 1994). Some genera of the Betulaceae (birch family) biosynthesize des-A-lupane precursors and, therefore, this C3 plant family is regularly designated as an important biological source of des-A-lupane (Regnery et al., 2013; Schnell et al., 2014). However, Betulaceae do not naturally occur in tropical Africa and no Betulaceae vegetation or pollen are found in Lake Challa (van Geel et al., 2011; Sinninghe Damsté et al., 2011), so in this setting, des-A-lupane must originate from other C3-plant species.

In line with Regnery et al. (2013), and in contrast to Jacob et al. (2007), Huang et al. (2008) and Diefendorf et al. (2012), the concentration of des-A-lupane in Lake Challa sediments correlates well with oleanane- and ursane-type des-A-triterpenoids. We propose that this dichotomy can be explained by one or more different sources of des-A-lupane in these latter studies.

An interesting feature of the des-A-lupane $\delta^{13}C$ record is the apparent lack of trend over longer timescales (Fig. 4). This record does show some variability over time, but, unexpectedly, no trend, even though large changes in $p$CO$_2$ (and its carbon isotopic composition), rainfall and vegetation occur over the glacial-interglacial transition. Recently it was shown that carbon isotope discrimination in C3 land plants is independent of natural variations in $p$CO$_2$ (e.g. Kohn, 2016). Furthermore, the $\delta^{13}C$ value of CO$_2$ varies by only
~1‰ (between -7‰ and -6‰) over the LGM and Holocene, a variability that is hard to
differentiate within the analytical error margins of compound specific δ¹³C analysis. Lastly,
the modest variability in the des-A-lupane δ¹³C record in Lake Challa that does occur shows
no clear connection to the regional vegetation changes and the alternation of wetter and drier
periods documented from other proxies. This absence of a clear trend in δ¹³C values of des-A-
lupane was also noted by Regnery et al. (2013) in their interglacial record from Dethlingen
paleolake.

Recent studies have indicated the need for more direct proxies of C₃ and C₄ higher plants
(Diefendorf et al., 2010; Castañeda and Schouten, 2011), and our findings may be an
important step in this development. Firstly, the concentration of des-A-triterpenoids with
ursane/oleanane/lupane skeletons in the Lake Challa record is high when C₃ plants (trees and
shrubs) are common in local/regional vegetation (van Geel et al., 2011; Sinninghe Damsté et
al., 2011). Therefore, we might be able to use these compounds as an absolute measure of C₃
plant abundance, instead of the usual estimate of C₃ or C₄ percentage based on variation in n-
alkane δ¹³C values. Secondly, we introduce a new way of estimating the average δ¹³C value of
C₃ vegetation at any point in time, which can be important for carbon cycle studies, as δ¹³C
records of C₃ plants could be used by modelers to assess the possible pCO₂-effect of plant
δ¹³C (Kohn, 2016). Thirdly, we can use this C₃-plant specific δ¹³C record for improving
estimates of the C₃/C₄ ratio in past vegetation. Recently, the relative contribution of C₃ and C₄
plants in terrestrial vegetation has been modeled using the δ¹³C value of long-chain n-alkanes
(e.g. Castañeda et al., 2007; Sinninghe Damsté et al., 2011; Berke et al., 2012). In the
Holocene section of our Lake Challa record, des-A-lupane δ¹³C values are on average less
depleted (-27.6‰) than those off the n-C₃₁ alkane (-29.1‰; Sinninghe Damsté et al., 2011);
the situation is reversed during the glacial period, where average des-A-lupane δ¹³C values (-
27.2‰) are more depleted than those of n-C₃₁ alkanes (-24.3‰; Sinninghe Damsté et al.,
During the Holocene period, C\textsubscript{3} plants are estimated to contribute ca. 50\% of the \textit{n-C\textsubscript{31}} alkanes (Sinninghe Damsté et al., 2011). This value was calculated using a simple binary box model, in which a 50/50 mixture of C\textsubscript{3}- and C\textsubscript{4}-derived alkanes (with mean values of respectively \(-35.2\%\) and \(-21.7\%\) in modern plants; Castañeda et al., 2009) yields an average $\delta^{13}$C value of \(-28.5\%\). During the glacial period, vegetation in the Lake Challa region was dominated by C\textsubscript{4} grasses; the mixed C\textsubscript{3}/C\textsubscript{4} composition developed only from 16.5 kyr BP onwards (Sinninghe Damsté et al., 2011), when a riparian forest of C\textsubscript{3} trees and shrubs started growing inside the crater (van Geel et al., 2011). This local growth of C\textsubscript{3} vegetation is also clearly evident in the record of \textit{des}-A-triterpenoid hydrocarbons with lupane, ursane and oleanane skeletons (Fig. 3).

The carbon isotopic fractionation between acetyl CoA-based compounds (e.g. \textit{n}-alkanes) and the isoprene-based isoprenoids essentially depends on the biosynthetic pathways by which they are produced (e.g. MVA for isoprenoids in angiosperms). In their study of North American C\textsubscript{3} plants, Diefendorf et al. (2012) showed that this biosynthetic offset between terpenoids and \textit{n}-alkanes is \(-4\text{--}6\%\). Correspondingly, also in sedimentary records, the $^{13}$C of terpenoids is typically reported to be enriched by 5-6\% compared to \textit{n}-alkanes. We do not expect this biosynthetic offset between triterpenoids and \textit{n}-alkanes to be different in East African vegetation. Temperate C\textsubscript{3} plants may have significantly lower ‘overall’ lipid fractionation values compared to tropical species (Diefendorf et al., 2011), but this will influence the \textit{n}-alkanes and the terpenoids in the same way. Hence, we can use the $\delta^{13}$C of \textit{des}-A-lupane as a temporal (i.e. time-specific) C\textsubscript{3} endmember in modeling the C\textsubscript{3}/C\textsubscript{4} ratio of local vegetation. To this end we subtracted an average terpenoid enrichment of 5.5\% from the individual \textit{des}-A-lupane $\delta^{13}$C values of to estimate the $\delta^{13}$C values of \textit{n-C\textsubscript{31}} alkanes derived from local C\textsubscript{3}-plants at each time interval. We use the average offset as recorded in sediments (Diefendorf et al., 2012) for this down-core correction exercise, as sediments contain more
integrated, averaged signals compared to fresh plant material. Introduction of these corrected
$n$-$C_{31}$ alkane $\delta^{13}C$ values in the binary box model for $C_3/C_4$ ratio calculation, using a constant
$n$-$C_{31}$ alkane $\delta^{13}C$ value of $-21.7\%$ derived from $C_4$ plants (cf. Castañeda et al., 2009), results
in an estimated increase in the relative proportion of $C_3$ plants by 0 and 19% (Fig. 5) as
compared to values obtained by Sinninghe Damsté et al. (2011). Our $\%C_3$ estimates are
different from the previous estimates (t-test; p<0.0001, n=35), and the difference remains
significant throughout the terpenoid to $n$-alkane offset range of 4 to 6‰ (i.e. the range that
exists in modern plants; Diefendorf et al., 2012). From this exercise we conclude that
especially in the Holocene part of the Lake Challa record, when local vegetation had a mixed
$C_3/C_4$ composition, a reconstruction using fixed $C_3$-plant $\delta^{13}C$ values underestimates the
fraction of $C_3$ vegetation, while there is less discrepancy during the glacial and early late-
glacial periods when $C_4$ plants (here mostly grasses) were dominant. This result is especially
valuable for carbon-cycle modeling studies, where correct assessment of climate-vegetation
feedbacks strongly depends on correct estimates of past $C_3/C_4$ (and hence biome) distribution.
Our method for time-specific correction of the fraction of $C_3$ plants in local vegetation
has the potential to enhance the accuracy of $C_3/C_4$ vegetation reconstructions in all situations
where the local $C_3$-plant signal is as strong as during the Holocene around Lake Challa (Fig.
5). Using sample-specific des-A-triterpenoid $\delta^{13}C$ values for estimating this local $C_3$
vegetation component is convenient, as for example des-A-lupane is present in the saturated
aliphatic lipid fraction, just like the $n$-alkanes, and can therefore be measured in the same
analysis.

5. Conclusion

We investigated the possibility to use the degradation products of terrestrial higher plant
pentacyclic triterpenoids as a proxy for local vegetation reconstructions. The accumulation of
des-A-triterpenoids with oleanane/ursane/lupane skeletons serves as a proxy record for the local abundance of C₃ vegetation. The δ¹³C signature of des-A-lupane can be used as a proxy for the stable carbon isotopic composition of local C₃ plants if, as in our study site of Lake Challa, des-A-lupane is exclusively of C₃-plant origin. Therefore, it can be applied as a temporally variable C₃-plant end member representing the local C₃ vegetation component in reconstructions of the C₃/C₄ ratio through time.

Acknowledgements

Sample collection for this study was carried out with permission of the Permanent Secretary of the Ministry of Education, Science and Technology of Kenya under research permit 13/001/11C to D.V. This work was performed as contribution to the ESF EuroClimate project CHALLACEA and the ICDP project DeepCHALLA, financially supported mainly by grants from the Dutch Organization for Scientific Research (NWO) and FWO-Vlaanderen (Belgium) to J.S.S.D. and D.V., respectively. Part of the work was carried out under the program of the Netherlands Earth System Science Centre (NESSC), financially supported by the Ministry of Education, Culture and Science (OCW). We thank C.M. Oluseno for field assistance, and A. Mets, M. Verweij, J. Ossebaar and M. van der Meer for technical assistance. We further thank J. Jacob and an anonymous reviewer for their valuable comments, which greatly improved this manuscript.

References


Singariya, P., Kumar, P., Mourya, K.K., 2014. Isolation of new steroids of Kala Dhaman grass (Cenchrus setigerus) and evaluation of their bioactivity. Brazilian Archives of Biology and Technology 57, 62-69.

application of the TEX86 palaeothermometer and BIT index in lacustrine settings. Geochimica et Cosmochimica Acta 73, 4232-4249.


(Kenya/Tanzania) and its sedimentary documentation in recent lake sediments.

Limnology and Oceanography 59, 1621-1636.

**Figure legends**

Figure 1: [A] Location of Lake Challa (3°19’S, 37°42’E) in equatorial East Africa. [B] Lake Challa and its crater basin with bathymetry at 10-m intervals and sampling locations of the suspended particulate matter (SPM) profile (▲), the sediment trap (□) and the 25,000-year sediment record (■), as well as catchment soils (○) and litter (●). The outer bold line indicates the crater rim, which defines the lake’s catchment area. Modified after Moernaut et al. (2010) and van Bree et al. (2014).

Figure 2: Higher plant derived des-A-triterpenoids in the Lake Challa sediments. Panel [A] shows a partial summed mass chromatogram (m/z 163+177+189+203+218+309) of the distribution of des-A-triterpenoids in the apolar fraction of the lipid biomarker extract from 996-1000 cm core depth, deposited ~12.1 kyr BP. Panel [B] shows the electron-impact mass spectra of des-A-triterpenoids in the Lake Challa sediment record: des-A-olean-13(18)-ene (compound 1); des-A-olean-12-ene (2); des-A-urs-13(18)-ene (3); mixture of des-A-ursenes (4); des-A-lupane (5). Additional information on these compounds is presented in Table 1.

Figure 3: Variation through time in the accumulation rates (in mg m⁻² yr⁻¹, not cumulative) of the des-A-triterpenoid compounds for des-A-lupane, des-A-ursenes and des-A-oleanenes in Lake Challa sediments. Shaded areas represent the LGM (26.5-19 kyr BP), Heinrich event H1 (16.8-15.4 kyr BP) and YD (13-11.5 kyr BP).
Figure 4: Variation through time in the stable carbon isotopic composition ($\delta^{13}C$, in $\%$ vs. VPDB) of $n$-C$_{31}$ alkanes (Sinninge Damsté et al., 2011) and des-A-lupane (this study).

Figure 5: Percentage of C$_3$ vegetation, based on $n$-C$_{31}$ alkane $\delta^{13}C$ values (data from Sinninghe Damsté et al., 2011), calculated in two different ways: first (solid line) using des-A-lupane as the local and temporally variable C$_3$-plant endmember and an average terpenoid fractionation of 5.5$\%$ relative to the $n$-alkanes, and second (dashed line) based on fixed $\delta^{13}C$ values for the C$_3$-plant (-35.2$\%$) and C$_4$-plant (-21.7$\%$) endmembers taken from the literature (Sinninghe Damsté et al., 2011). The range of C$_3$ estimates when the modern terpenoid fractionation range of 4 to 6$\%$ is taken into account is plotted as a grey band. Boxplots show the differences between the original and des-A-lupane (grey, left-hand side) corrected C$_3$ estimate in the glacial and early late-glacial (25 to 16 kyr BP) and in the interglacial period (Holocene, 12.3 to 0 kyr BP) (thus excluding the glacial-interglacial transition), with median, first and third quartiles, and whiskers depicting the minimum/maximum values.

Table 1: List of des-A-triterpenoids in the Lake Challa sediment record with retention times, mass spectral data and (tentative) identifications. References: A: Corbet (1980); B: Logan and Eglinton (1994); C: Trendel et al. (1989); D: Jacob et al. (2007); E: Huang et al. (2008); F: Schmitter et al. (1981); G: Boreham et al. (1994)
A
~12.1 kyr BP
996-1000 cm depth

B

δ^{13}C = -27.4±1.1‰
Accumulation rates of des-A-triterpenoids (in mg m\(^{-2}\) yr\(^{-1}\))

- des-A-lupane
- des-A-ursenes
- des-A-oleanenes
$des$-$A$-$lupane$ corrected $C_3$ (%)  

Original $C_3$ (%)  

(Sinninghe Damsté et al., 2011)
<table>
<thead>
<tr>
<th>Peak number</th>
<th>Retention time (GCMS)</th>
<th>Most significant ions (in order of decreasing abundance)</th>
<th>M⁺</th>
<th>Formula</th>
<th>Tentative identification</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18.16</td>
<td>109, 313, 189, 328 [M⁺], 205, 204, 218, 161</td>
<td>328</td>
<td>C₂₄H₄₀</td>
<td>Des-A-olean-13(18)ene</td>
<td>A B C D E</td>
</tr>
<tr>
<td>2</td>
<td>18.30</td>
<td>203, 218, 313, 189, 328 [M⁺], 231, 243</td>
<td>328</td>
<td>C₂₄H₄₀</td>
<td>Des-A-olean-12-ene</td>
<td>A B D</td>
</tr>
<tr>
<td>3</td>
<td>18.52</td>
<td>313, 177, 189, 121, 175, 328 [M⁺], 218</td>
<td>328</td>
<td>C₂₄H₄₀</td>
<td>Des-A-urs-13(18)ene</td>
<td>A B D</td>
</tr>
<tr>
<td>4</td>
<td>19.01</td>
<td>218, 203, 313, 189, 133, 328 [M⁺], 231</td>
<td>328</td>
<td>(C₂₄H₄₀)</td>
<td>Mixture, <em>i.a.</em> des-A-ursenes</td>
<td></td>
</tr>
</tbody>
</table>