Seasonal variability in the abundance and stable carbon-isotopic composition of lipid biomarkers in suspended particulate matter from a stratified equatorial lake (Lake Chala, Kenya/Tanzania): Implications for the sedimentary record

L.G.J. van Bree a,*, F. Peters a, M.T.J. van der Meer b, J.J. Middelburg a, A.M.D. Negash a, W. De Crop c, C. Cocquyt d, J.J. Wieringa e, D. Verschuren c, J.S. Sinninghe Damsté a, b

a Utrecht University, Faculty of Geosciences, Department of Earth Sciences, Princetonlaan 8A, 3584 CD, Utrecht, The Netherlands
b NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, PO Box 59, 1790 AB, Den Burg, The Netherlands

c Ghent University, Limnology Unit, K.L. Ledeganckstraat 35, B-9000, Gent, Belgium
d Meise Botanic Garden, Nieuwelaan 38, B-1860, Meise, Belgium
e Naturalis Biodiversity Centre, P.O. Box 9517, 2300 RA, Leiden, The Netherlands

ABSTRACT

We studied the distribution and stable carbon-isotopic ($^{\delta^{13}}C$) composition of various lipid biomarkers in suspended particulate matter (SPM) from the water column of Lake Chala, a permanently stratified crater lake in equatorial East Africa, to evaluate their capacity to reflect seasonality in water-column processes and associated changes in the lake’s phytoplankton community. This lake has large seasonal variation in water-column dynamics (stratified during wet seasons and mixing during dry seasons) with associated phytoplankton succession. We analyzed lipid biomarkers in SPM collected monthly at 5 depths (0–80 m) from September 2013 to January 2015. Seasonal variation in total phytoplankton biovolume is strongly reflected in the concentration of phytadienes, a derivative of the general photosynthetic pigment chlorophyll. The wax and wane of several specific biomarker lipids between June and December 2014 reflect pronounced phytoplankton succession after deep mixing, starting with a long and sustained chlorophyte bloom (reflected by $C_{23:1}, C_{25:1}$ and $C_{27:1}$ n-alkenes, and C_{21} and C_{23} n-alkanes), followed by a peak in diatoms between July and October (loliolide and isololiolide), and then eustigmatophytes (C_{30} and C_{32} 1,15 diols) once stratification resumes in October. Peak abundance of the $C_{19:1}$ n-alkene during shallow mixing of the water column in January–February 2014 can be tentatively linked to the seasonal distribution of cyanobacteria. The concentration, seasonal variability, and low $^{\delta^{13}}C$ values of the C_{28} fatty acid in the SPM suggest that this biomarker is produced in the water column of Lake Chala instead of having the typically assumed vascular plant origin. The $^{\delta^{13}}C$ signature of particulate carbon and all aquatic biomarkers become increasingly more negative (by up to 16‰) during mixing-induced episodes of high productivity, whereas enrichment would be expected during such blooms. This reversed fractionation may be attributed to chemically enhanced diffusion, which generates depleted HCO$_3^-$ under high pH (>9) conditions, as occur in the epilimnion of Lake Chala during periods of high productivity. The influence of this process can potentially explain previously observed 13C-depleted carbon signatures in the paleorecord of Lake Chala, and should be considered prior to paleorecord interpretation of organic-matter $^{\delta^{13}}C$ values derived (partially) from aquatic organisms in high-pH, i.e. alkaline, lakes.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Lipid biomarkers are organic molecules used as indicators for the past presence of certain organisms and consequently for the past environmental conditions in which these organisms occur. For example, long-chain fatty acids (≥C24) and n-alkanes (≥C23) are major components of terrestrial higher (vascular) plant leaf waxes (Eglinton and Hamilton, 1967), and are, therefore, often used as biomarkers for vascular plants (e.g., Tierney et al., 2011; Sinninghe Damsté et al., 2011). Similarly, short-chain fatty acids and n-alkanes (≤C21) are general phytoplankton biomarkers (e.g., Gelpi et al., 1970; Meyers, 1997; Volkman et al., 1998), mid-chain n-alkanes (C21-C25) are often used as biomarkers for aquatic macrophytes (Ficken et al., 2000), and 1,15 n-alkyl diols are biomarkers for Eustigmatophyte algae (Volkman et al., 1992; Versteegh et al., 1997; Rampen et al., 2014; Villanueva et al., 2014). The stable carbon-isotopic composition (δ13C) of these lipid biomarkers may provide further information on their origin or environmental conditions at the time of their production, and are, therefore, increasingly used in paleoclimate reconstructions (Castaneda and Schouten, 2011; Berke et al., 2012; Leng and Henderson, 2013). For example, terrestrial plants can follow several pathways of carbon fixation (C3, C4 and crassulacean acid metabolism (CAM)), each resulting in a different degree of fractionation of atmospheric CO2 (Collister et al., 1994; Hobbie and Werner, 2004). As a result, analyzing compound-specific δ13C of leaf waxes preserved in a lake-sediment record can be used to reconstruct vegetation history (e.g. Sinninghe Damsté et al., 2011), whereas the hydrogen isotopic composition (3D) of these leaf waxes provides additional information on past hydroclimate (e.g. Tierney et al., 2008). The δ13C signature of biomarkers specific to phytoplankton can be used to trace their inorganic carbon source and the fractionation during carbon fixation (Castaneda and Schouten, 2011).

Lake sediments are a prominent archive for long-term continental paleoclimate reconstructions (Castaneda and Schouten, 2011), and especially so in tropical regions, where long ice-core and speleothem records are scarce (Verschuren, 2003; Verschuren and Russell, 2009). Organic biomarkers stored in lake sediments reflect ambient climate conditions such as temperature and precipitation prevailing in the lake's catchment at the time of their deposition. Hence, down-core variations in the occurrence, distribution, and isotopic composition of these biomarkers are increasingly used as proxies to reconstruct paleoclimate (e.g. Huang et al., 1999; Tierney et al., 2011; Berke et al., 2012). In order to strengthen the interpretation of such proxy records it is critical to understand the origin(s) and spatiotemporal variations of lipid biomarkers in modern lakes (e.g. Castaneda and Schouten, 2011). Studies documenting the distribution of specific biomarkers in sediment-trap material over a complete annual cycle, or in suspended particulate matter (SPM) along a depth profile in a stratifying lake, have improved insight in the validity of these compounds as paleoenvironmental proxies. For example, in both tropical and temperate lakes (e.g. Buckles et al., 2013, 2014; Loomis et al., 2014) the seasonal distribution of glycerol dialkyl glycerol tetraether (GDGT) membrane lipids has revealed unexpected complexity, with important implications for GDGT-based paleothermometry. This situation calls for more detailed investigations, in which the occurrence of a large range of biomarkers is analyzed both over the complete water column and through the annual cycle, and is subsequently linked to changes in environmental conditions and the composition of the lake’s living microbial community.

In this study, we determine the distribution and stable carbon-isotopic composition of lipid biomarkers present in SPM from the permanently stratified water column of Lake Chala in equatorial East Africa, over a 17-month period. This tropical lake has been well-monitored, offering an excellent setting to link biomarker dynamics to water-column processes and microbial-community composition, especially in the light of future studies using lipid biomarker proxies preserved in its sedimentary record. Unique in its extent, this study provides a first thorough assessment of the occurrence and sources of organic biomarkers in lakes.

2. Material & methods

2.1. Study site

Lake Chala (locally ‘Challa’, after a nearby village) is a ~90 m deep and relatively unproductive crater lake on the border of Kenya and Tanzania (3°19’ S, 37°42’ E; Fig. 1). It is situated at ~880 m above sea level, on the lower east slope of Mt. Kilimanjaro. It has a surface area of ~4.5 km2 and features a permanently stratified (meromictic) water column. As the Inter-Tropical Convergence Zone (ITCZ) is passing over the region twice a year, Lake Chala has two rain seasons, with relatively heavy ‘short’ rains from October to December and ‘long’ rains from March to May (Nicholson, 2000; Verschuren et al., 2009). The seasonal cycle of stratification and mixing in Lake Chala’s water column is mainly driven by variation in air temperature and wind speed (Buckles et al., 2014; Wolff et al., 2014), with low wind speeds during the warm rain seasons leading to stratified water-column conditions, while higher wind speeds during dry seasons cause mixing, particularly during the colder southern-hemisphere winter of June–September. Evaporation (~1700 mm yr−1) is higher than local precipitation (~600 mmyr−1; Payne, 1970). As the small crater catchment also provides only limited surface inflow, the lake is maintained mainly by subsurface groundwater input, probably originating from Mt. Kilimanjaro’s forest belt (Hemp, 2006). Mean air temperatures are lowest in July–August (20–21 °C), and highest in January–February (25–27 °C), while water-column temperature ranges from 22 °C to 28 °C (Buckles et al., 2014, 2016). Water-column mixing extends down to 40–60 m depth during the main dry season, depending on wind speed and air temperature (Verschuren et al., 2009). The resulting convective upwelling brings nutrients to the surface, which subsequently initiates phytoplankton blooms.

![Fig. 1. Location of the measurements of physical water-column properties and sampling of SPM, phytoplankton, TIC and PC (black square) in Lake Chala; and locations of terrestrial vegetation sampling inside the crater catchment (black circles). Crater-basin map and bathymetry from Moernau et al. (2010).](image-url)
2.2. Field observations and sample collection

2.2.1. Water-column monitoring

The water column of Lake Chala was monitored at approximately four-week intervals at an offshore location 03°19.064‘ S, 37°42.147‘ E (Fig. 1). Physical-property profiles of the upper 50 m of the water column were collected at 1 m (0–24 m) and 2 m (24–50 m) intervals using a Hydrolab Quanta® Multiprobe which registered temperature, dissolved oxygen (DO), conductivity (K25) and pH. The pH data were corrected for drift between calibrations. Further, an air pocket in the DO sensor created unreliable DO data in the oxygenated part of the water column between 30 April and 3 June 2014.

2.2.2. Total inorganic carbon (TIC)

TIC samples were collected at the same location as the physical-property profiles, on or close to the first day of each month between September 2013 and January 2015, and from a total of 13 water depths (0, 10, 20, 25, 30, 35, 40, 45, 50, 70, 80 and 90 m depth; September 2013 and January 2015, and from a total of 13 water property profiles). Samples were collected using a UWITEC water sampler. The water samples were transported in dark plastic jerrycans, UWITEC water sampler. The water samples were transported in ice, between 5 and 10 l of water was collected using an anoxic water sampler (142 mm ø; Whatman) and stored frozen on the same day. The SPM samples were transported to Utrecht University on dry ice, where they were freeze-dried at room temperature. Months mentioned in the text refer to a sampling or observation date at the start of that month, or, in some cases, at the end of the previous month. The precise sampling dates are listed in Table S–2.

2.2.3. Suspended particulate matter (SPM)

SPM was collected according to the same schedule as TIC. At each depth, between 5 and 101 of water was collected using an UWITEC water sampler. The water samples were transported in dark plastic jerrycans, filtered over pre-combusted G/F filters (142 mm ø; Whatman) and stored frozen on the same day. The SPM samples were transported to Utrecht University on dry ice, where the filters were freeze-dried.

2.2.4. Terrestrial vegetation

Leaves from 49 plants were collected on the crater rim and near the shoreline on the Kenyan side of Lake Chala during the dry season in September 2014. The leaves were stored frozen prior to transport on dry ice, and freeze-dried at Utrecht University. Species identification was done at the National Herbarium of the Netherlands; 28 plants were identified to species level, three to genus level and five to family level, while 13 remain unidentified. Six specimens were deposited in the herbarium and can be consulted online (http://bioportal.naturalis.nl/).

2.2.5. Phytoplankton

Quantitative phytoplankton samples (n = 85) were taken at five depth intervals (0, 5, 10, 15 and 20 m depth) in 100 ml vials, parallel to the SPM collection but as part of an independent study of phytoplankton dynamics (C. Cocquyt, unpublished data). Immediately after collection, the lake water was fixed with an alkaline Lugol’s solution prior to adding formalin.

2.3. Sample preparation and instrumental analyses

2.3.1. Bulk carbon properties

Each filter (n = 221) was subsampled for particulate carbon (PC) content and carbon-isotopic composition (Δ13CPC), by punching out small circles (5 mm ø). Plant samples were visually checked to remove possible contaminants such as insects and subsequently freeze-dried. A subsample of each plant was powdered for bulk organic carbon (OC) content and Δ13C analysis. Bulk OC (PC in case of SPM) and Δ13C of SPM and plants was measured using an elemental analyzer (Fisons Instruments NA1500), coupled online to an IRMS (Thermo Delta+). Samples were not acidified prior to analysis, therefore representing a mixture of organic and inorganic PC in the SPM. Reproducibility of PC content was typically <0.03 μg L⁻¹ (n = 12) for SPM, and 0.5% for OC in vegetation (n = 7). Reproducibility of Δ13C measurements was usually better than 0.1‰ based on in-house standards (nicotinamide and graphite quartzite), and <0.4% for PC duplicates (n = 20) for SPM, and 0.1% for vegetation (n = 7).

2.3.2. Total inorganic carbon

TIC concentrations in lake water were measured on a Shimadzu TOC-5050A carbon analyzer. Concentrations were calibrated using an in-house seawater standard (precision <0.3 mg L⁻¹). Replication of samples was better than 1.2 mg L⁻¹ (n = 8). For Δ13C analysis of TIC, H3PO4 was added to vials, and vials were flushed with helium. The subsequent addition of lake water created CO2 gas that was measured for Δ13C using a gas bench coupled online to an IRMS (Thermo Delta V advantage). The Δ13C values are reported against VPDB, using Li2CO3 (IAEA) and Na2CO3 (in-house) as standards.

2.3.3. Biomarkers

SPM filters from 0, 10, 25, 50 and 80 m depth (n = 85) were extracted using a modified Bligh-Dyer method (cf. Buckles et al., 2013). The extract was acid-hydrolyzed using 1.5N hydrochloric acid (HCl) in methanol (MeOH; 2 h reflux at 70 °C) with a known carbon isotopic composition (determined offline), and then separated into apolar, fatty-acid and polar fractions, using an activated Al2O3 column with hexane/dichloromethane (DCM) (9:1, v/v), DCM, and DCM/MeOH (1:1, v/v) as eluents, respectively. An aliquot of the apolar fractions was passed over an Ag+–impregnated silicagel column with hexane and ethyl acetate (EtOAc) as eluents, respectively, to separate the saturated and unsaturated hydrocarbons. A subset of 14 plants was selected for fatty acid analysis based on their Δ13Cbulk values (which revealed the plant’s biosynthetic pathway) and habitat. Between 0.1 and 1.6 g dry weight of the leaves of each plant species was cut into small pieces, extracted ultrasonically with DCM/MeOH (2:1, v/v), and dried under a stream of N2. An aliquot of total lipid extract was acid-hydrolyzed and separated following the same approach as for the SPM.

The apolar, fatty acid and polar fractions of SPM, as well as the fatty acid fractions of the plant samples were analyzed with a known amount of standard (pristane or 5α-cholestane) added for quantification on a gas chromatograph (GC) coupled to a flame ionization detector (GC-FID; Hewlett Packard 6890 series). All fatty acids were measured as their methyl-ester derivatives. The samples (in hexane or EtOAc as solvent) were injected on-column at 70 °C, with helium as carrier gas with a flow rate of 2 ml min⁻¹. The oven was programmed to 130 °C at 20 °C min⁻¹, and then at 4 °C min⁻¹ to 320 °C at which it was held isothermal for 10 min. Selected samples were analyzed on a GC - mass spectrometer (GC-MS; Finnigan Trace GC Ultra, DMSQ MS) for compound identification, with similar column properties and temperature program as the GC analysis. The mass spectral identification of biomarkers was based on comparison with a NIST library and interpretation of mass fragmentation patterns. Double-bond positions were determined by forming the adduct with dimethyl-disulfide (DMDS) and subsequent mass spectral interpretation of the products formed (Francis, 1981). Based on the GC analyses, n-alkane average chain length (ACL), carbon preference index (CPI) and Pnak were calculated as:

\[
\text{CPI} = 0.5 \times \left\{ \frac{\sum C_{25-33-odd}}{\sum C_{26-34-even}} + \frac{\sum C_{25-33-odd}}{\sum C_{24-32-even}} \right\};
\]

\[
\text{ACL} = \frac{\sum (C_n \times n)}{2\sum C_n},
\]
where C_n is the abundance of each n-alkane with n carbon atoms $(23-35)$;

$$P_{aq} = (C_{23} + C_{25})/(C_{23} + C_{25} + C_{29} + C_{31})$$

Selected fractions for compound-specific $\delta^{13}C$ measurement were injected on a GC combustion isotope-ratio-monitoring mass spectrometer (GC-C-irMS), Thermo Scientific Trace 1310 GC coupled to a Delta V mass spectrometer via an Isolink II and Conflo IV. The gas chromatograph was equipped with a PTV injector in on-column mode (on-column liner, glass, $S + H$ Analytic, Germany) connected to a fused silica capillary column ($l = 25 \text{ m; O.D. } 0.32 \text{ mm}$) coated with CP Sil-5 ($m$) connected to a fused silica capillary column (l) with helium as carrier gas at a constant flow of 2 ml min$^{-1}$, and a similar temperature program as GC analysis, except for an additional 10 min hold at 320°C for the plant samples. GC-C-irMS performance was checked daily by injecting an in-house GC standard combined with two fully deuterated n-alkanes (C_{18} and C_{24}) with known isotopic composition (IAEA). The reported values are based on at least duplicate analyses, with results averaged to obtain a mean value and standard deviation. Reproducibility is typically better than 0.7‰, $\delta^{13}C$ values are reported against the VPDB standard, with those of fatty acid methyl esters corrected for the carbon atom added during methylolation. Due to co-elution with other compounds, such as non-specific triterpenoids, two of the 14 selected plant extracts were not suitable for $\delta^{13}C_{\text{FAME}}$ analysis.

2.3.4. Phytoplankton abundance

The major groups of pelagic phytoplankton (chlorophytes, diatoms, dinoflagellates, Euglenophytes, chrysophytes, cryptophytes and cyanobacteria) were identified and counted with an inverted Olympus CKX41 microscope equipped with an Olympus UC30 digital camera, following the Utermöhl method (Utermöhl, 1931, 1958) using sedimentation chambers of 10 ml. At least 500 solitary phytoplankton cells ($\geq 3 \mu m$) or colonies were counted per sample, as well as the number of cells per colony. The total biomass of each taxon present was calculated based on mean cell dimensions of the phytoplankton species, and expressed in μg L$^{-1}$. Euglenophytes and dinoflagellates are excluded from total phytoplankton biomass due to their heterotrophic and assumed heterotrophic nature, respectively, in Lake Chala. The biobiomass values were averaged across multiple sampled depths to eliminate missing values, both over the 0–10 m interval as conservative measure of the standing biomass of actively photosynthesizing phytoplankton (being proportional to primary productivity), and over the 0–20 m interval for optimal correlation with the taxon-specific biomarker concentrations. At times during the year when the latter interval extends below thermocline depth (Fig. 2), some of the phytoplankton encountered at 15 and 20 m depth must represent recently dead or dying cells in the process of sinking.

3. Results & discussion

3.1. Physical and chemical properties of the water column

3.1.1. Mixing and stratification

Variations in water-column properties over the period September 2013 to January 2015 (Fig. 2) mostly reflect the seasonal cycle of mixing and stratification. Changes in stratification are revealed by the temperature profiling (Fig. 2A), with high surface temperatures during stratification and lower surface temperatures particularly during the periods of deep mixing. Dissolved oxygen (DO) concentrations are influenced by oxygen diffusion from the atmosphere, temperature-driven convection, primary productivity, and oxygen consumption by the remineralization of organic matter. This interaction results in the DO profiles (Fig. 2B) being characterized by i) a shallow oxycline (between 15 and 30 m depth) during water-column stratification until June 2014, ii) oxic conditions extending down to ~40 m during July to September 2014 when deep mixing coincided with peak primary productivity, and iii) subsequent shallowing of the oxycline from October 2014 onwards due to the onset of stratification and enhanced remineralization after the algal-bloom period has ended. The difference in conductivity between epilimnion and hypolimnion over the studied interval ranges between 15 and 43 μS cm$^{-1}$ (Fig. 2C), being small during periods of deep mixing, and larger during stratification. The epilimnion has a high pH year-round (8.3–9.0). The pH decreases from the epilimnion (pH > 8) to deeper anoxic waters in the hypolimnion (pH < 8), due to remineralization of sinking organic matter. High pH values extend down to 38 m depth during deep mixing in August–September 2014 (Fig. 2D). The seasonal trends in the water-column properties of Lake Chala observed in this study are comparable to those in previous studies (Wolff et al., 2011, 2014), but the exact timing and extent of deep mixing varies between years.

Based on these profile data, three different states of the Lake Chala water column can be recognized during the studied time interval: stratification (S), shallow mixing (SM) and deep mixing (DM). Consistent with its status as a permanently stratified (meromictic) lake, there is no evidence for complete water-column mixing during our study period. Our observations from September 2013 represent the end of a period of deeper mixing (DM), followed by stratified conditions (S) between October 2013 and May 2014. This period is shortly interrupted by a period of shallow mixing (~15 m; SM) during January–February 2014. The water column then experiences deeper mixing between June and September 2014 (DM), stratification from October 2014 to December 2014 (S), and a period of shallow mixing (SM) starting in January 2015.

3.1.2. Vertical distribution and seasonal variability in TIC and PC

The concentration of (dissolved) inorganic carbon in lakes is determined by atmospheric CO$_2$ exchange, primary productivity, remineralization of terrestrial and aquatic organic matter, and carbon input from runoff and groundwater inflow (Bade et al., 2004). TIC in the water column of Lake Chala consists of dissolved inorganic carbon (DIC) and suspended calcium carbonate (CaCO$_3$). TIC concentrations range from 32 mg C L$^{-1}$ in the surface water to 56 mg C L$^{-1}$ at depth (Fig. 3A). In a meromictic lake this increase with depth is expected, since respiration products accumulate at depth. The relatively high DIC levels in Lake Chala are primarily due to evaporation strongly exceeding precipitation, but may also originate partly from calcite-bearing tuffaceous breccia within its catchment, and make it a hard-water lake where HCO$_3$ is the main anionic component (Wolff et al., 2014). The depth gradient in TIC concentration is minimal during early stratification (November 2013 to January 2014; October 2014), and TIC concentrations are low throughout the whole water column from the end of deep mixing until the end of 2014 (Fig. 3A). Within a lake the balance of production and respiration is a prime factor governing $\delta^{13}C_{\text{TIC}}$ (Striegl et al., 2001; Bade et al., 2004). The $\delta^{13}C$ of TIC is relatively high (values are less negative) in the epilimnion due to primary production preferentially removing ^{12}C, while relatively low (more negative) values occur in the hypolimnion down to 60 m (except in the early months of stratification October–December 2014), which is interpreted to reflect the remineralization of this ^{13}C-depleted organic matter as it sinks through the water column. The $\delta^{13}C$ of this respired carbon had an average value of $-16.6\%o$, as indicated by the y-intercept of a linear trendline of $\delta^{13}C_{\text{TIC}}$ versus 1/TIC

...
Fig. 2. Interpolated monthly profiles of temperature (A; °C), dissolved oxygen (B; mg L\(^{-1}\)), conductivity (C; \(\mu\)S cm\(^{-1}\) at 25 °C) and pH (D) through the upper water column of Lake Chala (0–50 m depth), from early September 2013 until early January 2015, in relation to the periods of water-column stratification (S), shallow mixing (SM) and deep mixing (DM).

Fig. 3. Interpolated monthly profiles of concentrations (mg C L\(^{-1}\)) and \(\delta^{13}C\) signature (‰ VPDB) of total inorganic carbon (TIC; A-B) and particulate carbon (PC; C-D) through the water column of Lake Chala (0–90 m depth), from early September 2013 until early January 2015, in relation to the periods of water-column stratification (S), shallow mixing (SM) and deep mixing (DM). Black dots represent the sampling depths.
concentration between 0 and 60 m depth (Keeling plot; Fig. 4). The deepest part (60–90 m) of the water column has again less negative δ^{13}C_{TIC} values, especially when TIC concentrations are also high (Fig. 3A–B). These atypically high deep-water δ^{13}C_{TIC} values can be produced by three different processes: i) subsurface inflow of water with high DIC concentration and higher δ^{13}C values; ii) methanogenesis in the bottom water or surficial sediments; and iii) CaCO₃ dissolution (cf. ‘mode C’ lakes; Myrbo and Shapley, 2006). In Lake Chala, all three mechanisms may be involved. Firstly, substantial subsurface inflow is needed to balance the lake’s water budget (Payne, 1970), but the chemical composition of this water and depth of inflow remain unconstrained. Secondly, biomarkers for methanogenesis have been found both in the surficial sediments (Sinninghe Damsté et al., 2012) and in the anoxic deep water column (Buckles et al., 2013). And thirdly, calcite and aragonite oversaturation due to seasonal phytoplankton blooms combined with continuous strong lake-surface evaporation causes seasonally variable precipitation of CaCO₃ (Wolff et al., 2014). Partial dissolution of this CaCO₃ in the under-saturated upper hypolimnion could then enrich δ^{13}C_{CaCO₃} in the deepest water column, while the increased TIC concentrations reflect the local accumulation of CaCO₃ due to its reduced sinking speed in the denser bottom water. However, the continuous pH decline with depth (Wolff et al., 2014) and presence of intact calcite crystals in the sediment record (Wolff et al., 2011) suggest that the third process may be relatively unimportant in Lake Chala.

PC concentrations range from 0.02 to 0.30 mg CL⁻¹, and generally decrease with depth (Fig. 3C), suggesting that most algae have disintegrated by the time they have sunk below 30–40 m. During mixing of the lake and until after the onset of stratification, PC concentrations are higher due to high primary productivity and greater amounts of sinking organic matter (September–October 2013; July–October 2014), while during times of prolonged stratification, PC concentrations are very low (December 2013; March–May 2014). The δ^{13}C_{PC} values range from ~37.9‰ to ~20.4‰ and show greater variation through time than with depth (Fig. 3D), arguing for relatively rapid sinking of organic matter. Despite substantial scatter (Fig. 3D), the lowest (most negative) δ^{13}C_{PC} values generally occur during mixing and at the onset of stratification. Overall, seasonal variation in δ^{13}C_{PC} is greater than that in δ^{13}C_{TIC}, indicating that δ^{13}C_{TIC} is strongly influenced by primary productivity, remineralization and mixing processes, while δ^{13}C_{PC} is less dynamic because the PC pool is much larger than that of PC.

3.2. Seasonal occurrence and possible sources of lipid biomarkers

A variety of lipid biomarkers were identified in the SPM of Lake Chala, including C7–C15 n-alkanes; C19:1 n-alkene; C23:1, C25:1 and C27:1 n-alk-1-enes; phytadienes; saturated fatty acids ranging from C14 to C22 (excluding C19); mono-unsaturated fatty acids (MUFAs) of C16, C18, C20, C22 and C24; poly-unsaturated fatty acids (PUFAs) of C16, C18, C20 and C22; branched fatty acids (C15 and C17); loliolide and isololiolide; and the C30 and C32 1,15 diols. Their respective concentrations are listed in Tables S-2 to S-4, and their δ^{13}C values in Table S-5. To permit comparison to other variables, SPM biomarker concentrations were integrated over the upper 25 m of the water column (average of 0, 10 and 25 m), unless stated otherwise. Here we discuss a selection of the most common biomarkers (Fig. 5) that show strong seasonal changes and/or have clear potential as paleo-environmental proxy.

3.2.1. Biomarkers of eukaryote phytoplanktons

Most groups of primary producers contain chlorophyll, a source of phytol (e.g. Rontani and Volkman, 2003). Acid hydrolysis of lipid extracts containing phytol can produce phytadienes (Grossi et al., 1996). Although phytadienes are thus secondary products, they are a semi-reflection of phytol (and thus chlorophyll) concentration in the SPM. Therefore, we here use the sum of all phytadienes (Fig. 5A) as a general indicator of changes in the total biomass of aquatic primary producers in Lake Chala. The δ^{13}C value of these phytadienes in our data set ranges between ~34.4‰ and ~30.3‰, i.e. relatively enriched in ¹³C compared to other aquatic biomarkers, due to their isoprenoidal structure (cf. Schouten et al., 1998). The concentration of phytadienes is highest in September 2013 and between June and November 2014 (i.e. during and immediately after deep mixing), and also elevated between December 2013 and February 2014, at the start of shallow mixing. The phytadiene concentrations have a seasonal pattern similar to that of the total biomass of autotrophic phytoplankton (as measured by their total biovolume; Fig. 6A–B) and PC concentrations (Fig. 6C) in the upper 0–10 m. This also confirms that our PC values mainly represent POC, although PIC, in the form of precipitating calcite crystals, likely contributed to the modest PC maxima during the warm shallow-mixing periods of January–February 2014 and January 2015 (cf. Wolff et al., 2014). Additionally, seasonal variation in Secchi-disk depth (Fig. 6D), an indicator of light penetration, corresponds with the PC concentrations. The seasonal pattern in all these variables is conform the expectation that primary productivity is enhanced during and just after periods of deep water-column mixing, due to upwelling of nutrients from the hypolimnion (Buckles et al., 2014).

The concentration of long-chain n-alk-1-enes (C23:1, C25:1 and C27:1) increases during the main period of deep mixing (Fig. 5D), with relatively high concentrations extending down to 80 m water depth in October 2014 (Table S-2). The highest concentrations of these long-chain n-alk-1-enes were found between July and November 2014 in the epilimnion, up to 1.3 µg L⁻¹ at the surface in August 2014. The distribution of these long-chain n-alkanes is similar in all samples, translated in strong correlation of their individual concentrations (C23:1-C25:1 $R^2 = 0.96$; C25:1-C27:1 $R^2 = 0.96$; C23:1-C27:1 $R^2 = 0.90$; n = 72); in general, the concentration of C27:1 is higher than that of C25:1 and C23:1. The δ^{13}C values of the n-alk-1-enes are similar, and range between ~41.0 and ~36.6‰ (C23:1), ~40.9 and ~35.3‰ (C25:1), ~41.8 and ~35.8‰ (C27:1) (Table S-5), suggesting a common source. Their seasonal pattern (Figs. 5C–7A) matches well with that of total biovolume estimates for Chlorophyta (green algae; Fig. 7B). Specifically, Tetraedron minimum, which is often the dominant chlorophyte in Lake Chala, is similarly distributed with time as the n-alk-1-enes (Fig. 7C versus...
A) and seems, therefore, the most likely source organism of those compounds in Lake Chala, even though \(\text{n-alk-1-enes} \) had previously not been detected in cultures of \(T. \) minimum (Gelpi et al., 1970). Based on similarities between the \(\text{n-alk-1-enes} \) and phytoplankton abundances in settling particles and SPM collected in 2007, van Bree et al. (2014) proposed that the green algae Cosmarium spp. might be a possible source for these compounds in Lake Chala. Our present study indicates that \(T. \) minimum is more likely the dominant source organism, given that the total biovolume of Cosmarium spp. is an order of magnitude lower than that of \(T. \) minimum, and the timing of its bloom (Fig. 7D) more distinct from that of the long-chain \(\text{n-alk-1-enes} \). Nevertheless, it remains possible that the long-chain \(\text{n-alk-1-enes} \) in Lake Chala are produced by several chlorophyte taxa.

Fig. 5. Seasonal variation in the concentration (in ng L\(^{-1}\)) of selected biomarkers in SPM from the upper 25 m (average of 0, 10 and 25 m depth) of Lake Chala, in relation to the periods of water-column stratification (S), shallow mixing (SM) and deep mixing (DM). A: Summed phytadienes. B: Summed general bacterial biomarkers \(\text{ai-C}_{15}, \text{i-C}_{15}, \text{i-C}_{16}, \text{i-C}_{17} \) and \(\text{i-C}_{19} \) fatty acids. C: \(\text{C}_{19}:1 \) \text{n-alkene}. D: Summed \(\text{C}_{23}:1, \text{C}_{25}:1, \) and \(\text{C}_{27}:1 \) \text{n-alk-1-enes}. E: Summed \(\text{C}_{21} \) and \(\text{C}_{23} \) mid-chain \(\text{n-alkanes} \). F: Summed loliolide and isololiolide. G: \(\text{C}_{28} \) fatty acid. H: Summed \(\text{C}_{30} \) and \(\text{C}_{32} \) 1,15 \text{n-alkyl diols}.
The seasonal distribution of the mid-chain length n-alkanes C_{21} and C_{23} are highly similar to each other (Fig. 7E–F; Table S-2), and their summed distribution (Fig. 5E) is comparable to those of the n-alk-1-enes. The δ^{13}C values of C_{21} and C_{23} n-alkanes range between −43.8 and −36.2‰ (Table S-5) and are nearly identical at specific times and depths ($R^2 = 0.97$, $n = 5$). The relative abundance of these mid-chain n-alkanes in lake sediment records (expressed as P_{aq}; Ficken et al., 2000) is often linked to the past presence of submerged or emergent macrophytes, although these compounds also occur in algae (e.g. the green alga Tetraedron sp.; Gelpi et al., 1970). In our data, P_{aq} is always above 0.4, excluding two samples that lack C_{23} and C_{25} n-alkanes altogether. This would normally be interpreted as a macrophyte-dominated n-alkane pool. However, a significant source of submerged macrophytes is unlikely in Lake Chala (Sinninghe Damstè et al., 2011; van Bree et al., 2016) due to its steep rocky shores (Moernaut et al., 2010), and also our isotope data indicate that an algal depth is much more likely. Most probably, the C_{21} and C_{23} n-alkanes in Lake Chala SPM are biomarkers for chlorophyte algae, considering their seasonal timing, δ^{13}C values, and similarity between the total chlorophyte and n-alk-1-ene abundances.

Bacillariophyta (diatoms) are important primary producers in Lake Chala, as reflected in the high fractional abundance of diatom valves in the sediment record (Wolff et al., 2011; Barker et al., 2011, 2013). The biomarkers loliolide and isololiolide are degradation products of the diatom pigment fucoxanthin (Klok et al., 1984; Repeta, 1989). Although some Haptophyta and Dinophyta species have also been reported as possible sources of this pigment (Klok et al., 1984; Jeffrey and Vesk, 1997), loliolide and isololiolide are generally held indicative of diatom input, especially when haptophyte algae are absent (Castaneda et al., 2009; Castaneda and Schouten, 2011), such as in Lake Chala. The combined loliolide and isololiolide concentration (Fig. 5F) peaks in September of both 2013 and 2014, reaching up to 450 ng L^{-1} (September 2014, 25 m depth). The seasonal pattern of loliolide and isololiolide is indeed similar to that of total diatom biovolume (Fig. 8A–B). The most important diatom species in Lake Chala are Nitzschia fabiennensis (Cocquyt and Ryken, 2017, Fig. 8C), Afrocympelia barkeri (Cocquyt and Ryken, 2016, Fig. 8D) and, to a lesser extent, Ulnaria/Fragilaria spp. (Fig. 8E; C. Cocquyt unpublished data). Although there is large variation in the relative abundance of these diatoms between the deep-mixing periods of 2013 and 2014, loliolide and isololiolide do not seem to track a specific species, but appear to reflect total diatom production in Lake Chala, in line with the ubiquitous occurrence of fucoxanthin in diatoms.

C_{30} and C_{32} 1,15 diols commonly occur in lake sediments, and are known biomarkers for Eustigmatophyta in marine and freshwater environments (Volkman et al., 1992, 1999; Rampen et al., 2014; Villanueva et al., 2014). In Lake Chala they occur in high abundance between October and December 2013, February to June 2014, and October 2014 to January 2015 (Fig. 5H), i.e. consistently during the periods with a stratified water column. Relatively little is known about eustigmatophyte ecology in lakes, as these cells are often overlooked in phytoplankton counts due to their small size and non-diagnostic appearance. Their absence in our phytoplankton dataset indicates that the cells of Lake Chala species are either smaller than 3 μm, or not preserved intact despite fixation with an alkaline Lugol’s solution prior to adding formalin. The C_{30} and C_{32} 1,15 diols in Lake Chala were previously studied in sediment-trap samples as part of material settling through the water column between August 2009 and 2010 (Villanueva et al., 2014). That study identified five eustigmatophyte groups based on the detection of 18S rRNA genes, and showed that these algae are important producers of long-chain diols in Lake Chala. The documented seasonal changes in diol abundance are also in line with our findings. This indicates that eustigmatophytes thrive, more than other algal groups, under stratified conditions, and hence that sedimentary C_{30} and C_{32} 1,15 diol records have the potential to serve as proxy for past stratified conditions in Lake Chala.

Fig. 6. Seasonal variation in summed phytadiene concentration in SPM (A) and three measures of total primary production (B–D), all in relation to the periods of water-column stratification (S), shallow mixing (SM) and deep mixing (DM). A–C represent average values over the 0–10 m depth interval. A: Summed phytadienes (in ng L^{-1}); B: Phytoplankton biomass, expressed as biovolume (x10^3 μm^3 L^{-1}); C: Concentration of particulate carbon (mg C L^{-1}); D: Secchi depth (m).
3.2.2. Biomarkers of (cyanob-)bacteria

In our data from the upper water column of Lake Chala, general biomarkers for bacteria such as short-chain iso and anteiso fatty acids (FA) reach peak values during or immediately after periods of high primary production, and decrease in abundance during periods of stratification (Figs. 5B and 9A). The magnitude of the peak that developed after the mixing season of 2014 is much less than the one that developed after the mixing season of 2013, notwithstanding the comparable total phytoplankton abundance (Fig. 6B). Although some bacterial biomarkers such as isoC15 and isoC19 FAs were mostly found in the anoxic deeper water column, and concentrations of isoC15 and anteisoC15 FAs decrease noticeably below the epilimnion, in general bacterial biomarkers are found throughout the water column (Table S–3).

One bacterial biomarker with a distinct seasonal pattern is the C_{19:1} n-alkane, which develops a prominent peak between December 2013 and March 2014, i.e. mostly during the period of shallow mixing (Fig. 9B). Concentrations of C_{19:1} n-alkene reach 0.7 μg L^{-1} in the upper 10 m of the water column in January–February 2014, and decrease in deeper water. Its compound-specific δ^{13}C values range from −43.2 to −35.6%. Short-chain n-alkenes (<C_{22}) are generally assumed to be derived from cyanobacteria or microalgae (e.g. Gelpi et al., 1968, 1970; Volkman et al., 1998). Although the C_{19:1} n-alkene is not commonly used in biomarker studies, it can be synthesized by cyanobacteria, and has been reported in cultures of the marine cyanobacteria *Coccolithorpus elabens* and *Agnenelium quadruplicatum* (Winters et al., 1969), *Synechococcus* sp. (marine strain PCC7002; ~38% of total hydrocarbons; Coates et al., 2014; Mendez-Perez et al., 2014) and *Leptolyngbya* sp. (strain PAC 10–3; ~98% of total hydrocarbons; Coates et al., 2014). The peak C_{19:1} n-alkene concentration during shallow mixing does indeed suggest a cyanobacterial source rather than other phytoplankton groups, which all display other seasonal patterns (Figs. 6B, 7B and 8B). Although the seasonal trend in total biovolume of all identified cyanobacteria (Fig. 9C) does not directly correspond to that of C_{19:1} n-alkene (Fig. 9B), the seasonal pattern of *Planktothylnge* and related taxa, one of the dominant groups of cyanobacteria in Lake Chala, is similar in that it also displays a prominent peak during the shallow mixing season of 2014 (Fig. 9D). *Planktothylnge* is closely related to *Leptolyngbya* species, which is
known to produce C19:1 n-alkenes (Coates et al., 2014). Synecococcus sp. (≥3 μm) seems a less likely source of the C19:1 n-alkenes here (Fig. 9E). Further, the seasonal trend in C19:1 n-alkene concentration closely matches that of the cyanobacterial photoactive pigment myxoxanthophyll (pers. comm. H. Tanttu, Ghent University). Considering this similar timing and the relatively high concentration of C19:1 n-alkene in Lake Chala, and its occurrence in cyanobacterial cultures (Winters et al., 1969; Coates et al., 2014; Mendez-Perez et al., 2014), it seems most likely that the C19:1 n-alkene in Lake Chala has a cyanobacterial origin, and may potentially be used as biomarker specific to cyanobacteria.

3.2.3. Biomarkers of terrestrial vegetation

Long-chain n-alkanes derived from vascular plants are present in low concentrations (max. 92 ng L⁻¹, July 2014 at the surface; Table S2—2), often too low for accurate quantification. Vascular plants typically have a strong odd-over-even n-alkane distribution. Therefore, high carbon preference index (CPI) values are indicative of a terrestrial plant origin, while CPI values <1 indicate a bacterial or algal n-alkane source (Gelpi et al., 1970; Cranwell et al., 1987). The CPI of the n-alkanes in Lake Chala SPM varies between 0.2 and 4.6 (1.6 on average), indicating limited contribution of terrestrial-plant n-alkanes. ACL varies between 23.3 and 28.6 (26.3 on average). The mean δ¹³C values of long-chain n-alkanes are −29.5 ± 0.8‰ (C₂₉, n = 4), −30.9 ± 1.7‰ (C₃₁, n = 4) and −31.2 ± 1.6‰ (C₃₃, n = 3). Long-chain FAs are present mainly during the deep-mixing period and subsequent start of stratification. The most abundant FA is C₂₂, followed by C₂₈ and C₂₄. Their δ¹³C values range from −41.5 to −27.3‰ (C₂₉ FA), −39.6 to −26.8‰ (C₂₄ FA), −41.9 to −26.7‰ (C₂₆ FA), and −46.3 to −34.3‰ (C₂₈ FA). Due to co-elution, δ¹³C of the C₂₂ FA could only be determined in five samples, and ranges from −39.3 to −31.5‰. Compared to the long-chain n-alkanes, the δ¹³C of long-chain FAs have a larger range and reach much greater negative values. Since their concentration maxima also have a different timing over the studied period, the long-chain FAs are, therefore, likely not exclusively terrestrial (see section 3.3).

The (near-) absence of biomarkers for terrestrial vegetation in the SPM of Lake Chala during the sampled period is striking, as these biomarkers are clearly present in the sediments (e.g. Sinninghe Damsté et al., 2011; van Bree et al., 2016). This suggests that SPM, even when sampled throughout a full year, must still be considered to represent a ‘snapshot’ in time, mainly reflecting processes within the water column, rather than a reflection of all preserved settling particles that contribute to the sedimentary record.

3.2.4. Inter-annual variability

In this unproductive lake with permanently anoxic bottom waters and strong seasonal stratification of the upper water
column, primary productivity critically depends on the annual recurrence of deep mixing (to 45–60 m depth since 1999: Buckles et al., 2014) and associated upwelling of nutrients. Overall, phytoplankton biomass (as reflected in phytoadiene and PC concentrations, and in total biovolume) is highest during the two periods of deep mixing covered by this study (Fig. 6). However, when looking at specific biomarkers, substantial inter-annual differences are evident between the periods September 2013 to January 2014 and September 2014 to January 2015. Diatom blooms (producing loliolide and isololiolide) recur yearly and have similar timing and abundance, while chlorophytes (C21 and C23 -alkenes) bloomed only in 2014. Eustigmatophytes (C30 fatty acids) bloomed only in 2014. The C28 FA is the most abundant long-chain fatty acid in SPM between C26 and C32 (76% of Cmax; n = 64), with concentrations up to 390 ng L⁻¹ in November 2014 (Fig. 10A). The strong seasonal pattern of C28 FA in the water column of Lake Chala suggests that this compound has an aquatic source. However, long-chain FAs in sediment records are usually assumed to be derived from terrestrial vascular plants (e.g. Eglinton and Eglinton, 2008; Tierney et al., 2010; Castañeda and Schouten, 2011; Freeman and Pancost, 2014; Hemingway et al., 2016), because they are a major component of leaf waxes (Eglinton and Hamilton, 1967; Kolattukudy, 1976). Yet

Fig. 9. Seasonal variation in the summed concentrations of general bacterial biomarkers ai-C15, i-C15, i-C17, and i-C19 FAs (A) and the C28:1 n-alkene in Lake Chala SPM (B; both in ng L⁻¹) compared with seasonal patterns in total (C) and selected (D–E) cyanobacteria, in relation to the periods of water-column stratification (S), shallow mixing (SM) and deep mixing (DM). C: Total cyanobacteria. D: Planktolyngbya and related taxa. E: Synechococcus sp., all expressed as biovolume (x10³ μm³ mL⁻¹). A–B represent average values over 0–10 m depth (open diagonal lines) and 0–20 m depth (filled surfaces); see text of section 2.3 for argumentation.

abrupt onset of water column stratification (Wolff et al., 2011). During the time interval covered by this study, El Niño conditions (although relatively weak) from October 2014 onwards (http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) are reflected in a more abrupt onset of temperature stratification in 2014 than in 2013 (Fig. 2A), which may in turn have influenced the seasonal succession of phytoplankton and the biomarkers derived from them. The time period covered by this study is, however, too short to draw firm conclusions about the proximate and ultimate causes of inter-annual variation in the biomarker distributions.

3.3. Aquatic source of C28 FA in Lake Chala

The C28 FA is the most abundant long-chain fatty acid in SPM between C26 and C32 (76% of Cmax; n = 64), with concentrations up to 390 ng L⁻¹ in November 2014 (Fig. 10A). The strong seasonal pattern of C28 FA in the water column of Lake Chala suggests that this compound has an aquatic source. However, long-chain FAs in sediment records are usually assumed to be derived from terrestrial vascular plants (e.g. Eglinton and Eglinton, 2008; Tierney et al., 2010; Castañeda and Schouten, 2011; Freeman and Pancost, 2014; Hemingway et al., 2016), because they are a major component of leaf waxes (Eglinton and Hamilton, 1967; Kolattukudy, 1976). Yet
Further, Cmax varies between 24 and 32, and the FAs have a strong C37 with an average chain length (ACL FAME20-37) of 26.4 widely between plant species (Table S 0). Leaf waxes from C3 plants vary between species), while the C4 grasses have FA/C0 even-over-odd carbon number predominance. The tation around Lake Chala is a mixture of C3, C4 and CAM plants in SPM from Lake Chala (dark grey; Fig. 11). Vegetation-derived FA distributions (e.g. Volkman et al., 1980, 1989, 1998), and there have been several, although infrequent, warnings about possible aquatic production interfering with the terrestrial plant signal (e.g. Feakins et al., 2007; Kusch et al., 2010; Holland et al., 2013).

In order to check whether long-chain FAs in Lake Chala are indeed derived from terrestrial plants, we started by comparing the distribution and δ13C values of long-chain FA homologues in the SPM with that in vegetation from the crater, i.e. the most likely source of vascular plant wax lipids in Lake Chala (Sinninghe Damsté et al., 2011). The distribution of FAs in plant leaves (n = 14) varies widely between plant species (Table S 1) and ranges from C14 to C37 with an average chain length (AC4AME20-37) of 26.4 ± 1.4. Further, Cmax varies between 24 and 32, and the FAs have a strong even-over-odd carbon number predominance. The δ13C values of leaf waxes from C3 plants vary between −41.3 and −32.4‰ (with a weighted average of −37.8 ± 34.7‰ among species), while the C4 grasses have FA δ13C values between −20.9 and −24.5‰ (weighted average of −21.6%o ± 22.7%o; Table S 1). Vegetation-derived FA distributions (n = 14) are clearly different from those in SPM (averaged: n = 71) (Fig. 11), as C26 and C30 FAs co-dominate in vegetation, whereas C28 FAs are hardly detected in SPM and C28 is by far the most dominant long-chain FA. Further, the δ13C of FA homologues in SPM (Fig. 12A) and terrestrial plants (Fig. 12B) also indicate that the latter C28 FA does not reach the level of 13C depletion recorded in SPM. Considering that vegetation around Lake Chala is a mixture of C3, C4 and CAM plants (Sinninghe Damsté et al., 2011), an average plant-derived C28 FA signature in the sediment would be relatively enriched, due to the C28 FAs contributed by C3 and CAM plants. Moreover, C28 FAs in SPM show a −12% shift in δ13C between July and November 2014, that cannot be explained other than by aquatic production (see Section 3.4). Although some contribution of C28 FAs from terrestrial plants cannot be excluded, the distinct FA-homologue distribution patterns and δ13C values clearly indicate that there is extensive aquatic C28 FA production in the water column of Lake Chala.

A few microalgae, including (marine) diatoms and chlorophytes, are known to produce some long-chain FAs between C20 and C30, usually in small amounts (Volkman et al., 1980, 1989; 1998; Rezanka and Podojil, 1986). Specifically, C28 FA was found in the fresh-water chlorophyte Scenedesmus communis (recently transferred to the genus Desmodesmus) and a batch culture of Tetraedron minimum (Schouten et al., 1998), and was part of the insoluble biopolymer algaenan of both species (Blokker et al., 1998). Scenedesmus can be excluded as possible significant source organisms in Lake Chala, considering its overall rarity (three occurrences of small colonies containing <0.5% of total counted cells of these samples) and a seasonal distribution entirely different from that of the C28 FA. T. minimum is a more likely source, because it is a common species and reaches greatest abundance during the mixing season of July—September 2014, coincident with one of two prominent peaks in the seasonal pattern of C28 FA (Fig. 10). However, we hesitate to assign the origin of C28 FA to Tetraedron, because C28 FA concentration peaks during both the mixing and subsequent stratification periods, and it also occurs (albeit in lesser quantities) during the two other monitored stratification periods when Tetraedron is almost absent from the phytoplankton counts.

3.4. Seasonal trends in particulate-carbon and biomarker δ13C

An overview of seasonal trends in the δ13C values of selected biomarkers (Fig. 13) shows that all lipid biomarkers that are probably derived from algae blooming during (or immediately following) the June-to-September 2014 period of deep mixing (long-chain n-alk-1-enes, C23 and C25 n-alkanes, C26 and C28 FAs) become increasingly depleted in 13C (up to 14.7‰ lighter), reaching values as low as −41.8‰ (C27:1 n-alkene) and −46.3‰ (C28 FA) by the end of October 2014. This depletion is also reflected in the moderately decreasing values of δ14CPC during this deep-mixing period (up to 4.5‰, averaged over the depth interval 0–10 m; Fig. 3D), but is not seen in δ13CPC, which shows a slight enrichment
of −1‰ within the epilimnion during this time period (Fig. 3B). Whereas the latter trend is expected, the depletion trend in biomarker and particulate-carbon δ13C is not, because growing phytoplankton preferentially takes up 12C, thereby enriching the epilimnetic pool of DIC. During a pronounced blooming period, the phytoplankton also incorporate this relatively enriched DIC and become more and more enriched in 13C themselves. However, instead of this expected enrichment we see a systematic depletion (ranging from −4.4‰ to −14.7‰) in bulk δ13C and various lipid biomarkers derived from algal organic matter. A temporal switch from CO2 to HCO3−-uptake by these primary producers cannot explain the large difference in fractionation, because HCO3− is enriched in 13C relative to CO2 by −8‰ (Mook et al., 1974) and hence HCO3− utilization would lead to 13C enrichment, and not depletion, of the resulting organic matter. The δ13C depletion trend during times of higher productivity is also reflected in the C19:1 n-alkene, the suspected cyanobacterial biomass which is produced primarily during the shallow mixing period of January–February 2014 (Fig. 13A), indicating that this atypical 13C depletion is not a time-specific or species-specific phenomenon, but strongly suggests a universal phenomenon in the water column of Lake Chala during episodes of enhanced primary production. In order to explain this large depletion in PC and aquatic-biomarker δ13C, we need a source of depleted DIC that is not reflected in the δ13CPC.

Several possible water-column sources of 13C-depleted DIC exist, such as upwelling of 13C-depleted hypolimnetic water, or enhanced input of 13C-depleted CH4 and its oxidation to CO2. It is possible that part of the depleted DIC pool in the photic zone of Lake Chala originates from respired DIC (δ13C of −16.6‰, Fig. 4) that is brought upwards from the hypolimnion during deep mixing, but it is unlikely that all depleted DIC results from upwelling as the difference in δ13C between surface and the most depleted water around 50 m depth is not very large (between −1.3 and −5.4‰; Fig. 3B). Moreover, the long duration of enhanced depletion is inconsistent with mixing from deeper water as the primary mechanism, as the largest depletion occurs after the onset of stratification in October 2014, when any upwelling of depleted carbon must have stopped.

Release of CH4 depleted in 13C from the lower water column and bottom sediments, and its subsequent oxidation to CO2, might also contribute to 13C-rich DIC. Although it would be expected that methanotroph biomarkers have low δ13C values, it is surprising that all phytoplankton-derived biomarkers become increasingly depleted in 13C. Unless there is an extremely tight coupling between methanotrophy and primary production in Lake Chala, it is unlikely that methanotrophy plays a substantial role in the 13C depletion of its DIC. Thus, the depletion of δ13C in PC and aquatic biomarkers cannot be explained with carbon sources from ‘the deep’, i.e. upwelling of respired or CH4-derived carbon.

The main alternative source of 13C-depleted carbon is the atmosphere, since CO2 dissolves into under-saturated lake waters. Typically, dissolved CO2 reacts with H2O to form HCO3−. However, at high pH conditions it increasingly reacts with OH− (Herczeg and Fairbanks, 1987), which leads to chemically enhanced diffusion. This process can mitigate carbon limitation in aquatic biological processes (Portielje and Lijkema, 1995), and can have significant influence on the air-water CO2 flux and carbon residence time in lakes (Wanninkhof and Knox, 1996). The process of chemically enhanced diffusion is well documented in gas-transfer models and laboratory measurements, and has also been reported in a few natural lake settings (Bade and Cole, 2006, and references therein; Portielje and Lijkema, 1995; Bontes et al., 2006; Lammers et al., 2017). This process may take place in Lake Chala, as it has high epilimnithic pH values (8.3–9.0 during our period of observation) particularly during episodes of high primary production (Fig. 2D). Not only is the flux of CO2 into the water column enhanced, the reaction of CO2 with OH− results in strong carbon-isotopic fractionation: +8‰ in the common reaction of CO2 with H2O to produce HCO3−, but −15‰ in the reaction of CO2 with OH− (Mook et al., 1974; Herczeg and Fairbanks, 1987; Bade and Cole, 2006). There are two periods when this process of chemically enhanced fractionation seems evident in the PC and biomarker δ13C values in Lake Chala: during shallow mixing in January–February 2014, and during/after deep mixing between August and November 2014. The biomarkers are on average −12.8‰ (long-chain fatty acids), −7.4‰ (C21 and C23 n-alkanes), and −4.9‰ (long-chain n-alkenones) more.
depleted in November 2014 than at the start of the mixing induced phytoplankton bloom. The variation in δ13C within the epilimnion is relatively small (~4.5‰) compared to that in the biomarkers, which is unexpected. At this time, we speculate that this might be due to strong CO2 depletion and high pH halos immediately around the microorganisms generating strongly 13C-depleted HCO3 locally, which is not reflected in overall δ13C values but does substantially influence the δ13C values of the algal biomarkers.

3.5. Implications for paleoenvironmental reconstruction

The high seasonal variability in the modern lake system of Lake Chala implies that seasonal variability may on the one hand complicate interpretation of the paleoenvironmental record, but on the other hand provide new insights on past seasonality. Given the atypical carbon-isotope fractionation process occurring in modern-day Lake Chala, we need to be careful when interpreting sedimentary carbon-isotope signatures as reflecting the enrichment or depletion of various carbon sources in the past. Whether chemically enhanced fractionation could be an important confounding factor will likely depend on the extent to which the naturally high pH of Lake Chala (and many other East African lakes, fresh or saline) is increased further by seasonally high photosynthetic activity. Not only the compound-specific carbon-isotopic signature of aquatic lipid biomarkers, but also of organic matter encapsulated in diatom frustules (Barker et al., 2013), or of bulk algal matter contributing to the δ13C value of sedimentary TOC (Blaauw et al., 2011) are likely to be influenced by this process. The magnitude of 13C depletion which we recorded in the SPM of Lake Chala during the peak phytoplankton bloom may also hint at the importance of chemically enhanced fractionation in the past, i.e. whether in any particular period the boundary conditions of epilimnetic water pH > 8 were met. At least throughout the studied 25-kyr sediment record of Lake Chala, aquatic-biomarker δ13C
values have been characteristically low. The δ13C values of C25:1 n-alk-1-ene and C27:1 n-alk-1-ene vary, respectively, from −24.2 to −37.3‰, and from −44.0 to −38.8‰ (van Bree et al., 2014), and those of the C25 n-alkane reach values as low as −48‰ (Sinninghe Damsté et al., 2011). The organic matter within diatom frustules is also relatively depleted in 13C, with values between −36.4 and −27.3‰ (Barker et al., 2013).

Secondly, paleohydrological and paleovegetation reconstructions based on the hydrogen-isotope and carbon-isotope signatures of the C28 fatty acid, respectively, are made on as proxy for vegetation type. Input of the relatively δ13C-depleted aquatic C28 FA may substantially overestimate the fraction of C3 vegetation present. Because compound-specific δD measurement requires relatively high biomarker concentrations, and C28 FA is often the most abundant FA homologue in East African lakes, it has frequently been used to reconstruct past δD fluctuations in precipitation, not only in Lake Chala (Tiereny et al., 2011) but also in Lake Tanganjika (Tiereny et al., 2008), Lake Victoria (Berke et al., 2012), Lake Turkana (Morrisley et al., 2014) and Lake Tanganyika (Confa et al., 2013b). Moreover, this dominance of the C28 FA is not exclusively an East African phenomenon but also occurs in, for example, Lake El’gygytgyn in Siberia (Holland et al., 2013). A predominantly aquatic production of the C28 FA indicates that its δ13C signatures record photic-zone lake-water composition rather than meteoric water modified by the evapotranspiration processes in soils and plants. While long-term trends in δD may still be comparable, the amplitude of the paleorecord will be smoothed as precipitation δD is spatially and temporally integrated in aquatic δD sources (Sachse et al., 2012); and the potential temporal resolution of the paleorecord will be limited by (and be proportional to) lake residence time. Consequently, regional/global syntheses of paleohydrological studies should be careful when interpreting absolute δD changes based on the C28 FA, and when integrating those δD records with those based on “real” plant waxes. When using n-alkanes as plant-wax biomarkers for δD reconstruction is not feasible, we recommend supplementary δ13C measurements on the FA used, to check if their values are consistent with a vascular plant origin. Meanwhile, more research is also needed to identify the specific aquatic sources of C28 FA.

4. Conclusion

This study used monthly collections of SPM from throughout the water column of Lake Chala, supplemented by δ13C analyses of the TIC and PC, to trace seasonal variability in the concentration, distribution and carbon-isotopic signature of lipid biomarkers in relation to seasonal succession in the lake's algal and microbial communities. After deep mixing started upwelling nutrients from the hypolimnion in June 2014, there is a succession in the phytoplankton from chlorophyte to diatom and then eustigmatophyte dominance, each producing characteristic biomarker compounds: C23:1/(C25:1 C27:1) n-alk-1-enes and C21/(C23) n-alkanes (chlorophytes), loliolide/isololiolide (diatoms), C30/(C32) 1,15 diols (eustigmatophytes). The C19:1 n-alkene can be tentatively linked to cyano bacteria. Based on concentration, seasonal variability, and the δ13C values of C28 FA in SPM, we argue that this biomarker is produced in the water column of Lake Chala, instead of having a terrestrial vascular plant origin as is usually assumed. Future research will have to clarify the actual source of this C28 FA in lakes, this aquatic production should be kept in mind when interpreting the δ13C and δD signatures of long-chain FAs extracted from sediment records. Finally we observed strong 13C depletion in various aquatic carbon pools during seasons of high primary production. This is likely the result of high pH (>9) in Lake Chala's photic zone during such bloom periods, a condition promoting chemically enhanced carbon fractionation. This process can explain the strongly depleted organic carbon in the sediment record of Lake Chala as well as other high-pH lakes, and might potentially form the basis to develop a new biomarker-based surface-water pH proxy.

Acknowledgements

We thank P. Meyers and an anonymous reviewer for their feedback on the manuscript. We thank C.M. Oluseno for conducting the monthly sampling and other field assistance in Kenya. Sample collection was carried out with permission of the Permanent Secretary of the Ministry of Education, Science and Technology of Kenya, through research permit 13/001/11C to D.V. We thank W.I.C. Rijpstra and J.W. de Leeuw (NIZO) for discussions on analytical methods; H. Tanttu (Ugent) for providing unpublished pigment data; J.F. Veldkamp (Naturalis, Leiden) for help with taxonomy of the grass species; and C. Wolff (Max Planck Institute of Chemistry, Mainz) and M. Lambers (U) for discussions on the carbon system in lakes. We are also grateful to A. van Dijck, M. Kasjan, A. van Leeuwen-Tolboom, D. van den Meent-Olieaman, C. Mulder, K. Nierop (UU) and J. Ossebaar (NIZO) for technical and analytical support. This research was supported by the NESSC Gravitation Grant (024.002.001) from the Dutch Ministry of Education, Culture and Science (OCW) to J.S.S.D.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.quascirev.2018.05.023.

References

Leng, M.J., Henderson, A.C., 2013. Recent advances in isotopes as palaeoenvironmental proxies. J. Paleolimnol. 49, 481–496.

