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Abstract

Analysis of three recent diagenetic model codes (OMEXDIA, CANDI and STEADYSED) revealed that codes have a

rigid, static and problem-specific character, leaving little autonomy for the application user. The resulting lack of

flexibility and extensibility, and the associated need for ground-level reprogramming, constitutes a major barrier for

potential model users. Present codes have apparently passed a critical threshold of code complexity, above which code

development becomes time-consuming and expensive using the present procedure-oriented techniques. We have

explored the advantages of object-oriented technology and the concept of a problem-solving environment to improve

the quality of software for reactive transport modelling. A general blueprint for an object-oriented code for modelling

early diagenesis is presented. The MEDIA environment consists of a toolbox of building blocks (element, species and

process objects), which can be combined freely by the user to construct new models (without the need for

recompilation). An object-oriented database stores current objects and accommodates new user-defined building

blocks. Altogether, it is advocated that by improving the software quality, one can substantially lower the threshold for

using model codes as an integrated data-analysis tool.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction: model complexity and software quality

Ever since the quantitative study of reactive transport

in surface sediments emerged, the discipline—known as

early diagenetic modelling—has experienced a progres-

sive evolution towards more complex model formula-

tions. Prior to the availability of the necessary

computing power, models were restricted to analytical

solutions, and by necessity, model development was kept

relatively simple (Goldberg and Koide, 1962; Berner,

1964; Guinasso and Schink, 1975; Boudreau and

Canfield, 1988, 1993; Aller, 1990; Boudreau, 1991). A

second wave of models pioneered a numerical approach,

and could handle depth-dependent transport parameters

and non-linear kinetics, though still focused on parti-

cular processes or zones in the sediment (Gardner and

Lerche, 1987,1990; Rabouille and Gaillard, 1991; Black-

burn et al., 1994; Dhakar and Burdige, 1996). Recently,

a third generation of early diagenetic models emerged,

which explicitly include all redox zones in the sediment

and which incorporate an extensive species and reaction

set (OMEXDIA, Soetaert et al., 1996a; STEADYSED,

Van Cappellen and Wang, 1996; CANDI, Boudreau,
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1996). Corresponding model applications (Soetaert

et al., 1996b; Wang and Van Cappellen, 1996; Boudreau

et al., 1998) illustrated the potential of these complex

state-of-the-art numerical model codes. They form an

efficient instrument for testing hypotheses and a valu-

able tool to check the consistency of available biogeo-

chemical datasets.

Other reactive transport disciplines, such as subsur-

face sediment models (groundwater geochemistry, con-

taminant hydrology, petroleum engineering) showed a

similar evolution towards more sophistication. Hence

we can investigate early diagenetic models as a proxy for

other reactive transport disciplines. Definitely, more

complex models have proven beneficial, grasping pro-

gressively more of the biogeochemical reality in the

sediment. However, the increase in model complexity

also comes at a cost. This evolution has affected all three

key components of the modelling process: (1) the

mathematical model (a simple measure of model complex-

ity could be the number of species and reactions

incorporated), (2) the numerical solution procedure (a

simple measure of solution complexity could be the

number of steps in the algorithm by which the model

equations are solved) and (3) the model code, which

implements both the model equations and the solution

algorithm (a simple measure of code complexity could be

the number of lines or subroutines in the computer

code). More complex models require a more sophisti-

cated solution procedure to alleviate their excessive

demand for computational resources. These procedures,

combined with additional requirements for data proces-

sing and output visualization, have in turn increased the

complexity of the corresponding computer codes. With

the increasing complexity of the model development

process, two downsides have become apparent.

Firstly, numerical model development has evolved

into a rather specialized discipline with the unfortunate

consequence that models themselves have become

somewhat ‘‘inaccessible’’ to the non-modelling geoche-

mist. Opposite to simple analytical models, which are

part of any scientist’s mathematical background, the

development of a state-of-the-art numerical model code

requires considerable skills in numerical analysis (select-

ing an efficient solution procedure) and computer

programming (developing the actual computer code).

A division of labour has emerged between model

application developers (the ‘‘modelling community’’)

and model application users (the ‘‘data community’’). At

present, the tools developed by the modelling commu-

nity do not easily transfer to the data community. The

fact that most model applications are presented by

the actual authors of the codes is a clear indication of

this (e.g. Soetaert et al. (1996b), Boudreau et al. (1998)

and Wang and Van Cappellen (1996) for the

OMEXDIA, CANDI and STEADYSED codes, respec-

tively). The usual data-analysis tool of the geochemist

and the microbial ecologist remains a spreadsheet and

when publishing datasets, the observational scientist still

reverts to back-of-the-envelope calculations and simple

analytical models. Therefore, a grand challenge is to

bring the computing power of numerical model codes

within reach of the non-model–developing geochemist.

As the complexity of modelling applications in-

creased, a second ‘‘gap’’ has become more and more

apparent, i.e. that between ‘‘software engineers’’ and

‘‘scientific modellers’’. Until now, the attention of model

developers has been primarily focused on the first two

components of the modelling process: (1) the actual

construction of mathematical models and (2) the

selection of efficient numerical solution techniques

(Boudreau, 1997 is a basic reference in the area of early

diagenesis). The translation of both model and solution

method into a computer program has been granted far

less attention. Unlike experimental papers — which

invariably include a section on material and methods —

modelling papers do not provide information on the

design and structure of the model code. Briefly stated,

software design and software quality assurance (flex-

ibility, extensibility, etc.) are presently not a great

concern to reactive transport modellers.

Nevertheless, we believe that proper code design will

become vitally important as the complexity of the model

applications will continue to increase in the nearby

future. A recent personal experience is particularly

illustrative at this point. In the framework of the

ECOFLAT project (Herman et al., 2001), we aimed at

enhancing the pH modelling capacities of the existing

generation of early diagenetic models. The initial idea

was to avoid unnecessary code development, and hence,

our intention was to adapt/extend the source code of an

existing model. Therefore, we downloaded the source

code of the OMEXDIA (Soetaert et al., 1996a), CANDI

(Boudreau, 1996) and STEADYSED (Van Cappellen

and Wang, 1996) models and evaluated their source

code (Table 1 provides a comparison of these three

diagenetic model codes). Unfortunately, it became soon

clear that these source codes were rigid, hard to

‘‘penetrate’’ and difficult to adapt for an outsider.

Eventually, it turned out to be more efficient to develop

a new model code from scratch (the MEDIA environ-

ment on which we report later). The ‘‘frustration’’ of not

being able to amend existing software is the driving force

behind this communication. Yet, this failure cannot be

attributed to a coincidental finding of sub-standard

programming. Conversely, the fact that all codes

suffered the same problem clearly pointed at a structural

problem in present reactive transport codes. Rather, one

must acknowledge that it is inherently difficult to build a

‘‘transferable’’ code, especially when model formula-

tions and model codes become increasingly complex.

Unlike software engineers, in the standard natural

sciences curriculum, one only receives a superficial
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training in code development, which is then predomi-

nantly focused on computational issues. Hence, scien-

tific modellers are basically unfamiliar with the issues on

how to build user-friendly and high-quality software

systems.

Here, we want to investigate (1) how we can

significantly improve the software quality of numerical

diagenetic models (and by extension, reactive transport

codes) and (2) how this may lower the threshold for

using them as an integrated analysis tool. Our ambition

is to show that by closing the one gap between ‘‘software

engineer’’ and ‘‘modellers’’, and thus by improving the

software quality of the codes, the other gap between

‘‘modelling’’ and ‘‘non-modelling’’ scientists can be

equally reduced. We will first review the conventional

way of numerical code development (Section 2), while

subsequently we will discuss the potential of problem-

solving environments (PSE) (Section 4) and object-

oriented technology (OOT) (Section 5) to enhance the

software quality of reactive transport codes.

2. An assessment of conventional model code development

In order to expose the limitations of the current

approaches, we have carried out a critical analysis

Table 1

Comparison of three early diagenetic model codes: OMEXDIA (Soetaert et al., 1996a), CANDI (Boudreau, 1996) and STEADYSED

(Van Cappellen and Wang, 1996). Differences in model structure, numerical solution and source code are shown

OMEXDIA CANDI STEADYSED

Model structure

Modeling aim Benthic-pelagic coupling Nutrient cycling Fe–Mn cycling

Chemical species 9 27 29

Irreversible reactions 6 20 23

Reversible reactions 0 8 4

Transport processes Advection, porewater

diffusion, diffusive

bioturbation

Advection, porewater

diffusion, diffusive

bioturbation, bio-irrigation

Advection, porewater

diffusion, diffusive

bioturbation, bio-irrigation

Diffusion of total species ODU SCO2, SNH4,SH2S, SPO4 Not applied

Bioturbation Intraphase mixing Intraphase mixing Interphase mixing

Electron acceptors for organic

matter oxidation

O2, NO3, ODU O2, NO3, MnO2, FeOOH,

SO4

O2, NO3, MnO2,

FeOOH,SO4

Explicit formulation of the Mn

and Fe redoxcycles

No Yes Yes

Precipitation-dissolution Not applied FeS, FeS2 FeS, MnCO3, FeCO3

Dissociation reactions Not applied SCO2, SNH4,SH2S, SPO4 SCO2, SH2S

Adsorption reactions NH4 SNH4, SPO4 NH4, Fe, Mn

pH model Not applied Via charge balance Via proton balance

Solution method

Discretization in space Finite differences Finite differences Finite differences

Steady-state model Implicit/explicit Explicit Implicit

Steady-state solution approach Newton–Raphson Method of lines Thomas algorithm

Linearization necessary No No Yes

Dynamic model available Yes Yes No

Dynamic solution approach Method of lines Method of lines Not applied

Use of a stiff diff. equation solver VODE VODE Not applied

Reversible reactions Not applied Charge balance Local equilibrium

assumption

pH calculation Not applied Charge balance Proton condition

Source code

Programming language Fortran 77 Fortran 77 Fortran 77

Subroutines 85 15 10

Lines 6561 4479 4410

Average subroutine length

(Lines)

77 299 441

CPU time (PII 450Hz) steady-

state run

Seconds 20min 10–30min
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of the OMEXDIA, STEADYSED and CANDI model

codes (Table 1). The results are presented here in a

general fashion, as to bear relevance to related fields

of reactive transport. The analysis follows the three

steps that are conventionally recognized in the soft-

ware development process (Rumbaugh et al., 1991;

Martin and Odell, 1992; Booch, 1994; Meyer, 1997;

see Fig. 1).

2.1. Requirement analysis

In the present view of model code development, little

effort is devoted to the requirement analysis step.

Generally, no explicit statement is made of the

specifications and tasks the model code eventually

should fulfil. Moreover, specifications are generally

narrow and rigid, and model codes tend to have a fixed

model formulation. The set of species, reactions and

transport processes is predetermined at the start of

model code development, and as a consequence, the

model formulation is rigidly embedded in the model

code (as in the case of OMEXDIA, CANDI and

STEADYSED, Table 1). This one-to-one relation

between model and model code is referred to as the

‘one model-one code’ approach. Its antagonism is the

‘multimodel-one code’ approach, where multiple models

can be solved within the same application without

modification of the underlying source code. Fig. 2

compares both approaches.

The basic problem with the ‘‘one model-one code’’

approach is the lack of flexibility, i.e. model codes

cannot cope well with change. By fixing the model

formulation during code development, one ignores the

crucial fact that the scientific question, for which model

and model code were initially constructed, can be subject

to evolution. As science progresses, new mechanisms and

processes are discovered, and therefore, reactive trans-

port models should allow an easy update to this newly

acquired knowledge. For example, in the context of

early diagenesis, new reaction mechanisms have been

discovered only recently, such as a new way of pyrite

formation (Drobner et al., 1990; Rickard and Luther,

1997), and the disproportionation of thiosulphate

(J^rgensen, 1990). Secondly, when the application

developer fixes the model formulation at the time of

code development, little autonomy remains for the

application user. In the case of OMEXDIA, CANDI

and STEADYSED codes, the only ‘‘modelling freedom’’

left is to shut down processes by setting the correspond-

ing parameters equal to zero (e.g. zeroing a kinetic

Fig. 2. Comparison of ‘one model-one code’ approach and the generic ‘multimodel-one code’ approach. In conventional ‘one

problem-one code’ approach, application developer decides on model formulation (i.e. model formulation is fixed at compile time).

Logical improvement would be to let application user decide on model formulation (i.e. model formulation should only be stated at

runtime). In ‘multimodel-one code’ approach, multiple models can be solved within same computer code i.e. without recompilation.

Fig. 1. Three steps in software development process. In analysis phase, important characteristics of problem are recognized and a

simplified model is created of real problem to be tackled. In design step, outline of software package is generated based upon resulting

understanding of model (typically by means of diagrams and charts). Finally, in implementation step, design is finally programmed

into code using some specific programming language.
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reaction constant). However, such a ‘‘simplification’’ of

the embedded model does usually not diminish the

computational demand and memory reservation, and

thus effectively results in performance degradation.

The lack of flexibility of a model code is almost

invariably accompanied by a lack of extensibility. A

predefined model formulation severely limits the type of

problems to be investigated. Applying the same reactive

transport code to a different environment almost

invariably requires the inclusion of additional reactions

and new species. However, this usually invokes a

modification of the source code beyond the skills and

the background of the average non-modeller. The

resulting need for reprogramming and recompilation

therefore constitutes a major barrier for potential model

users.

The implications of a lack of flexibility and extensi-

bility depend on the level of complexity of the model

application. When dealing with simple applications, one

can afford to throw them away and replace them with

entirely new software rather than attempt to reuse them,

repair them, or extend their functionality (Booch, 1994).

Oppositely, for complex applications, a large investment

of resources is allocated to the development of the

software system, and hence, a different view on software

is necessary. Such a paradigm shift has been particularly

well documented in the area of industrial software

development (e.g. financial administration, aviation) as

code complexity increased due to the falling costs in

computational resources (Cox, 1987). During the 1980s

a radical transition took place, which resulted in the

abandoning of older programming techniques, such as

the procedure-oriented approaches (see below for

details), and which ultimately led to the adoption of

the object-oriented paradigm (Stroustrup, 1988; Rum-

baugh et al., 1991; Coad and Yourdon, 1991; Jacobson

et al., 1992).

The current situation in early diagenesis (and in

reactive transport modelling) clearly mimics the

transition observed in industrial software engineering.

Previous generations of diagenetic model codes were

only modest in size and required a moderate invest-

ment in programming. However, the increasingly large

model applications we are developing today (which

require months, or even years of developing/debugging/

testing) cannot be treated as disposable programs.

Consequently, the drawbacks of the ‘‘one model-

one code’’ are becoming more and more apparent,

and the approach can no longer be sustained. To

achieve a broad range of applicability, the flexible

adaptation of the species and reaction set must

become a crucial part of the model code specifica-

tions. The ‘‘multimodel-one code’’ approach promotes

such software qualities, as different models are

solved without the need for accessing the underlying

program code.

2.2. Design

The OMEXDIA, CANDI and STEADYSED codes

are typical examples of a code whose structure is

determined by the procedure-oriented approach. This

approach became influential in the 1970s, and is built

on both the concepts of structured programming and the

method of top-down design (e.g. Yourdon and Con-

stantine, 1979; Dahl et al., 1972). Structured programming

was directly influenced by the topology of traditional

high-order programming languages, such as ALGOL,

FORTRAN and COBOL (Booch, 1994). The funda-

mental unit of decomposition is the task or process, which

is coded as a subroutine, and the program takes the shape

of a treelike network, in which subprograms perform their

work by calling other subprograms at a lower level. Top-

down design takes advantage of procedural decomposition

to reduce the complexity of a given problem. Top-down

design directs designers to start with an abstract descrip-

tion of the system’s function, and then to refine this view

through successive steps, decomposing each subsystem

into a small number of simpler subsystems, until a

sufficiently low level of abstraction is achieved to allow

direct implementation. In the field of industrial software

engineering, procedure-oriented techniques have received

a significant amount of criticism in recent years (Booch,

1994; Meyer, 1997; Page-Jones, 2000). There is a thresh-

old of code complexity (estimated at B104 lines), above

which procedure-oriented techniques rapidly lose their

benefits. In early diagenesis we are presently approaching/

passing this critical threshold (see Table 1).

As the code size increases, procedure-oriented design

makes software time-consuming to develop and expen-

sive to maintain (e.g. Lientz and Swanson, 1981). Due to

the low level of abstraction, rigid and monolithic codes

are produced, which are hard to modify or extend (even

by the code author). When the application user wants to

add components to an existing model, it becomes a

daunting task to modify the source code, and sometimes

a major re-implementation of the model code is

necessary. Consequently, codes suffer from a limited

lifespan, as it is often more practical to develop a new

code, than to repair or extend the old source code. This

is exactly what we experienced in the ECOFLAT

project. Rather than modifying the OMEXDIA, CAN-

DI or STEADYSED code, it proved more efficient

to develop an entirely new code (the MEDIA code,

see later).

2.3. Implementation

Until present day, FORTRAN—one of the oldest

high level programming languages—makes up the

dominant programming language in the field of

diagenetic modelling. As most code developers have

received their formal training in Fortran77, most model
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codes are still implemented in the Fortan77style. The

Fortran77 syntax is completely attuned to the proce-

dure-oriented way of structuring programs. Its dense

and obsolete programming style, exemplified by the deep

nesting of control statements and the ample use of

statement labels, enforces the rigidity of the model code

and obscures the overall structure. In addition to this,

the source code is often poorly documented, which

greatly hampers the extension and modification of the

code. Even when codes are programmed in Fortran 90/

95, the modern features (data-abstraction, information

hiding, operator overloading, etc.) of this programming

language are not often extensively explored.

3. New approaches to model code design

For large software applications, such as the present-

day reactive transport codes, the development cost of

the model codes is a dominant factor in the overall cost

of the research. The challenge therefore is to develop

new concepts, which (1) reduce the need for modification

and extension of model codes as much as possible and

(2) when modification is unavoidable, enable fast and

flexible adaptation. In order to meet these criteria, the

transfer of two techniques from the field modern

software engineering could prove highly valuable. Here

we will discuss two techniques with regard to their

potential for reactive transport modelling. (1) The

concept of a problem-solving environment PSE enables

model construction at a higher level within the model

code (Ford and Chatelin, 1987; Gallopoulos et al.,

1994). (2) An object-oriented approach (OOA) enables

the development of modular and extensible code, and

thus allows the flexible adaptation of the model code

(Booch, 1994; Page-Jones, 2000). Both techniques were

implemented in the development of MEDIA (Modelling

Early DIAgenesis), a software package for biogeochem-

ical simulations in marine surface sediments.1 The

MEDIA software was developed in the framework of

the ECOFLAT project (Herman et al., 2001) and is an

attempt to put the recommendations of the previous

sections into practice. Details on the model formulation,

numerical solution methods, verification and validation

within MEDIA are presented in a companion paper

(Meysman et al., 2002).

4. Problem-solving environments

Rather than focusing on a single model, a PSE is a

computer application that provides all the computa-

tional facilities necessary to solve a target class of related

problems (Ford and Chatelin, 1987; Gallopoulos et al.,

1994). These features include flexible model construc-

tion, advanced solution methods and ways to easily

incorporate novel solution methods. The two central

goals of a PSE are (1) to enable more people to solve

problems more rapidly, and (2) to provide many people

with the possibility to do things they could not do

otherwise (Gallopoulos et al., 1994). An important

requirement states that a PSE should use the ‘‘natural

language’’ of the target class of problems, so users can

run them without specialized knowledge of the under-

lying computer software. The development of PSEs for

different kinds of applications is an active and promising

research field in computational science (e.g. Akers et al.,

1997; Parker et al., 1997; Knox et al., 1997; Houstis et al.,

1998; Fujio and Doi, 1998). An overview is given in the

reviews of Rice and Boisvert (1996) and Appelbe and

Bergmark (1996) and the references therein. Up to

present, most PSEs have a broad application domain

and are built to solve broad classes of partial differential

equations (e.g. Ahlander, 1999).

So, in the situation of a reactive transport, the PSE

should use a ‘‘geochemical’’ vocabulary close to the

natural language of the geochemist using the model. The

aim of the MEDIA-project was to develop a PSE that

solves reactive transport equations for chemical species

in surface sediments (see Berner, 1980; Boudreau, 1997;

Meysman, 2001 for the actual form of these so-called

diagenetic equations). Implementing the recommenda-

tions from the previous sections, two important criteria

were set for MEDIA.

The first criterion was flexibility: the application user

should be in control of the model formulation. More

precisely, it should be possible to assemble a diagenetic

model from a toolbox of available model components

(species, processes) without the need for writing a single

line of new code. Within MEDIA this criterion was met

by means of generic model construction. Generic model

construction basically transfers the control on the model

formulation from the application developer to the

application user. The basic idea behind it is not to fix

models at compile time, but to construct them at run-

time from a set of basic building blocks. As a

consequence, model formulation is not fixed a priori

by the program developer, but is decided upon by the

program user at run-time. The user then specifies a

particular set of basic building blocks, which are

subsequently assembled by the computer program into

a costumer-tailored model. The modular building blocks

are created using a certain template, i.e. they are defined

as objects in the true object-oriented sense (see below).

Within MEDIA, a number of basic early diagenetic

building block types, such as elements, species, transport

processes, reactions and parameters, were made avail-

able (Fig. 4). The advantage of generic model construc-

tion is that it enables model development at a high level.

1MEDIA online manual. http://www.nioo.knaw.nl/home-

pages/meysman/media.htm
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Complex numerical models can now be stated and

solved without the knowledge of the underlying

computer language. Equally, when modifying an exist-

ing model, there is no need for accessing or rewriting the

program code. This way the time-consuming and

strenuous tasks of low-level code writing, debugging

and recompilation are avoided.

The second criterion was extensibility: the application

user should exert control over the model components.

Hence, to ensure a large application domain, the

application user must have access to a wide number of

model buildings blocks. One solution could involve a

closed database, where model objects can be selected

from a large, fixed set of predefined building blocks.

However, to allow real extensibility, an application user

must be able to ‘bring her/his own building blocks’, i.e. it

should be possible to extend the modelling environment

with new components (e.g. new species and reactions)

without the need for rewriting code. The construction of

such an open database constitutes a challenging software

problem, as the number of building blocks to be

included is not known a priori. To tackle these issues,

an object-oriented database was created in MEDIA,

which stores all present building blocks and accommo-

dates new user-defined building blocks. Using a tem-

plate, the model user can add new objects to the

database, which are subsequently available for model

construction. Fig. 3 compares the modelling procedure

of a conventional diagenetic model code and the

MEDIA modelling environment.

5. Object-oriented approach

In generic model formulation, a model is regarded as

a collection of separate building blocks that can be

combined freely. Therefore, an obvious choice is to turn

to object-orientation, the paradigm of modern software

engineering, which emphasizes the benefits of modular

and reusable computer code (Booch, 1994; Meyer, 1997;

Page-Jones, 2000). The world of scientific computing has

been slow to adopt object-oriented techniques, and is

still very much inclined towards the procedure-oriented

paradigm. Nonetheless, interest in object-oriented

numerics is increasing rapidly (e.g. Arge et al.,

1997; Langtangen, 1999). Besides modularity, object-

orientation stimulates additional software quality fac-

tors, such as reliability, robustness, extensibility and

reusability, which are required by modern standards of

software quality assurance (Meyer, 1997). Especially for

large applications, object-orientation proves beneficial

to master the complexity of the developed software

Fig. 3. Comparison of conventional diagenetic model code and MEDIA modelling environment. Conventional model code,

constructed according to ‘one model-one code’ paradigm, possesses a priori fixed model formulation and thus only allows one type of

activity: model execution. Hence, model code only needs one specific type of input: parameter values. Conversely, MEDIA modelling

environment allows diagenetic models to be flexibly built from a set of basic building blocks, such as elements, species, transport

processes, reactions and parameters. User must provide two types of input information: (1) model construction information which

allows MEDIA to assemble diagenetic model from available modular building blocks in object database (2) parameter information

which is needed to perform specific simulation. Model construction information itself consists of wish list of diagenetic building blocks

(species, reactions, etc.) which the user wants to include into new model. Object database stores all building blocks currently available

and can accommodate new user-defined building blocks, which are subsequently available for model construction. Upon input, model

construction information is processed by model construction procedure, which is at heart of PSE. Latter procedure (1) generates an

appropriate diagenetic model based on model construction information, and (2) delivers model to appropriate numerical model

solution procedure. When actual parameter values for specific simulation are fed to solution procedure, final simulation output is

obtained.
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(Booch, 1994). The adaptation of an OOA during the

development process can be regarded as one of the

major innovative features of the MEDIA modelling

environment.

The switch from a procedure-oriented to an OOA

requires a major shift in programming practices. Instead

of thinking in terms of loops, program steps and

procedures, object-orientation allows software to be

constructed of objects that have a specified behaviour

(Booch, 1994). A computer code is then designed as a

collection of autonomous software modules, called

objects, and the code developer decides how objects

are structured, accessed and modified. Objects of the

same type are created using a common blueprint, called

a class, which defines both the data structure of an

object (the components) as well as the operations

possible on these objects (methods). The methods make

it possible to access the objects and change the object’s

properties in the course of program execution. The task

of the software developer is to analyse the problem

domain, identify the key abstractions as objects and map

the events that interact with these objects. The computer

program can now be regarded as a ‘‘software world’’, a

collection of interacting software objects, which then

represents a simplification of the structure and dynamics

of the real physical world.

Within MEDIA we have tried to create a ‘‘geochem-

ical’’ software world, consisting of ‘‘element’’, ‘‘species,

‘‘process’’, ‘‘parameter’’ and ‘‘equation’’ objects (Fig. 4

explains the hierarchy among these objects). Given its

numerical performance, the widespread use in the

diagenetic modelling community and the possibility for

an object-oriented approach, Fortran90 was preferred as

the programming language to develop MEDIA. Follow-

ing the OOP methodology as outlined in Decyk et al.

(1998) and Norton et al. (1998), we used the new

Fortran90 capabilities (derived data types, modules,

generic interfaces) to emulate typical OOP-concepts as

‘class’, ‘object’ and ‘method’ and to adopt typical OOP-

strategies as data encapsulation and inheritance (Carr,

1999). The adoption of OOP required initially a larger

investment in code development, but this certainly was

already remunerative, and will be so in the longer term.

The OO design of MEDIA aided significantly in the

management and maintenance of the large code during

the development cycle. Secondly, it enabled us to easily

rework the MEDIA code during application trials.

Finally, the modular object-oriented structure greatly

improved the detection of logical modelling errors (i.e.

model verification) and enabled intelligent messaging of

these errors. Basically, the MEDIA environment checks

rigorously whether the model constructed by the

MEDIA user is internally consistent. By nature, the

object-oriented design invokes a strict bookkeeping of

the element objects, and as a consequence, MEDIA

performs a rigorous mass balance control and imposes a

stringent check on reaction stoichiometry.

6. Conclusion

Although intrinsically powerful applications, it is

observed that current diagenetic model codes are far

from being used as routine instruments to analyse

datasets. Increasing model complexity has effectively

reduced the ‘‘ease of use’’ and ‘‘applicability’’ of the

software in which reactive transport models are

embedded. Codes are rigid due to a procedure-oriented

approach and a dense Fortran77 programming style.

Concentrating on numerical efficiency, little effort is

spent on modern software qualities, such as flexibility,

extensibility, robustness, reliability and an intuitive user-

interface. As a result, model codes have become

increasingly inaccessible to the experimental geochemist,

since their operation and adaptation often requires an

in-depth understanding of the underlying numerics and

programming language. If we are to improve and

popularise the use of complex numerical models, we

Fig. 4. Overview of different object types / building blocks

within MEDIA and connection between several types of

objects. A species object is assembled from basic element

objects. A transport process is modelled as an operation on a

given species object. A reaction object encapsulates multiple

species objects associated with that particular chemical reac-

tion. Parameter objects are linked to species objects (e.g.

molecular diffusion coefficient), to transport operator (e.g.

bioturbation coefficient) and to reaction objects (e.g. a kinetic

rate constant). Ultimate object comprises diagenetic ‘‘equation’’

object, which consists of both transport and reaction ‘‘process’’

objects. Reader is referred to Meysman et al. (2002) and

MEDIA on-line manual (see footnote 1) for more details on

actual implementation of object-oriented principles.
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clearly need flexible and extensible model codes, which

can be easily adjusted to the needs of the model code

user. We believe that object-oriented technology and the

concept of a problem-solving environment could be

valuable tools to achieve this goal in reactive transport

model software. Both techniques clearly possess the

potential to increase the popularity, the productivity and

the possibilities of modelling applications (as summar-

ized in Table 2). They were successfully implemented

in the object-oriented problem-solving environment

MEDIA (Modelling Early DIAgenesis), which enables

the design of costumer-tailored diagenetic models and

provides an efficient numerical solution for these

models.
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