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SAMENVATTING

In opdracht van Rijkswaterstaat Directie Zeeland werd met behulp van het ecosysteem model
MOSES de effecten van het verdiepingsprogramma 48'/43' en het verbeteren van de waterkwaliteit
in Viaanderen op het ecosysteem in het Schelde estuarium ingeschat.

Het bieek dat de verdieping nauwelijks effect heeft op het ecosysteem, alleen wanneer de hoeveel-
heid gesuspendeerd inderdaad met dertig procent toeneemt zai de primaire produktie in de
Westerschelde in de zomer sterk afnemen (rond de dertig procent). Deze veranderingen hebben
nauwelijks invioed op de andere organismen, Ook de suspensie eters zullen last hebben van deze
sterke toename van gesuspendesrd materiaal

Het bereiken van de basiskwaliteit voor opperviakte water veranderde niets aan de eutrofiéring.
Welliswaar nam het ammonium gehalte behoorlijk af, maar dit werd volledig gecompenseerd door
een toename van hitraat. Het effect van deze verandering is het sterkst bij Rupeimonde, maar is ter
hoogte van Vlissingen nog steeds merkbaar.

Alle diergroepen, met uitzondering van de suspensie etets, profiteerden van een toename van het
zuurstof gehalte in de Beneden Zeeschelde. Alhoewel de hoeveelheid organisch materiaal afnam
was er nog altijd enkele malen meer organisch koolstof dan phytoplankton. Daardoor bleef de detri-
tus/bacterie keten de belangrijkste voedselbron voor het zodplankton, hyperbenthos en de suspensie
eters, en is het effect op het phytoplankton door een toegenomen graasdruk vrijwel nihil,

Tijdens het uitvoeren van de verschillende simulaties bieek dat vooral de suspensie eters alsook het
gedrag van het gesuspendeerd materiaal nog niet optimaal gemedelleerd zijn, het verdient
aanbeveling nadere aandacht aan deze knelpunten in MOSES te besteden.






1 INLEIDING

De mens maakt op velerlel manieren gebruik van estuaria, de gevolgen van het ingrijpen in estuaria
Zijn merkbaar in het ecosysteem. In de nabije toekomst zullen verschillende ingrepen in het Schelde
estuarium plaatsvinden, met nhame een verdieping van de vaarweg en het plaatsen van afvalwater
zuiveringsinstallaties in onder meer Brussel. De gevolgen van deze ingrepen zullen gemonitord
worden, Om een realistisch monitoringsprogramma vast te kunnen stellen is het van belang de
effecten van deze ingrepen zo goed mogelijk in te schatten.

Om tot een inschatting te komen van de effecten die kupnen optreden ten gevolge van deze
ingrepen in het ecosysteem is het nodig om inzicht te hebben in de biclogische en biochemische
processen. Het ecosysteem model MOSES, MOdel of the Schelde EStuary, beschrijft de belangrijk-
ste daarvan. MOSES is gedocumenteerd in een rapport en een aantal manuscripten (Soetaert &
Herman, 1993).

De modelgrenzen van MOSES zijn gelegen ter hoogte van Rupelmonde in Belgié en op de lijn
Viissingen-Breskens. Hiertussen is het estuarium opgedeeld in 13 pelagische compartimenten
(figuur 1). De processen in de intergetijde gebleden worden apart gemodelleerd. De schematisatie
van de intergetijdegebieden is te Zien in figuur 2. In MOSES worden de hieronder beschreven
processen gemodelieerd.
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figuur 7. Ruimtelike indeling van de pelagische en subtidale compartimenten in MOSES (uit Soetaert & Herman,
1993)

In het Westerschelde estuarium is de primaire produktie door fytoplankton licht gelimiteerd door de
hoge mate van troebelheid van de waterkolom. De algen bestaan uit zoet-, brak-, en zoutwater
soorten die nitraat/ammonia en silicaat (diatomeeén) opnemen. De algen worden begraasd door
(meso/micro) zodplankton, hyperbenthos en macrozodbenthos {filter-feeders). Het hyperbenthos
consumeert ook zodplankton. Het door dieren opgenomen organisch materiaal wordt omgezet tot
kooldioxide, detritus en ammonia waarbij zuurstof verbruikt wordt,



Het estuarium wordt gekarakteriseerd door een hoge invoer van koolstof afkomstig van detritus.
Deze C-bron wordt gemineraliseerd door bacterién en kan tot een vrijwel zuurstofloze situatie leiden
in de nabijheid van het trosbelheidsmaximum. De pelagische detritus/bacterie keten levert voedsel
voor het zodplankton, hyperbenthos en macrozodbenthische filter-feeders.

Benthische primaire produktie is beperkt tot de getijde zone en tot de periodes van laag water
gezien de hoge troebelheid van het water, Het macrozogbenthos berelkt de hoogste dichtheden en
biomassa in de getijde zone. Ze bestaan uit filtreerders (filtreren de bovenstaande waterkolom, ook
suspensie-oters genoemd) of detritus eters (deposit-feeders} die zich voeden met benthische micro-
algen en gesedimenteerd detritus.

De belangrijkste biochemische reacties zijn de oxidatie van ammonium naar nitraat en het oplossen
van particulair silicaat, Organisch materiaal wat sedimenteert, wordt afgebroken in een vaste
volgorde van oxydantia, te beginnen met zuurstof, daarna nitraat. in de aérobe zone van het
sediment wordt ammonium geoxideerd tot nitraat. Deze biochemische reacties in het sediment
zorgen, samen met de biologische consumptie van zuurstof voor een netto flux van zuurstof van het
water naar de bodem, terwijl ammonium en meestal ook nitraat vanuit het sediment vrijkomen.

De effecten van predatie door vissen en vogels zijn wel in het madel opgenomen, de hogere
trofische niveaus zijn echter niet gemodelleerd.

MOSES benthic schematization

Figuur 2. Intertidale benthos compartimenten in MOSES {uit Soetaert & Herman, 1983).

Het doel van dit ohderzoek is om de effecten van het verdiepingsprogramma 48'/43' en van het in
gebruik nemen van afvalwater-zuiveringsinstallaties in onder meer Brussel op het ecosysteem in het



Schelde estuarium in te schatten, zodat op basis van deze inschatting een realistisch monitorings-
programma opgezet kan worden.

Vraagsteliing:
in welke mate zullen de verwachte veranderingen het functioneren van het ecosysteem beinvioeden,
en welke kenmerken van het ecoysteem zullen het meest gevoelig zijn voor de invioeden van de

fysische veranderingen?

Deelvragen:

- Wat zullen de gevolgen zijn van het verhogen van de dispersie coéfficiénten voor met name de
zuurstof profielen in het estuarium, de estuariene residentietijd, de afhraak van organisch
materiaai en de nitrificatie.

- Wat zullen de gevolgen zijn van een verhcogde sedimentatie in de ondiepe zones. Met name wat
betreft concentraties organische stof, de bodemwater uitwisseling en het benthos.

- Wat zullen de gevolgen zijn van het verhogen van de hoeveelheid zwevend stof in de waterko-
lom. Met name de effecten op de primaire produktie, de secundaire produktie door het zodplank-
ton en het hyperbenthos en de produktie van het benthos zijn van belang.

- Wat zijn de gevolgen van een verlaging van de organische belasting en de belasting met
ammonium op het estuarium. Wat zijn de gevolgen voor de doorvoer van N naar zee, de 2uurstof
huishouding, de produktie van het zooplankton en het hyperbenthos en de primaire produktie.

- Wat zijn de gevolgen wanneer de boven genoemde veranderingen in parameters gecombineerd
worden, Zowel voor de verdieping en afvalwaterzuivering apart als voor een combinatie van deze
twee scenario’s.






2 WERKWIJZE

in dit hoofdstuk is beschreven hoe de verschillende parameters veranderd zijn en welke simulaties
uitgevoerd zijn. Alvorens hiermee gestart werd is nagegaan of MOSES op zo recent mogelijke
gegevens gecalibreerd is. Dit bleek voor alle toestandsvariabelen het geval te zijn met uitzondering
van het macrozoobenthos, de detritus en suspensie eters. Met name wat de suspensie eters betreft
werd verwacht dat problemen zouden kunnen optreden, Omdat het waarschijnlijk was dat de
benodigde gegevens betreffende het macrozodhenthos pas na enkele maanden beschikbaar
zouden zijn, is besloten de simulaties met de bestaande versie van het MOSES model uit te voeren,

2.1 Verdleping

Allereerst worden de verschillende stappen beschreven die genomen zijn om de effecten van de
verdieping te beschrijven: de aanpassing van de dispersiecoéfficienten, de sedimenta tieferosie-
coéfficiénten en het veranderen van de hoeveelheid gesuspendeerd materiaal.

2,1.1 Dispersle coéfficiénten

Het transport van opgeloste stoffen is in MOSES met behulp van een tijgemiddeld, constant volume,
advectief-diffussief differentiaal vergelijking gemodelleerd (Scetaert & Herman, 1993, bijlage 8). De
dispersiecoéfficiénten voor opgeloste stoffen, Qdisp, zijn met behulp van de saliniteitsprofieien in het
estuarium vastgesteld, Het transport van particulair materiaal is gecalibreerd op een "gladgestreken"
dataset aangezien deze tevee! variatie vertoonde, De dispersiacoéfficiéenten voor particulair
materiaal, Qpart, zijn hierop gecalibreerd (Soetaert & Herman, 1993, bijlage 8).

Het was zeer lastig in te schatten hoe deze dispersiecoéfficiénten zullen veranderen door de
verdieping. Daarom werd gekozen om beide coéfficiénten proportioneel te vergroten met de factoren
1,1; 2; 5; en 10. De verhoging die chloride gehaltes opleverde die het dichtst in de buurt lagen van
de door de Technische Schelde Commissie voorspelde verhogingen bij Hansweert en de Neder-
lands-Belgische grens werd gezien als de meest realistische verhoging.

2.1.2 Sedimentatie/erosle coéfflciénten

Omdat voor de sedimentatie op de Intertidale compartimenten geen gegevens beschikbaar waren is
voor ieder compartiment dezelfde sedimentatie coéfficiént vastgesteld (Soetaert & Herman, 1893). in
de subtidale compartimenten kan zowel netto sedimentatie als netto erosie optreden. Voor ieder
subtidaal gcompartiment is een eigen sedimentatie/erosie coéfficiént vastgesteld.

Ook voor deze coéfficiénten is het lastig te voarspellen hoe ze zuilen veranderen. Daarom zijn al
deze coéfficiénten proportioneel vergroot met de factoren 0,9; 1,1; 1,2, en 2.

Vooral de netto sedimentatie/erosie coéfficiént voor het subtidaal leidde tot problemen. Een
negatieve coéfficiént leidde er toe dat wanneer de hoeveelheid gesuspendeerd materiaal in de
watsrkolom verhoogd werd, er automatisch ook meer erosie plaatsvond.

Voor de compartimenten waar een negatieve coéfficiént was, werd een vaste bron erosie vast ge-
steld op 1,1* de gemiddelde erosie, Verder werd er een sedimentatie coéfficiént vastgesteld die
-0,1* de oude coéfficiént was, Zodoende was de gemiddeide erosie over een jaar hetzelfde als in
het oorspronkelijke model. Welliswaar veranderde de fluctuatie in erosie in de betreffende compart-
menten, maar daar staat tegenover dat de oorspronkelijke fluctuatie in het model ook artificieel was
(zie ook het stukje onder dispersie-coéfficiént) {Soetaert & Herman, 1993),

De veranderde code staat in figuur 3. Deze verandering had wel als consequentie dat daar waar
erosie optrad de berekende snelheden waarmee phytoplankton, detritus en aan detritus gebonden
silicium (ALGrate, DIArate, DETrate en DETSirate) sedimenteren onzin werden. Deze werden
immers berekend met de sedimentatie/erosie coéfficiant die inmiddels de veranderde sedimentatie
coéfficient geworden was, dus deze snelheden mochten niet gebruikt worden! Door te zorgen dat er



niets uitgerekend werd wanneer de erosie niet gelljk was aan nul werden boven genoemde rates
niet gebruikt. Op deze manier werkte het model in principe net zo als vroeger voor detritus en
phytoplankton variabelen. Deze konden in het oorspronkelijke model ook nist resuspenderen,

pE OUDE CODRE: NIEUWE CODE:

gedim = pPELAGIC * SUSPMAT(J) * SUSPRATE gedim = pPELAGIC * SUSPMAT(J) * SUSPRATE-
pPELAGIC * erosion/surfaubtid{I)

s5USPsed = SUSPsed + sedim SUsPged = SUSPsed + sedim

dSUSPMAT(J) = dSUSPMAT{(J) - sedim * bentopel SUSPMAT(J) = dSUSPMAT(J) - sedim * bentopel

en uit J loop:
SUSPsedS(I} = SUSPsed * surfsubtlid(I} SUSPgedS{I}) = SUSFsed * surfsubtld(lI)

ercgion is positief (1,1 * gemiddelde
erosie) en de nleuwe gedcoef is ook posi-
tief (-0,1% oude pedcoef}.

en voor "other particles:"
1f (pSEDsubt(I).gt.0.) then _ If {erosion(I).EQ.0.) then

Flguur 3. Aanpassing van de code in de transport module.

2.1.3 De hoeveelheid gesuspendeerd materiaal

Er zijn twee mogelijkheden om de veranderingen veroorzaakt door een verhoging van het gesus-
pendeerd materiaal in MOSES tot uitdrukking te brengen. De hoeveelheid vtijkomend materiaal kan
berekend worden en toegevoegd in de compartimenten, of de invioed van gesuspendeerd materiaal
kan met een bepaalde factor verhoogd worden.

Dit laatste is een grof geschut methode, maar is wel handig om snel mogelijke veranderingen op te
sporen, De nadelen van deze methode zijn dat er wellicht iets over het hoofd wordt gezien, het
lastig is om voor de verschillende compartimenten verschillende factoren in te stellen en de veran-
deringen in gesuspendeerd materiaal zelf niet zichtbaar worden, Bovendien zijn de wiskundige
consequenties van deze methode in combinatie met andere deel-simulaties nauwelijks of niet te
overzien. Daarom is het beter om voor de uiteindelijke simuiatie de hoeveeiheid materiaal dat
vrijkomt te berekenen,

Om een indicatie van het effect van een verhoging gesuspendeerd materiaal te krijgen is voor de
herekening van de extinctie, het verlies aan phytobenthos door slecht weer (windloss) en de limitatie
van "“clearance rate" van de suspensie eters (Botses} de invioed van suspmat met 30% verhoogd,
Uiteraard is de sedimentatie van gesuspendeerd materiaal in deze simulatie niet verhoogd omdat
anders de hoeveelheid gesuspendeerd materiaal zou dalen en de effecten op bovengenvemde
variabelen teniet worden gedaan,

Het is duidelijk dat het realistischer is om de hoeveelheid gesuspendeerd materiaal dat vrijkomt te
berekenen. Het is echier niet eenvoudig om de juiste hoeveelheden vast te stellen. Daarom zijn de
volgende aannames gemaakt:

- Het verdiepingsprogramma wordt in twee jaar uitgevoerd.

- Uit de specie die extra gebaggerd wordt voor de verdieping, komt al het aanwezige slib vrij

- Tweederde komt vrij tijdens het baggeren zelf en eenderde tijdens het storten.

Om de maximale hoeveelheid slib die in suspensie kan komen te berekenen zijn pet baggerplaats
de hoeveetheden te verwijderen specie opgezocht (Technische Schelde commissie, 1984) met de
bijbehorende slibpercentages (Ministerie van de Vlaamse gemeenschap, departement Leefmilieu en
Infrastructuur, 1991; Van Maldegem, 1993). Vervolgens ziin volgens de methode zoals beschreven
in appendix 4 van Van Maldegem de hoeveelheden slib omgerekend van kubieke meter naar gram.
Het soortelijk gewicht kan hehoarlijk varieren, in dit geval is overal de gemiddelde waarde 2,65
gebruikt. Er is vanuit gegaan dat de waarden uit het 1984 rapport goed gepakt sediment betreft en
het holtepercentage 40% is. Dan bevat 1 m® sediment 0,6 m® zand en slib en 0,4 m® water, De
omrekening per bagger plaats wordt dan:

hoeveelheid te baggeren * percentage vaste stof * SG ., . ¥ %slib.




Dit moet nog met 10° vermenigvuldigd worden om de hoeveelheid slib in g in plaats van ton wit te
drukken. In onderstaande tabel wordt per baggemplaats aangegeven hoeveel gebaggerd gaat
worden, wat het slib% is en hoeveel slib er aanwezig is. Tevens wordt aangegeven hoeveel
materiaal er per dag vrijkomt er vanuitgaande dat er twee jaar gewerkt wordt,

Tabel 1. Omrekening van te hoeveelheid te baggeren specie naar de hoeveelheid vrijkomend slib.
. ]

baggerplaats comp te baggeren % slib slib 66% in susp hoeveelheid/dag
(108 m%) @ (@ {gidag)
Dr. van Zandviiet 5 0,44 3 217610 1,43e10 1,96e7
Dr, van Bath 6 0,67 1,75° 1,86e10 1,23e10 1,68e7
Dr van Valkenisse 6/7 0,73 1,8 2,09e10 1,38e10 1,89e7
Qv. van Valkenisse 78 044 0,8 5,60e8 3,70e9 5,67e6
Dr. van Walsoarden 8 051" 2,8 2,27e10 1,50e10 2,05e7
Dr. van Hansweert ] 061" 08 649e9 4 728e9 5,86e6
Ov. van Hansweert 10 1,73 [¢N:] 2,20010 1,45e10 1,95e7
Dr van Ternsuzen 12 023 1,0 36669 242e9 3,92e6
Dr van Borsele 13 1,18 1.0 1,88e10 1,24e10 1,707
totaal 6,33 1,40e11
storiplaats comp % van totale stort {4,63e10g slib)

Sch. vd Spilkerplaat 13 35
VI.Sch, v.d, Everingen 12 35
ViIS¢h Ev. Ellewoutsdijk 1112 30

* Er is zowel van het stroomafwaartse als van het stroom opwaartse desl een slib percentage bekend, Van deze twee
waarden is hler het gemiddelde genomen.

** De hoeveelheld ult te baggeren sediment voor de drempels van Walsoarden en Hansweert was In het (1884) rappont
samen genoman, Hier wordt ervan uitgegaan dat deze hoeveelhekl geljk verdeeld is over deze twee drempels

** n het (1991 rapport) werd geen slib concentratie gegeven voor de drempel in de pas van Temeuzen. Ul gegevens uit
v. Maldegem blijkt het slib % hier tussen de O en 2% te zjjn, Aangenomen wordt dat een gemiddeide waarde van 1 de
werkelijkheld benadert.

De totale hoeveeltheid slib die vrijkomt is 1,40e11 gram, er werd aangenomen dat hiervan 33%
vrijkomt bij het storten van de specie. Dit is in totaal 4,63e10 gram slib,

Al het extra vrijkomende materiaal werd in het westelijke deel van de Westerschelde gestort. Er
werd geen rekening mee gehouden dat de stort aciiviteiten in het oostelijk deel van de Westerschel-
de verminderd worden. Om het te storten materiaal zo realistisch mogelijk te verdelen werd aan de
hand van Memo NWL-93.31 bepaald op welke stortpiaatsen de geplande stort het meeste zal
toenemen ten opzichte van de periode 1979/83. Dit bleken de Schaar van de Spijkerplaat (stort-
plaats 15), de vioedschaar van de Everingen (stortplaats 14) en de vloedschaar van de Everingen
ter hoogte van Eilewoutsdijk {(een nieuwe stortplaats, 14a) te zijn. Vervolgens werd de procentuele
verdeeisleutel bepaald van de toename op deze plaatsen en werd de berskende hoeveelheid
vrijkomend materiaai volgens deze verdeelsteutel over deze drie plaatsen verdeeld.

Al het vrijkomend materiaal werd omgerekend in hoeveelheden per compartiment per dag. Deze
hoeveelheden werden aan het gesuspendeerd materiaal toegevoegd door een constante “waste
load" te definiéren

Tevens werd aangenomen dat een deet van dit slib uit organisch koolstof bestaat. De percentages
zijn avergenomen uit ten Brinke {1992, deel 1 bijlage 2c). Er werd dus een extra wasteload-import
voor langzaam vergaand detritus gedefinieerd net als voor gesuspendeerd materiaal.

De herekende hoeveelheden warden over twee jaar verdeeld. Eerst was aangenomen dat de
verdieping twee jaar zou duren, later werd duidslijk dat men drie jaar aanhoudt (Memo NWL-93.31).
Wegens tijdgebrek werd in deze studie toch een tijdsspanne van twee jaar aangehouden. Aangezien
men ieder jaar evenveel wil storten kwamen de extra hoeveelheden te storten materiaal als gevolg
van verdieping en toegenomen onderhoud redelijk overeen met de in dit rapport berekende
hoeveelheden per jaar wanneer alleen de verdieping meegenomen werd.



2.1.4 Het gezameiljk effect van bovengenoemde parameters

Uit de hierboven beschreven deel-simulaties werd telkens de meest realistische gekozen, deze
werden gecombineerd tot een totaal scenario om de effecten van de verdieping te kunnen inschat-
ten.

Voor de dispersie coéfficiént werd die simulatie gekozen waar de chloride concentraties in
Hansweert en aan de Belgisch-Nederlandse grens het beste overeenkwamen met de waarden zoals
ze in het verdiepingsrapport van de Technische Scheldecommissie (1984) voorspeld zijn. Voor de
hoeveelheid toe te voegen gesuspendeerd materiaallangzaamvergaand detritus werd zowel de
simulatie genomen zoals boven beschreven alscok de simulatie met een extra toename van het
gesuspendeerd materiaal van factor 10. Dit laatste om een stijging van gesuspendeerd materiaal
van ongeveer 30% te krijgen, zoals voorspeld werd in het verdiepingsrapport (Technische Schelde
commissie, 1984}, Het was erg lastig om criteria vast te stellen om de meest realistische verande-
ring voor de sedimentatie coéfficiént te bepalen. Zoals boven beschreven is, is een netto sedimenta-
tie/erosie coéfficiént nist ideaal, vandaar dat afhankelijk van de totale uitkomsten van de deelsimula-
tie een waarde gekozen werd die waarschijnlijk realistisch is.

2.2 In gebrulkname afvalwater-zuiveringsinstallaties Brussel

In deze paragraaf wordt beschreven welke stappen genomen zijn om de effecten van het grootscha-
lig zuiveren van afvalwater in Belgié te simuleren.

in Brussel wordt in 1996 de eerste afvalwater-zuiveringsinstallatie (RW2i-Brussel-Zuid) in gebruik
genomen. De tweede installatie (RWZ| Brussel-Noord) zal als alles volgens planning verloopt in
1998 gereed zijn (mondelinge communicatie, L Santbergen, RWS/DZ). In totaal gaat het om
1.500.000 inwoner equivalenten. De eerste installatie zal met name de lozihg van organisch koaistof
en ammonium verminderen, In de tweede installatie wordt ook een denitrificering/defosfateringstrap
ingebouwd, Naast organisch koolstof en ammonium zal dus ook de hoeveelheid geloosd nitraat
afnemen,

Er werd gepoogd om de vermindering in Rupelmonde, de modelgrens, van deze stoffen uit te
rekenen op basis van recente meetgegevens van de Viaamse Milieu Maatschappij (VMM) en de
geschatte zuiveringscapaciteit van de te bouwen instailaties in Brussel. Bij nadere bestudering van
de jaarversiagen van de VMM bleek dat het BOD gehalite niet op alle meetpunten gemeten werd in
1991/92, waaronder de voor deze berekening belangrijke meetpunten Hemiksem (modelgrens) en
Sint-Amands (meer stroomopwaarts, dus zonder de inviced van de Rupel). Zonder deze gegevens
is het nagenoeg onmogelijk een realistische afname te berekenen van organisch koolstof, Na
telefonisch contact met de VMM (dhr. Maeckelberghe) is besloten in plaats hiervan de basiskwali-
teitseisen voor opperviakte water als uitgangspunt te nemen.

2.2.1 Aanpassen van de zoetwater grens blj Rupelmonde,

In de zoetwater grens werden de gemeten grenscondities vervangen door constante waarden van
de basiskwaliteit. Deze staan in tabel 2. Eerst werden de effecten van een vermindering van het
BOD-gehalte, de vermindering van Ammaonium en kjehldal-stikstof, en een toename van zuurstof
apart bepaald. Vervolgens werd de afname van Ammonium gecombineerd met de toename van
nitraat. Zoals uit de tabel blijkt wordt de vermindering van ammonium geheel teniet gedaan door een
toename in nitraat, deze is meer dan een verdubbeling van de nu gemeten maximum waarden.
Daarna zijn de deelscenario’'s gecombineerd en worden alle bovengerioemde waarden tegelijk
vastgesteld op de basiskwaliteitseisen voor opperviakte water,

Voor bovengenoemde variabelen is de absolute grenswaarde gebruikt, alleen voor ammonium was
de gemiddelde waarde gegeven, zodat voor ammonium de gemiddelde waarde gebruikt is. Voor de
absolute grenswaarden geldt dat dit de absolute maximum of minimurn waarden zijn, die niet
overschreden mogen worden. Dit betekent dat het gebruiken van deze waarden als input tot een
conservatieve simutatie leidt, Gezien de snelheid van het ingebruik nemen van nieuwe installaties
mag echter niet verwacht worden dat een betere waterkwaliteit in de nabije toekomst (tussen 1994



en 1998) gerealiseerd zal worden. immers dé ifigebruik narrie van de eerste grote zuiveringsinstalla-
tie te Brussel zal niet voor 1996 plaatsvinden.

Tabel 2, Basiskwaliteitseissen opperviakte water en de recente meetwaarden
L

variabele basiskwaliteit” gemiddelde 1980/91"
BOD (gO/m%) %6 niet gemeten -
ammonium {gN/m,) <1 6,3 max: 9,3
nitraat + nitriet (gN/m,) =10 1,3 max: 4,0
kjehldal stikstof (gN/m°) =6 niet gemeten -
zuurstof (gO,f1} 25 1.3 min: 0,5

* absolute waarden, uit bijlage 3.1.1. Ministerie van de Vlaamse gemeenschap, 1991
# Gemiddekle waarde te Hemiksem, 1990/81. Gebaseerd op meetgevens van de VMM
*** gemiddelde waarde, uit bijlage 3.1.1. Ministerie van de Viaamse gemeenschap, 1991

2.2.2 Geimporteerd koolstof en stikstof in de Viaamse compartimenten

Er wordt niet alleen organisch koolstot en stikstof via de zoetwatergrens geimporteerd maar ook
langs de randen van het model. Voor de in Belgié gelegen compartimenten één tot en met vijf
bestaan deze importen uit: afvalwaterzuiveringen, industriéle lozingen, poiderlozingen en regenwa-
ter. De hoeveelheden zijn in kilogram per jaar gegeven. Voor al deze categorién geldt dat de
hasiskwaliteitsnormen voor opperviaktewater niet van toepassing zijn. Per categorie waordt beschre-
ven welke aanhames gemaakt zijn,

afvalwaterzuiveringen en industriéle lozingen

Alhoewel vele industriéle lozingen niet onder de categorie stedelijk afvalwater vallen maar specifieke
voorschriften in een lozingsvergunning hebben werden ze toch op dezelfde manier behandeld als
het stedeiljk afvalwater. In de korte tijd dat het project duurde was geen tijd om al de lozingsvergun-
ningen op te zoeken.

De Viaamse normen voor stedelijk afvalwater zijn gebaseerd op EG richtlijn van 21 mei 1991
*inzake de behandeling van stedelijk afvalwater”. Het maximale BOD in het effluent is 25mg/l 02 of
aen vermindering van 70 & 90 procent ten opzichte van het influent, voor het totaal stikstof gehalte
geldt 15 mg/ N of een vermindering van 70 a 80 procent.

Met behuip van de gemiddelde zuiveringspercentages van de huidige installaties werd bepaald
hoeveel de opgegeven emmissies nog aangepast moeten worden, voor BOD was dit ongeveer 10
procent extra vermindering. Voor ammoniak was dit 46 procent en voor nitraat/itriet was dit een
toename van 159 procent om aan een totaal van 15 mg N/ effluent te komen. Deze toename is
realistisch omdat ook bij nog te bouwen installaties de denitrificatie trap vaak ontbreekt. Bavenge-
necemde veranderingen werden toegepast op de importen van BOD en stikstof van communaie en
industriéle lozingen.

polderlozingen

Het water uit polderlozingen bestaat voor het grootste deel uit overiollig regenwater dat uitspoelt, en
voor een kleiner deel uit nog niet gezulverd afvalwater. Dit afvalwater moet ook gezuiverd worden.
Voor het afvioeiend regenwater gelden geen normen.

Hoe groot het aandeel ongezuiverd afvalwater in de poldetlezingen is, is niet precies bekend. Met
behulp van notitie GWAQ-88,1257 (Van Eck, 1988} is bekeken hoevee! le 's nog gezuiverd moeten
worden, dit is vergeleken met de gemiddelde hoeveelheid le's in polderfozingen die opgegeven
stonden in SAWES-nota 91.06 (Wattel, G & A. Schouwenaar, 1991) voor de jaren 1980-87. Aan de
hand hiervan is bepaald op welk deel van deze waste-import de eisen voor zuiveringsinstallaties
moeten worden toegepast.

Het mestbeleid in Viaanderen is met name gericht op de probleemgebieden in West-Viaanderen,
het landbouwgebied rond de Beneden Zeeschelde wordt niet als probleem gebled beschouwd, Een
vermindering van de hoeveelheid stikstof of organisch materiaal wordt hier niet verwacht door de



VMM {mondelinge communicatie, dhr H. Maeckelberghe, VMM). Daarom werd op het deel van het
polderwater dat van het land afstroomt geen vermindering op de vuilvracht toegepast,

regenwater

Het is erg moeilijk om in te schatten of, en hoe, de deposities uit het regenwater zullen veranderen,
Daarom werd aangenomen dat de hoeveelheden vervuiling in regenwater niet zullen veranderen.
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3 RESULTATEN EN DISCUSSIE

Eerst worden de resultaten van het apart aanpassen van de dispersie en sedimentatie/erosie
coéfficiénten en het verhogen van het gesuspendeerd materiaal besproken. Vervolgens wordt de
combinatie van deze drie behandeld,

De resultaten van het aanpassen van de zoetwatergrens van het model aan de basiskwallteitseisen
voor oppervlakte water worden besproken, alsook de aanpassing van de grensimporten van
organisch koolstof en stikstof in de Belgische comparntimenten (1-5).

Er wordt afgesloten met het combinatie-scenario van de verdieping en het bereiken van de
basiskwaliteit.

3.1 Verdleping
3.1.1 dispersie coéfficiénten

De dispersie coéfficiénten werden met de factoren 1.1, 2, 5 en 10 verhoogd. Vanaf factor 2 en
hoger bleek het niet zinnig alieen de coéfficiént voor opgeloste stoffen (Qdisp) te verhogen en niet
die voor stoffen met particulair gedrag (Qpart) of vice versa. Er traden dan ongewenste neven
effecten op. Biivoorbeeld het verdwijnen van gesuspendeerd materiaal bij een eenzijdige verhoging
van Qdisp of het vast lopen van het model door het verdwijnen van phytoplankton bij een eenzijdige
verhoging van Qpart.

In praktijk zullen de veranderingen van Qdisp en Qpart waarschijnlijk in de zelfde grootorde liggen,
al hoeven deze veranderingen niet identiek te zijn. Het was onimogelijk om de grootte van de
verschillen in verandering tussen Qdisp en Qpart aan te geven. Daarom werden alleen de resuitaten
van de simulaties waarbij Qpart en Qdisp evenveel vergroot zijn nader bestudeerd.

Om de meest realistische factor vast te stellen waarmee de dispersie coéfficiénten zullen verande-
ren werden de resultaten van de simulaties wat betreft het chloride gehalte vergeleken met de
voorspellingen van de Technische Schelde Commissie (TSC, 1984). In tabel 3 staan de resultaten
van de simulaties voor de compartimenten 5 en 6, samen met de voorspelde verhoging bij de
Nedenands/Belgische grens bij Doel. Ook de resultaten van de simulaties bij compartiment 10
samen met de voorspellingen bij Hansweert zijn vermeld, Het bleek dat de simulatie met een
verheging van 1,1 het beste overeenkomt. Bij de grens was de voorspelling vrijwel gelijk met de
gesimuleerde verhoging, bij Hansweert viel de gesimuleerde verhoging nog net binnen de opgege-
ven marges.

Tabel 3, Effect van proportionele verhogingen van de dispersie coéfficienten op de chloride

gehalten in het estuarium ten opzichte van de voorspeide veranderingen door de Technische
Schelde Commissie.

L . ]

CL(S) (grens) C L(G) (grens) C Lﬁ 0) (Hansweert)
1984,ts¢ 400+1200 400+1200 BO£300
referentie 5202 7031 12215
*1.1 5675 +474 7520 +489 12621 +306
*2 8689 +3487 10377 +3346 14049 +1834
*5 12449 +7247 13497 +6466 15376 +3161
*10 14220 +9018 14839 +7808 15870 +3655

De grafieken van de resultaten staan in bijlage 3. Hierin viel op dat de veranderingen bij een
verhoging van de dispersiecoéfficiénten met factor 1,1 ten opzichte van de standaard marginaal zijn.
Het was echter wel interessant te zien wat er gebeurde bij een verhoging met factor 2 tot 10.




De chioride concentratie in het oosten steeg, dit had als gevolg dat zoetwaterorganismen vervan-
gen werden door zoutwaterorganismen. Het totaal phytoplankton steeg iets, maar de primaire
produktie veranderde nauwelijks, Het hyperbenthos nam ook lets toe,

De hoeveelheid ammonium nam af ten opzichte van de referentie, nitraat nam over het geheel
gezien af. Het zuurstof gehalte steeg vooral in de compartimenten drie, vier en viif (in de Beneden
Zeeschelde) maar de vorm van het profiel veranderde niet,

De verandering in het shel vergaand detritus ten opzichte van de standaard schommelde sterk, in
het westelijk deel van de Westerschelde trad voornamelijk een stijging op. Het langzaam vergaand
detritus daalde met name in het oostelijk deel van de Westerschelde. Voor de bacteriéle produktie
viel op dat in compartiment één en twee geen verschil te zien was, in het midden van het estuarium
trad in het voorjaar een daling op en in het najaar een stijging. In het westelijk deel van de
Westerschelde tradt alleen in het najaar een stijging op.

De sedimentatie schommelde sterk. De detritus eters namen toe in de Beneden Zeescheide en
daalden in het costelijk deel van de Westerschelde. De suspensie eters namen ook toe in de
Beneden Zeeschelde en namen af in het westelijk deel van de Waesterschelde.

Er wordt nogmaals op gewezen dat al deze effecten bij een verhoging met de factor 1,1 hooguit ais
trend waarneembaar waren in de simulaties. In praktijk zullen deze kleine verschillen wegvallen in
gebruikelijke variatie van de te meten waarden,

Bij de simulatie waarbij de dispersie coéfficiénten met factor 1,1 verhoogd werden nam de estuarie-
ne residentietijd in ieder compartiment af met ongeveer 5% (bijlage 2}. Dit kwam overeen met
ongeveer twee dagen korter in de Beneden Zeeschelde en een dag korter in het westelijk deel van
de Westerschelde, De residentietijden van de referentie en de simulatie met factor 1,1 staan in
bijlage 1.

3.12 sedimentatie/erosie coéfficlénten

De sedimentatis/erosie coéfficiénten werden veranderd met de factoren 0,9; 1,1; 1,2 en 2,0. De
resultaten van deze simulaties zifn grafisch weergegeven in bijlage 4.

Een toegenomen sedimentatie coéfficiént veroorzaakte een daling van het gesuspendeerd
materiaal en dus een afname van de extinctie, dit veroorzaakte weer een stijging van de primaire
produktie, met name in de zomer.

Het zooplankton en hyperbenthos namen toe in de zomerpiek, in de rest van het jaar namen ze af
ten opzichte van de referentie. Dit effect trad alleen op bij verhoging met factor 2,0,

Ook bij de bacteriéle produktie frad een extra zomerpiek op. Het snel vergaand detritus veranderde
nauwelijks en het langzaam vergaand detritus liet een kleine daling zien.

De nutriénten en zuurstof gehalten werden niet beinvioed.,

De sedimentatie nam toe, De detritus eters reageerden niet op het veranderen van de sedimentatie
coéfficiént. De suspensie-eters profiteerden van de afgenomen troebelheid en namen toe. Qok de
primaire produktie van het phytobenthos vertoonde een extra zomerpiek, als gevolg van extra
sedimentatie van organische koolstof..

3.1.3 toename van gesuspendeerd materiaal,

Voor het gesuspendeerd materiaal werd zowel een simulatie gemaakt waarbij het gesuspendeerd
materiaal als "wasteload® wordt toegevoegd als een simulatie waarin alleen de invloed van
gesuspendeerd materiaal proporticneel verhoogd werd met 30%. De grafische weergave van deze
simulaties staat in bijflage 5.

Het bleek dat de verhoging van het gehalte aan gesuspendeerd materiaal als gevolg van de
berekende toevoegingen van gesuspendeerd matertiaal ver onder de in het verdiepingsrapport (TSC,
1984) voorspelde toename van 15-30% (10 mg/l) lag. Om aan de voorspelde verhoging van
gesuspendeerd materiaal te komen werd de hoeveelheid toegevoegd gesuspendeerd materiaal met
factor 10 vermenigvuldigd. Nu lag de verhoging van gesuspendeerd materiaal in alle compartimen-
ten in de Westerschelde rond de 30%. In compartiment § tot 10 variéerda te toename tussen 10 en
18 mg/l. Dit is meer dan de voorspelde 10 mg/l van de Technische Schelde Commissie. De
referentie hoeveelheid gesuspendeerd materiaal ligt in deze compartimenten rond de 80 mg/. In de
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zeventiger jaren is in het Eems-Dollard estuarium een vergelijkbaar verdiepingsprogramma
vitgevoerd, De cohcentraties gesuspendeerd materiaal waren voor de verdieping lagen rond de 75
mg#, na de verdieping waren ze opgelopen tot 95 mgf, Een verhoging van 12 - 18 mg/ bi} hoge
uitgangsconcentraties lijkt dus realistisch te zijn. De effecten van deze extra toevoeging zijn
weergegeven bij de samenvattende simulaties, bijlage 7.

Uit de simulatie waarbij alleen de invioed van gesuspendeerd materiaal met 30% verhoogd werd
bleek dat de extinctie toenam, waardoor de primaire produktie afnam. Tevens bleek dat de
“clearance rate" van de suspensie eters sterk afnam door een toename het gesuspendeerd
materiaal,

Door het toevoegen van gesuspendeerd matetiaal en langzaam vergaand detritus als een extra
'wasteload' nam de hoeveelheid gesuspendeerd materiaal uiteraard toe, evenals de extinctie
coéfficiént. Het nutriénten en zuurstof gehalte werd nauwelijks beinvioed. Alileen wanneer de
hoeveelheld toegevoegd gesuspendeerd materiaal met een factor 10 verhoogd werd nam de
primaire produktie af in de Zomermaanden,

De bacteriéle produktie en het snel vergaand detritus reageerden niet op de verhoogde troebelheid.
De hoeveelheid langzaam vergaand detritus steeg sterk in de compartimenten waar het toegevoeqd
werd.

Het zoopiankton had in de hele Westerschelde een extra zomerpiek, waarschijnlijk profiteerde het
van de toename van langzaamvergaand detritus als extra voedselbron. Het hyperbenthos reageerde
niet op de toename van gesuspendeerd materiaal.

De sedimentatie nham sterk toe, met name als de hoeveelheid toegevoegd gesuspendeerd
materiaal met factor 10 vermenigvuldigd werd. De detritus eters reageerden niet op de toename van
gesuspendeerd materiaal, in tegenstelling tot de suspensie eters die er sterk onder te lijden hadden.
De primaire produktie van het phytobenthos vertoonde in de benthische compartimenten 6 tot 13
een toename in de zomerpiek, deze werd waarschijnlijk veroorzaakt door de toegenomen sedimen-
tatie van organisch koolstof. Bij afbraak van organisch koolstof in de bodem komt kooldioxyde vrij
die beschikbaar i5 voor het phytobenthos.

3.1.4 de drle scenario’s gecombineerd

Voor de gecomhbineerde scenario’s werd voor de dispersie coéfficiénten de verhoging met factor 1,1
gekozen omdat de effecten hiervan het beste overeenkwamen met de door TSC voorspelde chioride
gehaiten,

Zoals eerder aangegeven was de in MOSES gehanteerde netto sedimentatie/erosie coéfficiént niet
ideaal, evenals de geformuleerde noodoplossing met een vaste bronerosie en een sedimentatie
coéfficiént. Het bleek onmogelijk deze coéfficiénten aan gegevens van de TSC of aan gegevens uit
andere bronnen te toetsen, Uiteindelijk werd voor een verhoging van 20% gekozen, aannemende
dat een nog grotere toename niet waarschijnlijk is.

Voor de hoeveelheid gesuspendeerd materiaal werd zowel de simulatie gekozen waarin gesuspen-
deerd materiaal werd toegevoegd zoals berekend was als de simulatie waarin de berekende
hoeveelheid toe te voegen gesuspendeerd materiaal met factor 10 verhoogd werd,

De resultaten van deze twee simulaties staan in bijlage 7 bij de samenvattende simulaties, lijn 5 en
liin 8. Een samenvatting van de resultaten staat in tabel 4.
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Tabel 4. Effecten verdieping
. ]
dispersie coefficient * 1,1
sedimentatie coéfficient * 1,2
verhoging suspmat zoals berekend en de berekening * 10
comp Zijn de pelagische compartimenten en bcomp zijn de benthische compartimenten

naam comp 1 comp 3 comp 13

gesusp. mat, - kleine t *10 "0

extinctie. - kleine t *10 t *10

Chloride kleine t 1 -

NH4 - - -

NITR - - |

10).4 kleine | i -

bact.prod. - kleine |} -

zoopl - - -

prim.prad.pl - - v *10

hyperbenthos kleine | - { In voorjaarfzomer

toc - kleine t kleine 1t
bcomp 13 bcomp 9

bdep i !

bsusp kleine | mn *10 |} *10

prim.prod.ben. iets | zomerpiek 1 zomerpiek

sedimentatie ) 1t

Zoals it de tabel en de grafieken af te lezen is, steeg het chloride gehalte in de oostelijke comparti-
menten licht, en gaf het zuurstof gehalte daar een kleine daling te zien. Het nitraat gehalte daalde
iets in de westelijke compartimenten.

De totale hoeveelheid organisch koolstof nam iets toe in compartiment 3 tot 13, De bacteriéle
produktie daalde iets in het troebelheidsmaximum, een verschuiving van het troebelheidsmaximum
werd niet waargenomen. Het hyperbenthos daalde zeer weinig in compartiment 1 en in het westen
nam de vootjaars/zomer piek af.

De detritus eters namen in het hele estuarium iets af. De suspensie eters namen met name in de
Westerschelde zelf behoorlijk af. De sedimentatie nam in alle compartimenten behoorlijk toe.

In het geval dat de toegevoegde hoeveelheid gesuspendeerd materiaal met 10 vermenigvuldigd
werd, nam de hoeveelheld gesuspendeerd matetiaal in de hele Westerschelde met ongeveer 30%
toe en in mindere mate in de Beneden Zeeschelde. Daardoor nam de extinctie ook toe en nam de
primaire produktie van het fytoplankton in de zomer af. Hierdoor werd een nog groter deel van het
Scheide estuarium netto consumerend dan nu al het geval is, Ook de sedimentatie nam nog sterker
toe en de suspensie eters namen erg sterk af in de Westerschelde maar ook in de Beneden
Zeeschelde was nu een daling te zien.

3.2 Het berelken van de Viaamse baslskwaliteit voor opperviakte water.

Eerst worden de effecten besproken van het apart aanpassen van het BOD gehalte, het stikstof
gehaite en het zuurstof gehaite in de boundary. Vervolgens wardt de combinatie van bovengenocem-
de simulaties besproken. De grafische weergave van deze simulaties is te vinden in bijlage 6,
Daarna wordt ingegaan op de effecten van het aanpassen van de vuilimporten in de compartimen-
ten één tot en met vijf.
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3.2.1 De effecten van het veranderen van de condities In de zoetwater grens

de aanpassing van het BOD gehalte in de zoetwater grens

Het BOD gehalte werd op een constante import van 6 mg zuurstof verbruik per liter ingesteld. De
bacteriéle produktie, suspensie eters, het hyperbenthos, zooplankton, snel en langzaam vergaand
detritus namen allemaal in meerdere of mindere mate af vooral in de eerste compartimenten. De
ammaonium en nitraat gehalten veranderden nauwelijks. Ook het phytobenthos liet een kleine
afname zien. De deposit feeders namen echter toe vanaf comp 9. Waarschijnlijk als gevolg van de
iets toegenomen hoeveelheid zuurstof in de pelagische compartimenten twee, drie en vier. Want het
voedse! (defritus en phytobenthos) namen alle iets af.

de aanpassing van het ammonium gehalte

Uiteraard ging ook het ammonium gehalte in compartiment 1 omlaag als gevolg van de verlaging
van de import (1 mg N/l via de zoetwatergrens. Deze verlaging was in compartiment 13 sterk
verminderd maar nog steeds zichtbaar. Ook het nitraat gehalte ging omlaag. Het zuurstof gehalte
nam iets toe. Het hyperbenthos en de detritus eters profiteerden van het toegenomen zuurstof
gehalte. De bacteriéle produktie ging iets omlaag; het zostwater phytoplankton veranderde niet. De
primaire produktie van het phytobenthos en de suspensie eters namen niet noemenswaardig at.

da aanpassing van het ammonium en het nitraat gehalte

Door de vergrote import van nitraat (10mg N/} in de zoetwatergrens nam het nitraat gehalte in
compartiment één behoorlijk toe. Ock in compartiment dertien werd een verhoging van het nitraat
gehalte van 10 tot 25% geconstateerd. Verder was de bacteriéle produktie toegenomen. De overige
variabelen reageerden net als onder de verlaging van ammonium, zonder toename van nitraat.

de aanpassing van het zuurstofgehalte

Door de hoeveelheid zuurstof te verhogen naar Smg zuurstof per liter in de zoetwater grens, ging de
hoeveelheid nitraat omhoog evenals het hyperbenthos, de detritus eters en de bacteriéle produktie.
De hoeveelheid ammonium daalt. En er trad een niet noemenswaardige daling op van de suspensie
eters, het totaal organisch koolstof, de primaire produktie, snel en langzaam vergaand detritus en de
sedimentatie van detritus in het sub- in intertidaal.

de combinatie van bovenstaande simulaties
Een samenvatting van de resultaten is te vinden in tabel 5.

Tabel §. Effecten van het bereiken van de basiskwaliteit voor opperviakte water in Vlaanderen
L "
comp zijn de pelagische compartimenten en bcomp zijn de henthische compartimenten

naam comp 1 comp 3 comp 13
NH4 | = factor 10 y = factor 3 | in pieken + factor 1,3
NITR +4 « factor 445 t « factor 2a3 % in pleken = factor 1,25
OX t4 = factor 244 + = factor 2 -
bact.pred. 4 2 factor 1,25 Zeer wisselend -
zoopl t in voorjaar/zomer { voorjaar zomer -
prim.prod.pl  geen verschil - -
hyperbenthos { mn. in zomerdalen  {mn in zomer { in voorjaar
bcomp 13 bcomp 9
bdep t = factor 4 -
bsusp iets lager iets lager

prim.prod.ben, fets | zomerpiek -
e A S

Zoals in de tabel te zien is daalde de hoeveelheid ammonium over het hele estuarium, maar werd
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dit gecompenseerd door een toename in de hoeveelheid nitraat, Ook de hoeveelheid zuurstof nam
behoorlijk toe.

Van de zuurstof toename profiteerden alle diergroepen in de Beneden Zeeschelde, met uitzonde-
ring van de suspensie eters. Door het instellen van een "no-flux" grens voor het zodplankton was er
een spectaculaire stijging waarneembaar door het zuurstofrijker (dus "levend") worden van de rivier.
Ook de bagcteriéle produktie nam iets toe in compartiment één als gevolg van een hoger nitraat en
zuurstof gehalte, ondanks een afmame in het organisch koolstof gehalte.

De primaire produktie ondervond nauwelijks of geen hinder van de transformatie van ammanium
naar nitraat. Het phytobenthos had waarschijnlijk last van een iets hogere bioturbatie en een kleine
afhame van sedimenterend koolstof.

3.2.2 De effecten van de aanpassing van de 'waste’ importen

Door ook het geimporteerde BOD, ammonium en nitraat gehalte via de landsgrenzen van comparti-
ment één tot en met vijf aan te passen werd de boven beschreven trend nog lets versterkt. De
resuitaten staan in bijlage 7, lijn 2.

3.3 Verdieping en bereiken van de basiskwaliteit voor opperviakte water gecombineerd.

De grafische weergave is te vinden in bijlage 7, lijn 3 en 4. Een samenvatting van de resultaten is te
vinden in tabel 6.

Tabel 6. Effecten verdieping en bereiken basiskwaliteit
L] ]
dispersie coefficient * 1,1
sedimentatie coéfficient * 1,2
verhoging suspmat zoals berekend en de berekening * 10
bereiken basiskwaliteit, inclusief no-flux boundary veor zodplankton
comp zijn de pelagische compartimenten en becomp zijn de benthische compartimenten

naam comp 1 comp 3 comp 13
gesusp. mat. - kleine 1+ *10 T *10
extinctie - kleine t *10 t *10
Chloride kleine % t -
NH4 +4 = factor 5 4 + factor 3 | in pieken = factor 1,3
NITR t4 = factor 445 + = factor 243 t in pieken = factor 1,2
10) 4 11 = factor 224 t & factor 2 -
bact.prod, t % factor 0-2,5 Jzomer twinter -
zoopl 1 4in voorjaarfzomer t voorjaar zomer -
prim.prod.p - - ¢ *10
hyperbenthos t factor 1,3 t mn winterivoorj, } in voorjaar
toc | factor 2 | factor 1.5 klein ¢
bcomp 13 bcomp 9
bdep t + factor 4 -
bsusp | *10 J1 *10
prim.prod.ben, - t zomerpiek
sedimentatie 1 11 (uitg. snel vergaand detritus)

Wanneer tabel 6 vergeleken werd met de tabelien 4 en &, dan bleek dat de verdieping vooral
invioed heeft op de parameters: hoeveelheid gesuspendeerd materiaal, extinctie, chloride gehalte en
sedimentatie van materiaal. De zuiverings operatie in Belgié heeft vooral inviced op chemische
parameters ajs het ammonium, nitraat en zuurstof gehaite. De totale hoeveelheid koolstof wordt
verminderd door de zuiveringsoperatie in Vlaanderen en Brussel maar vermeerderd door de bagger
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activiteiten. Vandaar dat in de Beneden Zeescheide de hoeveelheid organisch koolstof daal, terwijl
in het oostelijk deel van de Westerschelde nauwelijks verandering optreedt en in het westelijk deel
van de Westerschelde uist een kieine stijging te zien is,

De primaire produktie van het phytoplankton wordt vooral beinviced door het verhogen van de
extinctie. De dierlijke organismen profiteren vooral van de toename van het zuurstof gehalte in de
oostelijke compartimenten. Ondanks de toename van de verschillende dierlijke organismen en de
afname van organisch koolstof is de aanwezige hoeveelheid organische koolstof nog altijd enige
malen groter dan de hoeveelheid phytoplankton. Daarom heeft het phytoplankton nauwelijks last van
extra graasdruk door een hogere activiteit van de grazers en een afname van andere voedselbron-
nen, Alleen de suspensie eters worden negatief beinvioed door de toename in gesuspendeerd
materiaal, dit doet eventuele andere positieve effecten geheel teniet.
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4 CONCLUSIES EN AANBEVELINGEN

4.1 De verdieping

De verdieping heeft volgens het model slechts een beperkte invioed op het ecosysteem. Alleen
wanneer de hoeveelheid gesuspendeerd materiaal sterk stijgt zal de primaire produktie in de zomer
afnemen. Daardoor zal een nog groter deel van het Schelde estuarium netto consumerend in plaats
van netto producerend worden. Het zodplankton, hyperbenthos en de suspensie eters zullen in dat
geval nog meer voedsel uit de detritus/bacterie keten betrekken. Met name de suspensie eters
zullen waarschijnlijic last te hebben van grote hoeveelheden gesuspendeerd materiaal.

4.2 Het berelken van de basiskwaliteit

Het bereiken van de basiskwaliteit heeft geen vermindering van de sikstofvract naar de zee tot
gevolg (er is zelfs een kleine toename!). In het estuarium zal ammonium door nitraat vervangen
worden. De fauna in het eerste compartiment stijgt spectaculair doordat de rivier weer levend wordt
als gevolg van de verhoging van de hoeveeilheid zuurstof

Met name wat betreft de hoeveelheid organisch kooistof werken de effecten van de verdieping en
de afvalwaterzuivering tegengesteld en kunnen 2e elkaar opheffen; volgens MOSES gebeurt dit
vooral in het oostelijk deel van de Westerschelde.

4.3 Aanbevelingen voor verder onderzoek

Het macrozoobenthos en met name de suspensie eters reageren erg gevoelig op veranderingen in
het model, Hercalibratie op een recente en vooral uitgebreidere dataset lijkt erg zinvol. Wellicht moet

het macrozoohenthos gedesltelijk geherformuleerd worden.

Ook het gedrag van gesuspendeerd materiaal moet nader bestudeerd worden, misschien zakt het te
snel uit en moet de sedimentatieferosie coéfficiént anders aangepast worden.
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BIJLAGE 1.

Residentie tijd van chloride in verschillende compartimenten in dagen.
Voor de referentie en voor een proportionele verhoging van de dispersie coéfficien-
ten met 1,1. Er wordt uitgegaan van een vaste advectieve stroming van 100 m%s

Compartiment Referentie *1,1

1 65 61
2 83 59
3 58 54
4 55 52
5 54 50
6 50 48
7 47 43
8 41 38
9 38 35
10 33 30
1" 29 26
12 19 18
13 12 11



BIJLAGE 2.
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Lijst met afkortingen van de afgebeelde variabelen.

Bij iedere grafiek staat XXX(Y) waarbij XXX de gebruikte afkorting voor variabele X is en Y het
compartimentsnummer {van het pelagisch of bentisch compartiment).

Pelagische subtidale variabelen.

CL g/m®
SUSPMAT g/m®
EXTINC M-1
FDET G C/M°
SDET G c/m®
TOC g C/m®
BODS g O/m*
DETSI G SiM®
SOLS! G SI/M°
NITR G NM?
NH4 G N/M®
(0)'¢ G O/M*
FRDIA G C/m®
BRDIA G C/M?

FRALG G C/M®
BRALG G Ccme
CHLCR g chi/m®
TOTPHY g C/m®
Z00 g C/m*®
DRYBRAK g DW/m?
DRYMAR g DW/m?

HYP g C/m®
DRYHYP
FSEDSUB ¢ C/m?
SSEDSUB g C/m?
SUSPSEDS g/day

Benthische variabelen

BSUSP g C/m?
ADWBSUSP g ADW/m?®
BDEP g C/m®
ADWBDEP ¢ ADW/m®
DIAB g C/m?
PPRODBEN g C/m®
BCHL mg chi/m?
FSEDINT g C/m?
SSEDINT g C/m®
SUSPSEDI g/day

mg ADW/1000 m?

CHLORIDE

suspended matter

EXTINCTION COEFFICIENT

FAST DECAYING DETRITUS
SLOWLY DECAYING DETRITUS
Total organic carbon

BOD 5 values

DETRITAL SILICON

DISSOLVED SILICON

NITRITE + NITRATE

AMMONIAK

OXYGEN CONCENTRATION
FRESHWATER DIATOMS

BRACKISH WATER DIATOMS
FRESHWATER NON-DIATOM ALGAE
BRACKISH WATER NON-DIATOM ALGAE
Chlorophyll load of water

Total phytoplankton

Mesazooplankton (Marine+brackish)
dry weightdry weight of brackish mesozooplankton
dry weight of marine mesozooplankton

Hyperbenthos {mainly Mysids)

ash free dry weight hyperbenthos

sedimentation of fast decay matter in subtidal
saedimentation of slow dacay matter on subtidal
suspended load that sediments on subtidal comp |

benthic suspension feeders

ash free dry weight suspension feeders

Benthic deposit feeders

ash free dry weight deposit feeders

benthic diatoms

netto primary production of phytobenthos
benthic chlorophyll a

sedimentation of fast decay matter on intertidal
sedimentation of slow decay matter on intertidal
suspended load that sediments on intertidal |
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BIJLAGE 3.

Grafische weergave van effecten veroorzaakt door de proportionele
verandering van de dispersie coéfficienten Qdisp, voor opgeloste
stoffen, en Qpart, voor stoffen met particulair gedrag.

grafiek 1.
grafiek 2:
grafiek 3:
grafiek 4.
grafiek 5:

referentie jaren 1982/83

simulatie van de proportionele verhoging met factor 1,1
simulatie van de proportionele verhoging met factor 2
simulatie van de proportionele verhoging met factor 5
simulatie van de proportionele verhoging met factor 10
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BIJLAGE 4.

Grafische weergave van effecten veroorzaakt door de proportionele

verandering van de sedimentatie/erosie coéfficient.

grafiek 1:
grafiek 2;
grafiek 3:
grafiek 4.
grafiek 5:

referentie jaren 1982/83

simulatie van de proportionele verhoging met factor 0,9
simulatie van de proportionele verhoging met factor 1,1
simulatie van de proportionele verhoging met factor 1,2
simulatie van de proportionele verhoging met factor 2,0
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BIJLAGE 5.

Grafische weergave van effecten veroorzaakt door de toename van
gesuspendeerd materiaal ten opzichte van de referentie jaren
1982/83,

grafiek 1: referentie jaren 1982/83

grafiek 2: vrijkomend gesuspendeerd materiaal en langzaam vergaand detritus
toegevoegd als een extra wasteload

grafiek 3: de invioed van gesuspendeerd materiaal met factor 1,3 (30%) verhoogd.
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BIJLAGE 6.

Grafische weergave van effecten veroorzaakt door het bereiken van
de basiskwaliteit voor opperviakte water aan de zoetwatergrens van
het model ten opzichte van de referentie jaren 1982/83.

grafiek 1:
grafiek 2:
grafiek 3:
grafiek 4.
grafiek 5:
grafiek 6:

referentie jaren 1982/83

de aanpassing van het BOD gehalte

de aanpassing van ammonium

de aanpassing van ammonium en nitraat

de aanpassing van het zuurstofgehaite

de aanpassing van het BOD gehalte, ammonium, nitraat en het zuur-
stofgehalte
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effect v. V1. basiskw in freshw bound. (5/1/94)
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BIJLAGE 7.

Samenvattend overzicht verdieping en het bereiken van de basiskwa-

liteit,

grafiek 1:
grafiek 2.

grafiek 3:
grafiek 4:

grafiek 5:
grafiek 6:

referentie jaren 1982/83

simulatie van het bereiken van de basiskwaliteit oppervlakte water
(inclusief gesimuleerde zuivering van de “wasteloads")

simulatie van het bereiken van de basiskwaliteit opperviakte water en de
verdieping

simulatie van het bereiken van de basiskwaliteit opperviakte water en de
verdieping waarbij de hoeveelheid extra toegevoegd gesuspendeerd
materiaal met factor 10 verhoogd is.

simulatie van de verdieping

simulatie van de verdieping waarbij de hoeveelheid extra toegevoegd
gesuspendeerd materiaal met factor 10 verhoogd is.
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7 MOSES - transport

7.1 Summary

The exchange of dissolved substances among compartments and over the
boundarjes is modeled by means of a tide-averaged, constant volume,
advective~diffusive finite difference equation (Thomann & Mueller, 1987)
using backward differences. Input to the transport model are {advective)
freshwater flows across the compartment interfaces and across the bounda-
ries, volumes of the compartments and boundary conditions for the dissolved
state variables. Constant dispersive coefficients were obtained by
calibration on a conservative substance (chlorinity). An implicit solution
of the finite difference equation proved to be substantially faster during
the calibration procedure. 1Its representation and the way to solve it are
reported.

Particulate advective transport occurs partly by means of the freshwater
flow, partly independent from this flow. This allows for the creation of a
turbidity maximum which can shift downstream with higher freshwater flow.
As the observations on the load of suspended matter showed too much scatter
to be useful in an ecosystem model, a non-linear fit based on freshwater
flow and distance along the estuary was used to smooth this data set. The
particulate advective coefficients were then calibrated on this smoothed
data set. Too many unknowns result in a particulate transport model with a
high degree of uncertainty although the fit of simulated and ‘observed’
suspended matter is encouraging. Also the net transport values of fluvia-

tile and marine mud and total net sedimentation agrees with real-world
observations.

Resuspension and sedimentation of particulate substances are modeled as a
fixed part of total (pelagic) load that sediments to the bottom. only
suspended matter is allowed to be resuspended.

The residence times for a particle in the most upstream compartments was
calculated with the transport model. It is in the order of 50 to 70 days

for a dissolved substance and 70 to 80 days for a non-sedimenting particu-
late substance.

7.2 Introduction

Estuaries connect land to sea and a substantial amount of several
solutes are transported with the freshwater flow. Within the estuary these
chemical species undergo profound changes by various chemical and biologi-
cal processes. Thus the residence time of substances in the estuary not
only affects their rate of transfer to the adjacent coastal zone but also
determines their chemical and biological characteristics (Wollast, 1983)
and consequently the health of the estuary.

Whereas the net flow of dissolved material is function of the freshwater
discharge in the estuary, particulate matter transport can be entirely
independent and even opposite to this seaward transport (Dyer, 1988). 1In
well mixed estuaries as the Westerschelde, the circulation pattern induces
the occurrence of a turbidity maximum which corresponds to the zone of
accumulation of sediments. This particulate matter in the water column is
an important factor for the ecosystem as it determines the penetration of
light in the water column and hence the magnitude of primary production.
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Part of the particulate organic matter will be trapped into the estuarine
sediments and will either enter the estuarine benthic food chain or be
burried.

Pelagic organisms have a transport behavior somewhat intermediate to the
solutes and the particulates and the degree of flushing to the sea will
depend on this behavior. As many estuarine organisms have life cycles with
time scales that are comparable to the rate at which they are flushed away,
the importance of correctly describing transport processes is obvious., "“Yet
many ecological models use only dissolved transport to model exhanges of
erganisms across the modeled regions (Ruardij & Baretta, 1988; Radford,
1978; Kremer & Nixon, 1978).

MOSES - transport -23.

7.3 MOSES transport of dissolved substances

A dissolved substance in estuaries is transported seawards by means of the
freshwater flow of the main stream and its tributaries (advective flow},
while tidal forces induce short-term oscillatory movements, resulting in a
strong mixing (Thomann & Mueller, 1987).

7.3.1 The dissclved transport equation

Mathematical models that follow the time and space distribution of a
substance within a tidal cycle are complex, they need detailed informaticn
over one tidal cycle for calibration and require a long time for computer
simulation. However, in ecclogical models with a time scale of years one
is not interested in variations within a tidal cycle and the model equati-
ons can thus be simplified by considering the time scale to be composed of
tidal cycle units (Thomann & Mueller, 1987). This is achieved by trans-
posing the transport equation to a new reference frame, which oscillates
with the tide so as to maintain a constant volume upstream. Further tidal
oscillations are then removed by applying a time averaging operator
{O’Kane, 1980), As such the complex partial differential equation descri-
bing mass transport within a tidal cycle is brought back to the much
simpler differential equation which desecribes the concentration (s) of a
substance as a functicn of time (t) and space (x):

ds __ 1 1

18 3s (1)
rh ‘j-aT‘(QS)*‘—- (EATJE)

9
Adx
{(Thomann & Mueller, 1987), where E is the dispersion coefficient (m’.sec™),
Q the net advective flow (m’.sec™') and A the cross sectional area (m).

Such differential equations can only in very general cases be solved
analytically and one usually has to resort to approximate equations, which
are solved numerically by computer. In practice one uses a ‘finite
difference’ approximation of the equation. The estuary is divided inteo a
series of segments which are supposed te be homegeneous and the average
concentration of the substance in each segment is medeled.

ds,
V:( -———dt = Q}*l,.t (0'-1..1’1 Sy * (1"“1_1.1 } 5y V- Ql,.hl (ui,.ﬁl Sy * (1-&1’1’1 ) Slﬂ. ) *

Ef go1 { Sguy = 8¢ ) ~ Bl 0 {85 = 54,4 ) (2)

(Thomann & Mueller, 1987} with E{ ., = Ey;n * A, ;n/ A%, .., the bulk
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dispersion coefficient (m'.sec™') and @,,.,, the advective flow (m'.sec"!}
between compartments i and i+l.

A; ;. is the flow interface between compartments, Ax,,, the dispersion
length, i.e. the length from the middle of compartment i to i+l.

The coefficients a are a weighing factor for estimating the concentration
at the interfaces of segments. More specifically o indicates the importan-
ce of the upstream compartment and the more advective a system, the larger
the value of a should be (Thomann & Mueller, 1987). Freguently o is set to
1 (backward differencing scheme, e.g. Miller & Mc Pherson, 1991) or teo .§
{(centered differencing scheme, e.g. Helder & Ruardiij, 1982; Klepper, 1989).

Approximating differential equations by difference equations introduces
errors, and there are a number of criteria crucial to the ability of the
numerical model to simulate transport processes correctly. Thus there
exists the problem of computational instability, which implies an explosive
growth of small errors, inevitably present in the numerical computations.
Secondly, some concentrations may become negative. Thirdly, in addition to
the true dispersion, an undesired ‘dispersion® can be introduced (numerical
dispersion) as, due to the crude spatial resolution, material is shunted
too rapidly from one part of the estuary to the other. These errors put
some restrictions on the possible values of the time and spatial step and
of the weighing factor «. For backward differencing schemes, positive
concentrations are always ensured, but they introduce the maximal numerical
dispersion. Central differences have no numerical dispersion linked to
spatial differencing, but here limits are imposed on segment size to assure
positivity (Thomann & Mueller, 1987).

7.3.2 Implementation into MOSES

The transport of dissolved substances in MOSES was modeled by means of the
finite difference equation {(2), using the pelagic schematisation (FIGURE 1)
as our computational grid. Input to the model are concentrations at the
boundaries, advective flows across the interfaces and volumes of the MOSEZ
compartments. Unknowns in the equation are the bulk dispersion coeffi-
cients (E‘'} and the best values of a. They were calibrated on chlorinity
data of 1982-1985, using the automatic calibration routine of SENECA. As
the use of central differences in the three most upstream compartments
introduced negative concentrations, their o's were set to 1 and were not
included in the calibration. The best goodness of fit was obtained using
overall backward differences (all oa’'s set to 1). The bhest dispersive
coefficients and flows are represented in addendum (2}, goodness of fit in
FIGURE 8.

The dispersion coefficients E may be compared among estuaries (Uncles &
Radford, 1980). vValues obained from the Westerschelde fall well within
ranges reported from the James river (E=24), the Mersey (161-360), Sout-
hampton water (158), the Tay (5-300), the Thames (53-338 ml.sec™') (Dyer,
1974 and references) and the Ems (0-450 m’.sec!) (Helder & Ruardij, 1982).
They are lower than dispersion coefficients in the Severn (160-1620)
(Uncles & Radford, 1980) and the Columbia river (5000 m?, sec!} (Dyer,
1974).

Maximal numerical dispersion introduced due to backward spatial differen-
cing can be calculated as:

B, QZAAX Thomann & Mueller (1987)

With Q@ varying from about 50 to 250 m'.sec™!, this gives for the four most
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Figure 8. Goodness of fit of the dissolved transport in MOSES

upstream compartments a numerical dispersion which fluctuates from 50 to
200, i.e. up to an order of magnitude larger than the ‘true’ dispersion
(addendum 2). For the more downstream compartments, numerical dispersion
becomes a small part of true dispersion. According to Thomann & Mueller
(1987) almost purely advective systems can have a reasonable accuracy
(error less than 5 %) with E,,. being 10 times larger than true dispersion.
As this is near to the ratio observed in our (mainly advective) upstream
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compartments, numerical dispersion due to spatial differencing is conside-
red tolerable in the model. Further reflections on the small numerical
dispersion of the model are given in Soetaert & Herman (submitted).

In order to maintain numerical stability for explicit time differencing, it
is required that the time step selected is less than the residence time in
any segment. In the modelling environement SENECA, the (explicit) Euler
integration foutine is implemented with variable time step which ensures
that numerical errors remain within bounds, but as a result the simulation
may be retarded. As during calibration, the model became inbearably slow,
it was decided to implement an implicit transport submodel instead of the
explicit one above, while keeping other processes explicit (and fast).
Explicit methods use only information at the previous time step to calcu-
late the concentrations at the next time step. Fully implicit schemes use
only information at the new time. They are soclved as a system of equati-
ons. Rationale and formulation of the implemented implicit scheme can be
found in section 7.8, page 34. After having found the best solution for
the dispersion coefficients, the explicit transport model was again
computationally stable and was used further on in the ecological model.

The good fit of simulated chlorinities to the data set (FIGURE 8) give
confidence that the transport model of dissolved substances as included in
MOSES provides an adequate description of the exchange of these substances
across compartment boundaries. Notwithstanding the crude spatial detail
numerical dispersion remains within bounds, (except perhaps at the most
upstream compartments), positivity is always ensured (backward differences)
and the system is stable enough to allow for a relatively large time step.

7.4 MOSES transport of particulate matter

Particulate matter transpert can be entirely independent and even
opposite to dissolved seaward transport. Reasons are the asymmetry in
tidal velocities during the eb and flood phase which results in more
erosion during flood, the fact that resuspension of particles requires
higher velocities than sedimentation and, in partially mixed estuaries, the

existence of a landward current near the bottom (Postma, 1967; Dronkers,
1986; Dyer, 1988).

Although depth-integrated, one-dimensicnal models are barely fit to
simulate mud transport in estuaries (odd, 1988), it is beyond the scope of
MOSES to implement a multi-dimensional transport model and the equations
used have to be simple and fast as for dissolved substances,

7.4.1 The equation for horizontal particulate transport

In contrast with dissolved matter transport, particles are horizontally
moved in the model by means of an ‘apparent advective flow’, which consists
partly of a freshwater advective term @,, and an independent particulate
term Q... The magnitude of this ‘fraction of freshwater flow’ was arbi-
trarily set to .5.

nge = Apeze - Cut) 3)

with Q.. the net apparent advective flow of suspended sediment (m*.s"'}), Opare
= apparent or ‘particulate‘ flow (m’.s™') and Q,, the advective freshwater
flow (m'.a"!).

Apart from the residual advective transport, a degree of mixing similar to
dispersion of dissolved substances occurs, which can be described with the
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same dispersion coefficients (E‘) as determined for dissolved substances
(Klepper, 1989).

If the particulate flows (Q,,.) are negative and larger than the freshwater
flow at the seaward side of the estuary, marine suspended matter is allowed
to move upstream, against the existing concentration gradient. Positive
particulate flows at the freshwater side bring in fluviatile sediment.
Both opposite particulate flows allow for the creation of a turbidity
maximum. The dependence of the net advective flow on the freshwater flow
then allows this turbidity maximum to move upstream or downstream with
fluctuating freshwater discharge.

The main interest in modeling the transport of particulate substances is to
obtain a transport equation for phytoplankton, zooplankton and detritus.
The phytoplankton and detritus are influenced by sedimentation and
resuspension and as such will behave to some extent as particulates. In
the partly mixed area of the estuary phytoplankton, zooplankton and
detritus have a vertical distribution somewhat inbetween those of dissolved
and particulate matter. Thus it is assumed that their transport behavior
is also inbetween both (Klepper, 1989).

The substances are attributed a parameter indicating their ‘dissolved like
behavior’ (pSUBSTds) and their net advective flow Q. can then be
calculated as

Q% Qnae ™ .Qaa_c_é‘_.?_e_v { 1 - pSUBSTds ) + Q,4 PSUBSTdS (3)

Remark that pSUBSTds of sediment is 0, which leads to Q,. as defined in
formula (3).

Total transport of particulate matter is then approximated by the backward
difference equation

de
i “&Ti = Qqoy,g Cpog = Qi ge1 €t * Bi,gn (Cpaq=Cy ) = Efy g {€47Cpey ) (4)

with Q the net advective flow (Q,.) as defined above and E‘ the dispersive
flows as cbtained for dissolved matter transport.

7.4.2 Vertical movement

Apart from horizontal redistribution, an important exchange of particulates
across the bottom-water interface takes place (resuspension and sedimenta-
tion) while intense dredging and dumping activity in the brackish part of
the estuary causes large shifts in sediments {Belmans, 1988).

As there were no data available that give the deposition rate on each
intertidal surface, it was assumed that sedimentation on the intertidal
occurs with a constant rate, regardless of the location. This deposition
of sediments is expressed as a fraction of total load in the water column
that sediments on the intertidal surface per day (pSEDintt, in (g.m?).(g.m"
3t dayty.

In the subtidal area, either a net sedimentation or a net resuspension
occurs, depending on the compartment. This process is expressed in the
same way as intertidal exchange, but now each MOSES compartment has its own
deposition/resuspension rate (pSEDsubt(#))

Thus the change of suspended load (C) with time ls represented as:

dc
dc

dC - pSEpintt * C * sSurf/vol
dC - pSEDsubt(I} ¢ C * Surf/vol

Hu
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Suspended matter from Jeep 82 database

Figqure 9, Suspaended matter versus salinity with the running average (solid line).
Data from the JEEP data base {de Winter, 1992).

where *sSurf’' indicates the surface of the intertidal resp., subtidal area,
‘Vol’ the volume of the compartment.

Not only the mud particles are apt to resuspension-sedimentation, a
considerable sedimentation of phytoplankton and detritus occurs, It is
assumed as in Klepper (1989) that the rate of exchange is some fraction of
suspended matter exchange, which is governed by the 'part with dissolved-
like behavior’ (pSUBSTds) as defined in formula 27. Thus the exchange rate
of a substance in the subtidal is defined as:

SUBSTrate = (l-pSUBSTds} * pSEDsubt(I)
In the intertidal area, benthic organisms will quickly consume part of the
carbon that sediments at slack tide. This will result in a higher net
sedimentation rate (coefficient cSEDenh). The sedimentation rate of an
organic substance on the intertidal flats is then:

SUBSTrate = (l-pSUBSTds) * pSEDintt * cSEDenh

The change in time of SUBST then becomes:

dSUBST = dSUBST - SUBSTrate * SUBST * surf / Vol

Sedimenting detritus and flagellates join the bottom carbon and die




87

MOSES - transport -2

{stoichiometry is assured with ammonium 1), while sedimenting diatoms join
the phytobenthos pool. As some subtidal bottoms are continuous sources of

Suspended matter
g/m3

100 ///" ]
80 B
Winter
o |
Summer
o
w0 |-
o 1 i | A | 1 o | j) 1 1
) 10 20 2 46 50 0 70 %0 %0

km downstream

Fiqure 10. obtained regression of suspended matter versus distance for a typical summer
and winter situation,

matter, it is assumed that they do not contain detritus nor flagellates.
Hence only resuspension of mud is allowed to take place there.

7.4.3 Implementation into MOSES

Unknowns in the particulate transport equations are the particulate flows
Qpure and the sedimentation rates pSEDintt and pSEDsubt.

In contrast to dissclved transport, adequate data for calibration of
particulate exchange are not available and figures from the literature are
sometimes conflicting. For instance in SAWES (1991} the net transport of
marine particulates in the estuary is reported to be about 1.4 times as
important as the fluviatile import, while Van Maldegem et al. (in press)
find fluviatile import to be about three times the value of total marine
import. Due to this high degree of uncertainty, it was decided to estimate
the best values of the apparent particulate flows Qpe by calibration on
suspended matter content alone. An a posteriori check on the net import
values then provides an independent check on the obtained model.

For the purpose of this calibration, suspended matter is considered to be
equivalent to mud (as in e.g. van Alphen, 1990}. Strictly speaking, this
is not correct as suspended matter will comprise particles larger than 63
m, Moreover, organic matter also contributes to mud, but in the
Westerschelde suspended matter contains usually less than 10 % organic
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Figqure 11. cGoodness of fit of the particulate transport in MOSES,

particles.

Sedimentation rates were estimated as follows. The subtidal area belonging
to those compartments that act as a sink of particulates were attributed a
small deposition rate (.05). The subtidal in compartments that are sources
of sediments were attributed a resuspension rate such that total amount of
exchange was in the range as reported by Van Maldeghem et al. {(in press).
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Fiqure 12, Mean residence tima for dissolved and particulate substances in a_winter
and summer situation.

The constant intertidal sedimentation rate was then calculated such as to
obtain a net sedimentation in the entire estuary of about .9 10° gram. day™
(Van Maldeghem et al., in press). This can be achieved with a net sedimen-
tation rate of .3 (g.m?. (g.m?)'.day'y in the intertidal area,. For a
suspended load varying between 20 (flushing)} and 100 g.m? (turbidity
maximum) this corresponds with a sedimentation of 6 to 30 gram silt.m’.day”
', which falls within reported ranges.

Tide-induced variation in current speeds produce a high degree of scatter
into the data set of suspended matter (FIGURE 9). Moreover, the amount of
observed data and their temporal spacing was not sufficient to enable a
reasonable calibration. For the ecosystem model (which models average days
rather than tidal cycles), it seemed desirable to remove this tide-induced
variation and to obtain an adequate representation of daily mean suspended
load with as few parameters as possible. on the average, the suspended
load increased from the freshwater boundary towards compartment 2 and then
declined steadily towards the sea. Also a seasonal trend was apparent,
with turbidity being higher under high advective flow conditions. Thus, if
X represents the distance of compartment I to the upstream boundary and
FLOW the freshwater discharge, the 'best’ regression obtained was

SUSP(I) = 300*ln(x) - 15.92%(ln{x)}? + 0.0l16*FLOW*1ln(x) - 0.062*FLOW -1332.
(FIGURE 10).

This allows for a turbidity maximum which moves slightly downstream with
increasing freshwater flow.

The transport model was calibrated against these calculated values of
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Figure 13, Benthic-pelagic coupling., In grey is a pelagic compartment which moves
over a benthic compartment (black).

suspended matter rather than to the real observed data. Suspended matter
in the model was allowed te change due to import across the boundaries
{sea, freshwater), and net sedimentation and was transported according to
formula (4). The range of the particulate flows was set positive for the
most upstream compartments (importing fluviatile sediment), negative for
the most downstream compartments (importing marine sediments).

values of the particulate flux thus obtained are in addendum (3) and the
produced GOF in FIGURE ll. Remark that a time lag of modeled concentration
versus ‘ohserved’ concentration is apparent and increases towards the
central compartments.

In addendum 4 the yearly net import of marine and fluviatile mud and the
total yearly sedimentation obtained with this submodel are compared with
values reported by SAWES (1991) and Van Maldeghem et al. (in press}. There
was a reasonable agreement with values cited by Van Maldeghem et al. (in
press), although the marine mud in MOSES penetrates slightly less deep into
the estuary, while the import of freshwater mud is somewhat overestimated
both in magnitude and penetration downstream. Net import values of marine
sediment reported by SAWES (1991) are probably toe high: an initial
calibration using these values as observed data resulted in particulate
flows (Qp.:) that were far too large to be realistic.

Yearly net sedimentation is also close to literature values (Addendum 4).
Net resuspension of particulate matter occurs in MOSES compartments 4, 8
and 12, while sedimentation is most pronounced in compartments 6,7,10,11
and 13.

7.5 Calculation of characteristic time scales

The residence time for both a dissolved substance and a particulate non-
sedimenting substance, for the variocus compartments was calculated (FIGURE
12). Residence time of compartment I is herein defined as the average time
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a water mass in the middle of the compartment needs to leave the estuary,
It can be calculated by setting the initial concentration of this compart-
ment to 1, while having the other compartments empty and following the
decline of total concentration through time (see Soetaert & Herman,
submitted). This was done for both a summer and a winter situation,

The residence time for dissolved substances in the upper estuary is about
50 days during high flushing conditions (winter) and about 70 days under
low freshwater discharge (summer}. This seasonal difference is especially
pronounced in the most upstream (and most advective) compartments and
declines toward the sea. Particulates in the wupper estuary have a
residence time that is somewhat higher, i.e. about 70 days in winter, 80
days in summer.

7.6 Benthic~pelagic coupling

Describing transport in a constant volume reference frame instead of a
fixed frame has some important advantages for pelagic variables: as the
frame moves along with the watercolumn, temporal oscillations due to the
tides are circumvented. However, problems arise when describing the
benthos: oddly enough the bottom now moves with respect to the reference
frame with a periodicity of the tides. Thus a bottom compartment interacts
with different pelagic compartments during the course of one tidal cycle
(FIGURE 13). In the coupling of benthic and pelagic processes in MOSES
this was taken into account.

For each intertidal bottom compartment the fraction of time that each
pelagic compartment resides above this bottom will be calculated with a 2D
hydrodynamical model of the Schelde estuary (Portela et al., 1992). We
assume that the degree of interaction of this bottom with the wvarious
pelagic compartments is proportionate to this residence time. Bentho-
pelagic coupling is then implemented as an array with dimensions (benthic
compartments) * (pelagic compartments) representing the relative interacti-
on of each bottom compartment with each pelagic compartment (FIGURE 13}.

The subtidal compartmentalization is conform to the pelagic compartments.
Here the pelagic-benthic coupling was done more directly by assuming that
during each tidal cycle the more upstream and downstream compartment reside
for 25 % above the subtidal compartment, while the corresponding pelagic
compartment resides for about 50 % above each subtidal compartment. Thus
it is assumed that a pelagic compartment moves in one tidal cycle for a
distance of about its length.

7.7 bDiscussion

As in the models of the Ems-bDollard (Helder & Ruardij, 1982), the
Cumberland Basin {Gordon et al., 1986), the Severn estuary (Radford, 1978)
and the Oosterschelde (Klepper, 1989), transport of dissolved substances in
the Westerschelde model is driven by the freshwater discharge (advective
term) and mixing (dispersive term}. As tidal currents in the Westerschelde
are quite high with respect to the freshwater flow, tidally-driven disper-
sion will be the main component of the mixing term. Thus mixing is likely
to change with tidal range through the Spring/Neap cycle (Radford, 1978},
or with magnitude and direction of wind speed {Zimmerman, 1976).

Yet the use of a fixed dispersion coefficient in the Westerschelde provided
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a close fit between modeled and observed salinities suggesting that tidal
range and wind are not that important (see also Soetaert & Herman,
submitted). This gives confidence in using this model as a basis for
representing inter-regional transfers of solutes.
In contrast with most ecosystem models, an attempt has been made to allow
for organisms to behave more or less as particulate matter and thus
increasing their residence time in the estuary. A strategy as described in
‘“Klepper (1989} was adopted and modified. at first sight the agreement
between simulated and ‘observed’ suspended data is encouraging. However,
during the calibration exercise we obtained an equally satisfying fit with
sedimentation rates that were far toc low to be realistic and a turbidity
maximum can also easily be modeled without extracting particulate matter
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from the sea. Nevertheless, as the net import of sediment from both the
sea and the freshwater =zone are reasonably well modeled and the net
sedimentation in the model reproduces real-world observations it was
decided that this crude representation of particulate transport was

sufficient for incorporation into an ecosystem model.

7.8 Implicit solution of the

differences.

finite~difference eguation with backward

Whereas in an explicit scheme one only uses data of the previous time
step to calculate derivates at the current time step, a fully implicit
scheme uses data only at the current time step. Thus with o set to 1

teal )

at

v« (54 grat,
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t+ r:uc ttal tal
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with S{ = concentration in compartment i at time step t.

Rearranging one obtains:

Sf:.A__*

V.
Lral 1 . [ . 3714
7. (~(Qsy, 1*Eioy, 1) 850¢ +(E+erj.1+Ef.ir1+Ei-1,i) *s{C-Ef a8t

and at the boundaries:

sf _._.*[ (Q0,17E8,1) 88764 (290, By 195 ;) #85™* B 185)
and
Sn"—-;— [~ (Q12,12%Ef2, 1) 8545+ ( "'Qn goa* Ets, p0a* iz, 12) #8555 —E;L,Ms,‘;;c
Orx, in matrix formulation and putting Ef; = 0 (no dispersion at the upper

boundary):
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As the terms &,,, and & on the right hand side are to be calculated on

the next time step, they are substituted by the explicit terms &4, and s;.

Thus the transport submodel reduces to the solution of a tridiagonal set of

linear algebraic equations, which can easily be solved for all sf4¢ by
backsubstitution (Press et al., 1987).

At firat sight, a conflict sBeems to arise by the use of implicit time
differencing in the transport equation, while SENECA (the simulation
package) uses explicit time differencing. This was solved as follows: for
every compartment i the concentration at time step t+] {i.e. one SENECA
time unit later) was estimated by solving equation (9) with At set to 1.
The temporal derivates were then calculated as:

dg; e _ ¢
—Zi=g -9
dt 1

and submitted to the integration routine of SENECA.




