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Abstract 
Many ecosystems develop strikingly regular spatial patterns because of small-scale 1 

interactions between organisms, a process generally referred to as spatial self-2 

organization. Self-organized spatial patterns are important determinants of the 3 

functioning of ecosystems, promoting the growth and survival of the involved organisms, 4 

and affecting the capacity of the organisms to cope with changing environmental 5 

conditions. The predominant explanation for self-organized pattern formation is spatial 6 

heterogeneity in establishment, growth and mortality, resulting from the self-organization 7 

processes. A number of recent studies, however, have revealed that movement of 8 

organisms can be an important driving process creating extensive spatial patterning in 9 

many ecosystems. Here, we review studies that detail movement-based pattern formation 10 

in contrasting ecological settings. Our review highlights that a common principle, where 11 

movement of organisms is density-dependent, explains observed spatial regular patterns 12 

in all of these studies. This principle, well known to physics as the Cahn-Hilliard 13 

principle of phase separation, has so-far remained unrecognized as a general mechanism 14 

for self-organized complexity in ecology. Using the examples presented in this paper, we 15 

explain how this movement principle can be discerned in ecological settings, and clarify 16 

how to test this mechanism experimentally. Our study highlights that animal movement, 17 

both in isolation and in unison with other processes, is an important mechanism for 18 

regular pattern formation in ecosystems. 19 

20 
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Introduction 21 

When left undisturbed, ecosystems can develop striking regular spatial patterns and 22 

patchiness, caused by the interactions among organisms or between organisms and their 23 

environment [1, 2]. Such self-organized spatial patterns have been found in a wide range 24 

of ecosystems, ranging from arid bush lands to marine corals [2-4]. So far, most studies 25 

explaining spatial patterns in ecosystems highlight spatial variation in processes such as 26 

growth, birth, mortality or respiration, as the driving process (from hereon called growth-27 

based processes). This variation is considered to result from the interplay of multiple 28 

interactions between organisms operating at different spatial scales. For example, 29 

localized facilitation between individuals in combination with large-scale competition for 30 

resources generates regular spatial patterns in for instance bushland vegetation just south 31 

of the Sahara as well as in mussel beds in the Wadden Sea [5-9]. Self-organized spatial 32 

patterns are considered key to understanding ecological stability [10], diversity [1] and 33 

ecosystems functioning [7, 9, 11-14]. Hence, understanding of the processes driving 34 

pattern formation is important to understand how these systems may respond to, for 35 

instance, climate change. 36 

A multitude of studies have linked regular pattern formation in ecosystems to the 37 

activation-inhibition principle developed by Alan Turing [15] and Hans Meinhardt [16, 38 

17]. This general mathematical principle proposes that the interaction between a self-39 

amplifying activation process operating at small spatial scales and an inhibiting process 40 

that operates at a larger spatial scale can explain pattern formation in a wide variety of 41 

chemical and morphological systems (see Box 1). Essential here are a diffusive or 42 

differential flow instability, meaning that the rate of spread of the inhibitor – either 43 
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through diffusion or through flow – significantly exceed that of the activator. This causes 44 

the effect of the activator to remains local, while the inhibitor exerts its effect also at 45 

larger distance. As a result of this, there is a scale-dependent feedback of organisms on 46 

the growth of neighboring conspecifics. Locally, there is a positive feedback, where 47 

organisms promote each other's growth, but at a larger distance a negative effect on 48 

growth predominates. 49 

Recent papers highlight the importance of adaptive animal behavior in explaining 50 

patterns observed in nature [12, 18-25]. Here, animals aggregate to form concentrated 51 

groups, clumps, herds, or schools in order to avoid predation, dislodgement of other 52 

losses they face increasingly when alone. Within the groups, they experience lower 53 

chances of predation by means of dilution of predator attention, can confuse predators in 54 

isolating an individual, or can benefit from the vigilance of others in the group and 55 

thereby improve food intake [26]. To form groups, animals must adjust their movement 56 

and other forms of behavior, in the first place by moving towards others when they are 57 

alone, but most importantly by adjusting their movement speed when they have merged 58 

to form a group [12, 24, 27-29]. This adaptive behavior is essentially density-dependent, 59 

as it adjusts to the local density of conspecifics. Density-dependent movement can lead to 60 

the formation of groups that, in combination with constrains on the total number of 61 

animals, leads to regular or semi-regular distribution of groups in the landscape [29]. This 62 

mechanism of pattern formation is fundamentally different from Turing's activator 63 

(facilitation) - inhibition mechanism. Rather than organisms affecting each other's growth 64 

rates, this mechanism centers around animal behavior, where animal movement adjusts to 65 

variation in density, amplifying this variation to form aggregations that in turn form 66 
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coherent spatial patterns (see Table 1 for a summary for different ecosystems). Although 67 

the implications of density-dependent movement for population dispersal has been treated 68 

in studies going back to the classic work on clines and spread [30-34], it has received 69 

little attention as a general mechanism of self-organization in ecological theory.  70 

In this paper, we review studies on movement-driven self-organization in ecological 71 

systems. We show that many of recent studies adhere to the physical principle of 'phase 72 

separation' [35], either in a direct mathematical way [24, 29, 36, 37] or by revealing the 73 

characteristic movement patterns. So-far unrecognized in ecology, this principle explains 74 

movement-driven self-organization in a wide range of physical [28, 29, 38, 39] and 75 

chemical systems [40, 41] and as we will argue, also ecological systems [24]. To keep the 76 

scope of the paper manageable, we only consider the mechanisms that could reasonably 77 

be termed as 'density-dependent' movement, and that deal with self-organization 78 

dynamics. First we briefly explain the limitations of the traditional models of spatial 79 

population dynamics that can be found in many textbooks [4, 31, 42]. We then review a 80 

number of studies on a diverse group of species that highlight how density-dependent 81 

dispersal can generate aggregation and – in some occasions - regular pattern formation. 82 

We discuss the conditions under which phase separation occurs and whether these 83 

conditions are likely to be common. We limit ourselves to the processes of animal 84 

aggregation and group formation, and will not extensively discuss the behavior and 85 

coordination of animal movement within groups, which is extensively discussed in the 86 

literature on collective animal movement [43]. 87 

 88 
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Models of population dynamics 89 

Models describing the spatial dynamics of animal populations often describe dispersal of 90 

animals using a diffusion term that follows Fick's law [44]: 91 

!"
!# = % &, ( + *	∇-&. 92 

Here, N is the local density of the population, %(&, () summarizes all local growth, birth 93 

and mortality processes as a function of local densities of N and other factors R such as 94 

food availability, D is a diffusion coefficient, and ∇2 is the Laplace operator. This 95 

formulation implicitly presumes that individual movement can be approximated by 96 

random, Brownian motion [45]. A fundamental characteristic of the use of diffusion is 97 

that in the absence of population growth or mortality, animal movement always leads to 98 

dispersion, i.e. leads to an even distribution of the population over its spatial range. For 99 

concentrations of animals to form, the term %(&, () only needs to be slightly spatially 100 

heterogeneous at the starting, i.e. growth conditions need to vary over the landscape, as is 101 

the case in Turing's model. Hence, this general formulation of population dynamics is 102 

unable to describe aggregative movement by the animals, and hence precludes group 103 

formation of in animals in the form of clumps, schools or herds. 104 

A physical principle for movement-driven pattern formation 105 

In the physical and chemical sciences, it is widely recognized that aggregation of atoms 106 

and molecules can lead to the formation of self-organized patterns, a process called 'phase 107 

separation' [35, 41]. Phase separation describes the spontaneous separation of mixed 108 

fluids [38], such as molten alloys, into their separate components [39]. During this 109 
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process, spatial patterns are at first often fine-grained, but they grow coarser as time 110 

progresses due to spatial separation of the components of the alloys. The physical 111 

principle of phase separation has been captured by a simple partial differential equation 112 

by Cahn and Hilliard in 1958 [35]. Under this scenario, the dynamics of the density field 113 

is governed by  114 

!"
!# = *	∇- %(&) − 1	∇-& , 115 

where %(&) describes the energetic state of N. reflecting its tendency to move in response 116 

to local variation in density, and 1 accounts the nonlocal diffusivity or tension in ecology 117 

and physics respectively. Essential to the Cahn-Hilliard (CH) principle is a switch from 118 

dispersive to aggregative movement of particles as the local concentration of similar 119 

particles increases. In other words, particles move towards concentrations of similar 120 

particles, amplifying the formation of these aggregations. The Cahn-Hilliard model has 121 

become the standard description of phase separation driving pattern formation in metal 122 

alloys [39, 41, 46], fluid flow [40, 47], and microbiology [28, 48]. Moreover, recent 123 

developments in theoretical physics expand this principle to “self-propelled particles”, e.g 124 

the movement of (often microbial) organisms [28, 29, 36, 49-51]. Here, a number of 125 

studies argue that active Brownian particles, e.g., a bacterial or algal suspension, can 126 

spontaneously separate into a concentrated and a dilute phase resulting from the 127 

movement behavior of the microbes [27, 28, 38]. 128 

Central to the explanation put forward by the Cahn-Hilliard model is a density-dependent 129 

relation between particle movement and the local concentration or density of similar 130 

particles. In this review, we highlight that this phenomenon is also very general to 131 
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ecological systems, where animals adjust their movement speed directly or indirectly to 132 

the behavior of conspecifics. Here, it can lead to a wide range of aggregative phenomena, 133 

ranging from the formation of regular patterns, to animal concentrations such as herds 134 

and fronts, and to highly organized phenomena such as the collective movement of 135 

organisms as swarms of birds or schools of fish. Below, we review examples of each of 136 

these three categories. 137 

Regular pattern formation driven by density dependent movement 138 

Mussel beds. The blue mussel (Mytilus edulis) is a common filter-feeding animal living 139 

on rocky shores and intertidal flats. Mussels develop net-shaped or clumped spatial 140 

patterns at small spatial scales (less than 1 m), especially in mussel beds on soft 141 

sediments (Fig.1a). Laboratory experiments demonstrate that both net-shaped and 142 

clumped patterns can develop from a homogenous initial distribution due to a behavioral 143 

response of the mussels to the local density of conspecifics [12]. Mussels move fast at 144 

both low and high density, but move much slower at intermediate densities. This leads to 145 

aggregation into clumps of intermediate size. Laboratory experiments, lasting for only a 146 

day, highlight that pattern formation at the clump scale is a purely movement-driven 147 

process; no change in mussel numbers occurs within these short experimental timescales. 148 

This process of behavioral self-organization, explaining the emergence of regularly 149 

distributed mussel clumps, is adaptive in that it simultaneously reduces predation and 150 

dislodgment risks, and minimizes competition for algae [12]. 151 

Interestingly, our recent study of the aggregative movement of mussels demonstrates that 152 

the Cahn-Hilliard principle can be applied to spatial pattern formation in mussels [24]. 153 
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Results from quantitative experiments of mussel movement revealed that mussel 154 

movement speed decreases in a characteristic fashion with local mussel density (Fig.1b). 155 

Mathematical analysis revealed that a decrease of movement speed at intermediate 156 

density translates into a shift from dispersive movement at low mussel density to 157 

aggregative movement at intermediate density, which is an essential condition for pattern 158 

formation in the Cahn-Hilliard principle. We showed that the model of density-dependent 159 

aggregation and pattern formation in mussels is mathematically similar to the original 160 

model of Cahn and Hilliard [24]. Hence, aggregation and pattern formation in mussels is 161 

a process that is equivalent to the familiar process of phase separation in physics. 162 

Ants. Movement-driven self-organization processes are an important factor in the 163 

building of spatial structures by social insects [18, 52]. For instance, the ant Messor 164 

sancta creates regular patterns of ant corpses within ant cemeteries, a specific place 165 

where they gather their dead corpses. This process is completely spontaneous, as there is 166 

no prior information, nor a leader, among ants. A single cluster (pile) is gradually built as 167 

the result of a collective effort, where ants pick up a corpse from a small pile of dead 168 

bodies and then deposit the corpse in an already existing cluster. Experimental 169 

observation of ant behavior shows that ants pick up or drop corpses with a probability 170 

that increases with the local density of corpses, as shown in Figure 1d. The unladen ants 171 

pick up corpses with a probability that significantly declines at larger cluster sizes, 172 

whereas corpse-carrying ants drop corpses with a probability that increases with cluster 173 

size [18]. In addition, ants drop corpses with a fixed probability outside piles, leading to a 174 

limited range of transport. If the size of the experimental arena is limited, or if the area 175 

contains spatial heterogeneities, ordered clusters will develop along the borders of the 176 
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arena or more generally along the heterogeneities [18, 53]. Such a self-organized pattern 177 

is shown in Fig.1c. Similar to the mussel example, movement is the dominant process of 178 

pattern formation, as corpses are aggregated by density-dependent movement of the ants. 179 

Here, the chance of movement is a function of the local density of other corpses, making 180 

the net movement density-dependent. 181 

Slime molds. Movement plays likewise an important role in the formation of fruiting 182 

bodies in colonies of the cellular slime mold, Dictyostelium discoideum. D. discoideum is 183 

a social soil amoeba with a complex life cycle. It morphs from a collection of unicellular 184 

amoebae into a multicellular slug, and finally into a fruiting body [54]. The movement of 185 

the cells of D. discoideum during the aggregation and the migration stages is controlled 186 

by cAMP, which is produced by the cells themselves [55-57]. At an early stage a few 187 

scattered cells spontaneously secrete a single pulse of cAMP (cyclic adenosine 188 

monophosphate), followed by cells in the surrounding vicinity secreting more cAMP. 189 

This disturbance initially triggers the movement of D. discoideum into a cellular 190 

aggregation, later to form connected banding that migrates towards the higher 191 

concentration of cAMP, like a travelling wave [58]. Cells in dense concentrations 192 

produce more cAMP, leading to a higher rate of aggregation for amoeba until saturating 193 

(setting a maximal speed) at high cell density [55, 59]. Hence, the underlying mechanism 194 

of aggregative movement is indirectly controlled by local cell densities. The typical 195 

patterns are spiral waves in the cAMP concentrations and branching patterns in D. 196 

discoidenum cells as shown in Fig.1e, where the spiral wave propagates outwards, the 197 

cells move inwards [55, 58]. 198 
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Bacteria. The bacterium Escherichia coli and similarly other bacteria, may form a wide 199 

variety of colony structures ranging from arrays of spots to radially oriented stripes and 200 

arrangements of more complex elongated spots [60, 61]. Alternative patterns include 201 

regular stripes and circular rings when bacteria are grown in a matrix of agar with the 202 

inducer anhydrotetracycline [62]. The traditional explanation of pattern formation in 203 

bacteria is that it is based on chemotactic behaviour [63, 64]. Bacteria emit a 204 

chemoattractant when they experience oxidative stress conditions. Bacterial cells are 205 

thought to sense this chemical and swim up a gradient, creating spatial concentrations of 206 

bacterial cells, after which eventually the bacteria turn nonmotile, freezing the pattern 207 

into space. However, recent studies show that the key process explaining aggregation is 208 

deceleration of movement at high cell density [27, 48, 62, 65, 66]. It can be captured by 209 

density-dependent mobility, where the swimming speed of E. coli changes with the 210 

density of conspecifics in the local environment. This process will lead to a net cell flow 211 

toward the high density region and spatial pattern formation (Fig.1f). 212 

Herds and schools: mobile aggregations 213 

The formation of aggregations such as schools of fish or herds of mammals is very 214 

general in nature as an anti-predator defense, and is, like the mussel system, driven by 215 

movement. Hence, beyond providing a general principle for the formation of regular 216 

patterns as was described in the above mentioned examples, the principle of phase 217 

separation may extend to aggregation in mobile groups such as flogs of birds, herds of 218 

grazing mammals, and schools of fish, which are known to aggregate in response to 219 

mobile predators [67-70]. Below, we review studies that reveal that – similar to mussels 220 

and ants – density-dependent movement is a crucial mechanism behind the formation of 221 
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such mobile groups. 222 

Elk. The elk (Cervus elaphus canadensis) is one of the largest and most widespread land 223 

mammals in North America, Europe, and eastern Asia. Both sedentary and migratory 224 

populations have been repeatedly identified, often within the same ecosystem [71, 72]. In 225 

contrast to the classic correlated random movement used in many population models, elk 226 

movements have been clearly demonstrated to be density-dependent [73, 74]. Elk with 227 

GPS satellite radio-collars that were introduced into a novel ecosystem were studied over 228 

time in relation to group structure and group status (Fig. 2a). Haydon et al. [75] and Yott 229 

et al. [74] demonstrate that elk movement is driven by two important processes, described 230 

as fission (individuals leaving groups) and fusion (individuals joining up with a group) 231 

respectively. Ungrouped elk individuals were found to move greater distance than 232 

grouped animals, grouped animals were more likely to leave small groups than larger 233 

groups, and single individuals were more likely to join nearby groups than those that 234 

were more distant [75], shown as in Figure 2c and 2d. As dispersing individuals spread 235 

out from the initial introduction site, they randomly encountered clusters of other elk 236 

individuals. Over a matter of weeks the rate of population spread slowed appreciably [73], 237 

but more importantly small clusters of individuals coalesced into local herds. Hence, 238 

similar to the other examples, density-dependent rates of movement by elk rapidly led to 239 

group formation and spatial patterning across the landscape. 240 

Logically, the movement of aggregated (e.g., herd-forming) consumers is not only 241 

dependent on the density of conspecifics, but also on the density of their food. Here, they 242 

move more extensively when food density is low. In this case, the formation of mobile 243 

animal aggregation such as herds and schools due to density-dependent movement may 244 
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have important complications for the stability of grazing systems. While aggregation of 245 

mussels has no immediate consequence for food availability because of continued supply 246 

of algae by the tidal water, herds of grazing mammals can locally deplete their sessile 247 

food. Hence, there is an immediate necessity to move as a group to avoid food depletion. 248 

This behavior has been observed in herds of grazers, for instance in the Serengeti 249 

ecosystems [76-79], where ungulates aggregate as an anti-predation adaptation, and move 250 

as a front to through the Serengeti plains as shown in Fig.2b. The movement of individual 251 

wildebeest dramatically slows once they encounter ungrazed lands. Dense wildebeest 252 

herds rapidly deplete the grass resources available locally, leading to continual relocation 253 

of groups across the Serengeti Plains [80]. This complex combination of resource and 254 

conspecific-dependent movement behavior results in transient aggregations of wildebeest 255 

in extensive grazer fronts that track seasonal changes in the spatial gradient of food 256 

availability, often termed the green wave [77, 78, 81-84]. This aggregative process helps 257 

stabilize an otherwise unstable grazing interaction [85, 86]. Studies of other species show 258 

that restriction of group movement by vegetation [82, 83] or immediate danger of 259 

predation when moving, can cause local depletion of food sources leading to the 260 

formation of grazing fronts that can strongly destabilize consumer-resource interactions 261 

[87], such as those observed in snail-grazed salt-marshes [88] and urchin-grazed kelp 262 

beds [89]. 263 

Collective animal movement 264 

Density-dependent movement can also generate remarkably complex patterns when 265 

animals not only influence each other's rate of movement, but also directionality. This has 266 

been studied extensively in the field of collective animal behavior, a field that studies the 267 
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joint movement of animals in schools and flocks. For instance, using density-dependent 268 

movement features, Farrell et al [90] and Buhl et al [91] showed that a group of 269 

individuals (locusts) that align their direction and patterns with that of their neighbors 270 

undergo a rapid transition from random motion to coherent motion where all individuals 271 

move in a common direction to form spotted and striped patterns. In parallel, 272 

biophysicists [92-95] showed that collective cell migration in 2-dimensional cultures 273 

reveals a similar density-dependent movement, when beyond a threshold density. These 274 

theoretical and experimental studies demonstrate that density-dependent movement is a 275 

universal ecological feature generating a multitude of complex spatial configurations, not 276 

only regular patterns. Moreover, this work suggests that collective changes in the 277 

orientation of individuals within groups could potentially be just as profound as density-278 

dependent changes in movement velocity in generating spatial patterning. It seems quite 279 

likely both behavioral processes are relevant in explaining pattern formation in mobile 280 

group-forming organisms. 281 

Although many studies imply that density-dependent relationships exist in collective 282 

behavior [90, 92, 94-96], direct experimental verification remains elusive. A very 283 

interesting example has recently emerged in a study on Sperm movement. Sperm cells 284 

race via their flagella to reach an egg in a viscous medium and the first one to get there 285 

will be able to fertilize it [97]. A solitary sperm cell is more vulnerable to deviations from 286 

a straight trajectory owing to the rotational fluctuations caused by imbalanced torque 287 

exerted by their flagellum, whereas sperm can group together to form cooperative 288 

bundles that make it easier for them to swim along straighter paths. Sperm groups have 289 

been observed in several vertebrate and invertebrate taxa, ranging from sperm pairs to 290 
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massive aggregates containing hundreds of sperm [98, 99]. Using the fine-scale imaging 291 

of spermatozoa of deer mice, Fisher et al [100, 101] have revealed that the sperm cells in 292 

the rodent genus Peromyscus form motile aggregations of 2-30 cells by adhering to one 293 

another at sperm head or head hook to midpiece (See Fig.3a). The increased number of 294 

sperm cells within an aggregated cluster significantly increased group average velocity 295 

because the group exhibits greater linearity in its movement path, without an increase in 296 

speed. Hence, sperm cooperation allows them to migrate more quickly through the 297 

female reproductive tract. The average movement velocity would be expected to decrease 298 

once the clusters grew larger than seven cells, due to sperm cells swimming against each 299 

other, a prediction consistent with density-dependent velocity measurements (Fig. 3b). 300 

Obviously, this process does not adhere to the phase separation principle, as movement is 301 

maximal at intermediate densities, but is highlights that density-dependent movement is a 302 

crucial element in a variety of complex aggregative phenomena. 303 

Further examples of density-dependent movement 304 

Empirical evidence suggests that density-dependent movement is a common phenomenon 305 

in ecology. An extensive literature exists on density-dependent movement in animals [31, 306 

33, 34, 102]. However, little attention has been given into how density-dependent 307 

movement affects spatial self-organization processes. Density-dependent movement rates 308 

have been recorded in social insects such as aphids and beetles [103, 104] and even 309 

zooplankton [105, 106]. Empirical data of aphid movement were obtained using marked 310 

aphids varians on fireweed flower stalks. The data show that settlement of moving aphids 311 

increased as a function of local aphid density during the first 6-8 hours following aphid 312 

released. The probability of termination of movement by the aphids increased by more 313 
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than an order of magnitude as the local density increased from 1 to 40 individuals (see 314 

Fig. 4a). Similar to the aphids, the movement of Mexican bean beetles is affected by the 315 

density of conspecifics. Experimental trials show that the probability of movement was 316 

not affected by the number of conspecifics on the plant at densities lower than 20 beetles 317 

per plant (Fig. 4b). However, dispersal rates went up rapidly when beetle density was 318 

increased beyond 20 beetles per plant. Such behavior data suggest that at high population 319 

densities, beetle movement becomes overdispersive. This example, together with the 320 

others described earlier in this paper, highlights that density-dependent movement 321 

behavior is a common, yet rarely unacknowledged, phenomenon in biology [90] and 322 

ecology [12, 18, 103, 104], and its effects of spatial patterns formation and self-323 

organization needs further investigation. 324 

Indicators of phase separation dynamics in animals 325 

Although the model of Cahn and Hilliard can generate similar spatial patterns as those 326 

predicted by models based on Turing's activator-inhibitor principle, there are several 327 

crucial differences. First, phase separation is essentially mass conserving, as it only 328 

involves movement or diffusive processes, at least when following the standard definition 329 

and equations [35]. The activator-inhibitor principle is, to the contrary, not a mass 330 

conserving process per se, as spatial variation in growth and mortality are the essential 331 

processes. Secondly, Turing patterns exhibit a characteristic wavelength, or a number of 332 

characteristic wavelengths, under constant environmental conditions. This is the 333 

consequence of limitations in the scale of interaction between organisms [107], as the rate 334 

of movement of water or nutrients is limited by physical restrictions. In contrast, patterns 335 

arising from phase separation do not exhibit a characteristic wavelength, but pattern 336 
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development is characterized by a continuously increasing wavelength, which follows a 337 

power law relationship with time, referred to as the Lifshitz-Slyozov law [41, 108, 109]. 338 

This process is well known as coarsening. In other words, the phase separation process, 339 

in mass-conserving systems, will not develop stationary patterns. However, this time-340 

dependent power law may collapse in the long term if other process come into play that 341 

limit movement, such as in mussels where food competition limits the formation of very 342 

large clusters [24]. 343 

Going beyond the movement-driven patterns elucidated here, the pattern coarsening that 344 

is observed in the phase separation process can in principle also be found in activator-345 

inhibitor systems when the inhibitor process is global, e.g. when there are no physical 346 

restrictions in the range of negative, inhibitory interactions between the organisms [107, 347 

110, 111]. These conditions have been suggested for the FitzHugh-Nagumo (FHN) model 348 

and for semiarid vegetation when competition for limiting water resources is global 349 

[111]. However, for most ecosystems with regular patterns, such as those observed in arid 350 

ecosystems, this is likely unrealistic, as there are physical limitations in the extent that 351 

organisms can influence each other via the depletion of water. In systems with moving 352 

animals, global limitation of plant growth via the interaction with animals is more easily 353 

conceivable [112, 113]. Whether mobile grazers can generate coarsening dynamics in 354 

patchy plant-herbivore systems is an important topic for future study. 355 

A negative effective diffusivity is a prerequisite for phase separation to occur in the 356 

original Cahn-Hilliard model [24], as well as in later physical studies on abiotic particles 357 

[32, 35, 48]. This requirement, however, was broadened in recent physical studies 358 

highlighting that a negatively density-dependent swimming speed is a sufficient condition 359 
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for phase separation to occur in case of 'active Brownian particles', i.e. organisms [27, 28, 360 

37]. In case of  'self-propelled active matter', physics theory highlights, a decreasing 361 

motility with increasing local density will trigger a positive feedback, whereby an 362 

increase of the local density of individual particles leads to local slowdown, causes 363 

further accumulation of these particles. Hence, negative density dependence can cause 364 

phase separation even without explicit taxis or other orientational processes [29, 49], 365 

which is confirmed by both simulations [36, 50] and experiments [24, 51]. The 366 

application of phase separation principles to the movement of larger organisms, as put 367 

forward in this overview, will expand the scope of this novel theory beyond the field of 368 

theoretical physics. 369 

Classical, mass-conservative phase separation exhibits coarsening dynamics, but simple 370 

modifications of the Cahn-Hilliard phase-separation model with a linear dissipative term 371 

(i.e. mortality and birth processes in ecological terminology) may inhibit the coarsening 372 

and lead to steady state patterns with a fix wavelength [46, 48]. Yet, a fundamental 373 

difference exists between pattern formation as predicted by Turing’s and Cahn-Hilliard’s 374 

principles [24]. The patterns arising from a Turing instability develop a homogeneous 375 

background state, which becomes unstable with respect to small spatially perturbations, 376 

leading the formation of regular patterns [114]. In phase separation, there is no such 377 

unstable background state, but patterns arise from the spatial mixing of two stable states 378 

(see Box 1 and Fig.5), creating patches of either high or low biomass. There are, in 379 

general terms, only local attractive or repulsive forces among individuals that cause 380 

biased movement in case of phase separation, and that drive the dynamic development of 381 

the patterns.  382 
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The difference between the two mechanisms becomes clearer when comparing the 383 

feedback effects on net growth by the activator-inhibitor interaction with the effect of 384 

local density on the effective diffusivity in the phase separation process. A switch 385 

between activation and inhibition of either net local growth or movement characterize 386 

both mechanisms (Fig. 5). However, in Turing’s model this alternation occurs in response 387 

to increased scale, while in the Cahn-Hilliard model this alternation occurs in response to 388 

biomass or density (c.f Fig.5a and 5b). As a consequence, Turing-type systems adhere to 389 

specific scales, while no characteristic scales are observed in phase separation. 390 

Although many Turing models include explicit activator and inhibitor components [15, 391 

42], an explicit configuration is not essential to generate a Turing instability.  Spatial 392 

patterns can also develop from perturbations of an unstable homogeneous state in single-393 

species systems, as is observed in the Swift-Hohenberg model, and in non-local 394 

competition models [114-116]. In the past decades, non-local growth and interaction 395 

effects have been proposed to produce observed regular spatial patterns in ecology and 396 

biology [115-119], which consider non-local competition for resources in a variety of 397 

biological fields [120, 121]. In a population-dynamical context, these nonlocal growth 398 

and interaction models have two features in common with Turing systems, i.e. growth- 399 

and mortality- driven demographic processes and scale-depend feedback [2].  400 

Outlook 401 

Our review reveals that density-dependent effects on movement velocity and coordinated 402 

turn frequency is a ubiquitous mechanism for the formation of self-organized spatial 403 

patterns in ecosystems. Density-dependent movement, were speed declines over at least 404 
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some range of local population density, can readily generate pattern formation in a wide 405 

range of ecological settings. Moreover, density-dependent movement is broadly observed 406 

in ecological systems, affecting the spatial dispersal of many organisms [103, 104, 122-407 

124]. Hence, the principle of density-dependent movement can be usefully extended to 408 

other ecological systems that do not exhibit conspicuous regular patterns, but nonetheless 409 

reveal more complex forms of aggregations, such as animal herds. 410 

Many real ecosystems exhibit complex spatial organization, revealing patterns and 411 

patches at multiple spatial scales. Such complexity does not typically stem from a single 412 

underlying process. Multiple pattern-forming processes involving movement on short 413 

time scales, and demographic and habitat-modifying processes at longer time scales are 414 

superimposed to generate complexity. Little is known about how these processes interact 415 

to shape ecosystems, and how this affects ecosystem functioning in terms of the 416 

established population sizes, and their resilience against disturbances [46, 125]. Possibly, 417 

the benefits of aggregation, in terms of for instance reduced predation risk, can affect 418 

demographic process such as population losses. This has important implications, as by 419 

influencing survival, movement-driven spatial patterns are likely to affect evolutionary 420 

processes that in turn shape movement behavior [23]. Hence, to understand the 421 

functioning of complex ecosystems, research should not focus on a single process driving 422 

pattern formation, but should address how behavioral, demographic and evolutionary 423 

processes interact. 424 
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Figure Captions: 433 

Fig 1: Observations of regular patterns from density dependent movement 434 

processes. (a-b) Labyrinth patterns of small-scale mussel beds in intertidal flats (scale 435 

about 50 cm), and experimental data show that mussel-movement speed reveals a 436 

quadratic function of mussel density. (c-d) Self-organized cluster formation in ants driven 437 

by aggregation starting from a random initial condition. Their probabilities of dropping a 438 

corpse remarkabley depend on the local density. The data come from experiments in Ref. 439 

[18]. (e) Self-organized branching patterns in Dictyostelium discoideum. The cells 440 

produce alternately lower and higher levels of cAMP concentrations as a two dimensional 441 

spiral (scroll) waves from the mutant centre (later as aggregation center) to outwards, the 442 

cells move inwards from flat territories. (f) Typical circular patterns obtained for the 443 

engineered strain CL3�Escherichia coli [62] where the CL3 cells spotted at the center of 444 

a semi-solid agar plate, scale bar about 1 cm. Photo (a) by Johan van de Koppel; photos 445 

(c) by Guy Theraulaz; photo (e) copyright Bioayuda in Microbiología, Noticias, 446 

http://bioayuda.wordpress.com/tag/amebas-que-comen-bacterias; photo (f) copyright with 447 

Science, 334, 2011, 238-241. 448 

Fig 2: Density-dependent aggregation in mobile patterns. (a) An aggregation of elk 449 

formed by density dependent movement. (b) Massive consumer front of wildebeest on 450 

grasslands in Africa extending tens of kilometers in length and commonly more than 1 451 

km in width. (c-d) The daily probability of leaving a group versus group size on elk (error 452 

bars shown 2 s.e. around each point); The probability of a solitary individual grouping up 453 

with another elk versus the distance (error bars shown 2 s.e. around each point), where 454 
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the fitted curve is a four-parameter exponential model, data from the Haydon et al. [75]. 455 

Photo (a) by John Fryxell; photo (b) copyright Serengeti Balloon Safaris, 456 

http://www.balloonsafaris.com. 457 

Fig 3: Denistiy-depedent collective behaviour of sperm cells of deer mice. (a) 458 

Scanning electron micrographs of group formation of peromyscus sperm cells, startng 459 

from initial release with highly motile (more than 90% progressively motile) single cells. 460 

(b) The relaionship between aggregate size and average movement velocity of the sperm 461 

cells of two species of deer mice. Figure and data courtesy of Heidi S. Fisher. 462 

Fig 4: More evidence for density-dependent movement in ecology. (a) The probability 463 

of stopping as a function of local aphid density, where the curve is a quadratic 464 

polynomial fit, data come from Ref. [102]. (b) The density-dependent motility in the 465 

Mexican bean beetle, data from Ref. [103]. 466 

Fig 5:  Schematic representation of the feedback on the phase separation and  the 467 

activator-inhibitor principles. (a) The dispersion relation of the spatial pattern between 468 

the effective diffusivity and species local density, where the two curves corresponding to 469 

the lines in the inset panel. (b) The scale-dependent feedback in the activator-inhibitor 470 

principles.471 
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Box 1: The activator-inhibitor and phase separation principles 472 

The models of Turing (1953) and Cahn-Hilliard (1958) outline two fundamentally 

different principles of spatial self-organization. Turing's model for pattern formation 474 

is based on the interaction between (minimally) two species, an activator and an 

inhibitor (Box 1: Fig. A), which disperse at different rates in space. The interplay 476 

between the activator and the inhibitor results in spatial variation in net growth of or 

rate of reaction between interacting species, which amplifies local variability, leading 478 

to the formation of spatial patterns. In contrast, the model Cahn and Hilliard for phase 

separation and subsequent pattern formation only requires a single species, whose net 480 

movement switches between aggregation and dispersion as a function of its own local 

density (Box 1: Fig. B). 482 

[Figure box at here] 

Fig I. (A) Alan Turing's (1912-1954) principle for spatial pattern formation, based on 484 

the interaction of an activator and an inhibitor. Here, the activator promotes it’s own 

growth, but also generates an inhibitor that limits activator growth. The two species 486 

diffuse through the system at different rates, with the inhibitor moving faster than the 

activator. As a result, the activator has a net positive effect on itself at short distance, 488 

but inhibits itself at longer distance, via the inhibitor. (B) The Cahn-Hilliard principle 

(John W Cahn, 1928-present; John E Hilliard, 1926-1987) for phase separation in 490 

pattern formation. This principle is based on density-dependent movement, where 

species tend to disperse at low and very high density, but aggregate at intermediate 492 

density. The principle has been developed initially to explain self-organized patterns 

in metal alloys, and formation of minerals. 494 
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Table 1: A summary of the movement-driven mechanisms on spatial self-organization in ecosystems. 

Ecosystem Spatial self-organization 
mechanism 

Pattern formation Refs	

Mussel Density-dependent movement 
behavior 

Regular striped, labyrinth patterns [7, 12] 

Ant Density-dependent movement 
behavior 

Aggregation to clusters [18] 

Bacteria (E. coli) Density-dependent chemo-taxis 
behavior 

Striped, spotted and circuits [48, 62, 66] 

Birds Resource-dependent movement 
behavior 

Spatial regular patches [68] 

Elk (Cervus canadensis) Socially inform Collective behavior [75] 

Zebrafish Run-and-chase movements 
behavior 

Striped or spotted patterns [126] 

Sperm Integrated geometry with minima 
drag 

Collective movement [100] 
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