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Abstract. Marine protected areas (MPAs) require ecologically meaningful designs capable
of taking into account the particularities of the species under consideration, the dynamic
nature of the marine environment, and the multiplicity of anthropogenic impacts. MPAs have
been most often designated to protect benthic habitats and their biota. Increasingly, there is a
need to account for highly mobile pelagic taxa, such as marine birds, mammals and turtles,
and their oceanic habitats. For breeding seabirds foraging from a central place, particular
attention should be paid to distant foraging grounds and movement corridors, which can often
extend to hundreds of kilometers from breeding colonies. We assessed the habitat use by the
most threatened Mediterranean seabird, the Balearic Shearwater, Puffinus mauretanicus, using
vessel-based surveys during the chick-rearing period (May-June). We used a hierarchical
modeling approach to identify those environmental variables that most accurately reflected the
oceanographic habitat of this species by (1) delineating its foraging range using presence/
absence data and (2) identifying important foraging grounds where it concentrates in dense
aggregations. The foraging range comprised the frontal systems along the eastern Iberian
continental shelf waters (depth <200 m) and areas close to the breeding colonies in the
Balearic Islands. Shearwaters aggregated in productive shelf areas with elevated chlorophyll a
concentrations. Following the model of a core-buffer MPA, we envisioned those areas of
dense aggregation (i.e., the area of influence of the Ebro River discharge and Cape La Nao
regions) as the core regions deserving elevated protection and more stringent management.
More diffuse protective measures would be applied within the larger buffer region, delineated
by the foraging range of the species. Marine zoning measures can greatly benefit the
conservation of the Balearic Shearwater and other far-ranging seabirds by extending
protective measures beyond their breeding colonies during both the breeding and non-

breeding seasons.
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INTRODUCTION

Spatially explicit conservation measures are increas-
ingly taking the central stage of fisheries management
and marine conservation strategies (Pikitch et al. 2004,
Norse et al. 2005). Networks of marine protected areas
(hereafter MPAs) are being used to manage fisheries and
to protect threatened species and marine habitats
around the globe (Houde 2001, Roberts et al. 2001,
Halpern 2003). Although most effort has been focused
on sessile and sedentary ecosystems and organisms (e.g.,
coral reefs, mangroves, reef fishes), there is an increasing
interest to extend the application of MPAs to encompass
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highly mobile species (e.g., marine mammals, birds, and
turtles). These far-ranging marine vertebrates are
susceptible to multiple anthropogenic impacts (e.g.,
fisheries bycatch, oil spills) within their foraging grounds
and migratory routes (Anderson et al. 2003, Hooker and
Gerber 2004, James et al. 2005). At the same time,
because these species are often associated with dynamic
oceanographic habitat features, an understanding of
these wildlife-habitat associations is critical for evaluat-
ing the feasibility and design of pelagic MPAs (Hooker
et al. 1999, Hyrenbach et al. 2000, Norse et al. 2005).
Thus, marine zoning strategies for highly mobile marine
organisms will require new ecologically meaningful
approaches in tune with their life history and the
dynamic nature of the pelagic environment (Hyrenbach
et al. 2000, Planes et al. 2000, Gerber et al. 2005).

In the European Union (EU), Council Directive 79/
409/EEC (EEC 1979) for the protection of wild birds
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(Birds Directive) and Council Directive 92/43/EEC
(EEC 1992) for the conservation of natural habitats
and wild fauna and flora (Habitats Directive) estab-
lished the foundation for the creation of a network of
terrestrial and marine protected areas to conserve
natural habitats and wild flora and fauna. The Natura
2000 network envisions Special Protection Areas (SPAs,
under the Bird Directive) and Special Areas of
Conservation (SACs, under the Habitat Directive) to
protect those species and habitats in danger of
disappearing, while higher protective measures are
pending. Within this framework, several studies have
quantified the abundance and distribution of cetaceans
and sea turtles in the Western Mediterranean (Bearzi et
al. 2003, De Segura et al. 2003, Canadas et al. 2005,
Cardona et al. 2005). While little attention has been paid
to seabirds in the past, a regional strategy is currently
underway for important bird area (IBA) delineation in
the Western Mediterranean. This program, under the
auspices of BirdLife International, seeks to identify,
document, and conserve sites that are key for the long-
term viability of bird populations (SPEA-SEO/BirdLife
2005). In the EU, IBAs form the scientific basis and the
ornithological reference for the creation of a network of
Special Protection Areas (SPAs) under the Birds
Directive (Williams et al. 2005). IBA is a nongovern-
ment, globally applicable construct and carries no legal
obligation, whereas the SPA concept is a legally binding
obligation on EU member states.

In this paper, we assess habitat use by the most
threatened Mediterranean seabird, the Balearic Shear-
water, Puffinus mauretanicus, as a priority in the design
of marine zoning strategies to protect seabirds in this
biogeographic region. This shearwater is currently listed
as Critically Endangered on the [IUNC Red List (Arcos
and Oro 2004, Baillie et al. 2004) due to its restricted
breeding range (constrained to the Balearic Islands) and
small (~2000 breeding pairs; Ruiz and Marti 2004) and
declining (7.4% decrease per year; Oro et al. 2004)
population size. Population models predict a decrease of
98% within 54 years (three generations), with a mean
predicted time of extinction of 40.4 years (Oro et al.
2004). The species is known to feed extensively on shoals
of small pelagic fish, also consuming considerable
amounts of fishery discards (Arcos and Oro 2002).
Nevertheless, its ecology at sea is still poorly understood
(Arcos et al. 2000). In accordance, while much
conservation effort is being focused on the breeding
colonies, the potential threats at sea (e.g., bioaccumu-
lation of pollutants, fisheries bycatch, and oil spills) have
been largely overlooked (Arcos and Oro 2004).

We characterized the oceanographic habitat of the
Balearic Shearwater in the Western Mediterranean
during the breeding season (May—June). Our objective
was to assess whether marine zoning strategies could
protect the foraging grounds and movement corridors of
this endangered species during this critical period of its
annual cycle. Following the Natura 2000 directive, we
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regarded the habitat as “an environment defined by
specific abiotic and biotic factors, in which the species
lives at any stage of its biological cycle.” Thus, our
habitat-use analysis considered both abiotic (e.g.,
bathymetric and hydrographic features) and biotic
(e.g., ocean productivity patterns) features. We used a
hierarchical modeling approach to identify those envi-
ronmental variables that most accurately reflected the
habitat of the Balearic Shearwater by (1) delineating the
range of the species using presence/absence data and (2)
identifying important foraging areas where the species
concentrates in dense aggregations. Within this frame-
work, we make recommendations for the implementa-
tion of marine protected areas (MPAs) to protect this
critically endangered western Mediterranean seabird
during the chick-rearing season.

METHODS
Study area

We studied the distribution and oceanographic
habitat .of the Balearic Shearwater in the Western
Mediterranean during the 1999, 2000, and 2002 chick-
rearing periods (May—-June). Surveys were conducted
onboard the R/V “Cornide de Saavedra,” during the
annual MEDITS (Mediterranean International Trawl
Survey) surveys along the Mediterranean coast of the
Iberian Peninsula (Bertrand et al. 2002), from the Strait
of Gibraltar in the southwest to Cape Creus in the
northeast (Fig.1).

The study area encompassed 2134 km?, with 72% of
the area corresponding to the continental shelf (depth
<200 m) and the rest covering the continental slope
down to a depth of 1930 m (Fig. 1). Overall, the
continental shelf is very narrow (~3 km) in the Alboran
Sea and the Vera Gulf, and widens to the north,
reaching a width of up to 70 km in the Ebro Delta-
Columbretes area.

Oceanographic context

In the Western Mediterranean, ocean productivity is
notoriously heterogeneous, being influenced by marine
currents and the input of freshwater run-off, which
deliver large amounts of nutrients and fertilize the
coastal waters (Arnau et al. 2004). The advection of
Atlantic Ocean water, which enters through the Strait of
Gibraltar, forms a quasi-permanent-anticyclonic (clock-
wise) gyre in the Alboran Sea (Millot 1999). Farther
east, the “Almeria-Oran Jet” flows from the Iberian
coast towards Algeria, giving rise to eddies (Millot
1999). These hydrographic processes promote nutrient
enrichment of surface waters in this area (Estrada 1996).
Farther north, the Northern Current (or “Liguro-
Provengo-Catalan” Current), which originates in the
east of the Ligurian Sea and flows south of the Eivissa
Channel along the continental slope, transports rich
nutrient waters southwards (Millot 1999, Arnau et al.
2004). In the Ebro Delta area, strong and cold winds
from the north and northwest lead to enhanced mixing,
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the upwelling of nutrients, and the consequent increase
of plankton production (Estrada 1996, Salat 1996). A
permanent front with strong salinity gradients, known
to limit the seaward dispersion of the larvae of coastal
and shelf species (i.e., fish, crustaceans), retains this high
localized productivity near the coast (Font et al. 1988,
Sabatés 1996, Abello and Guerao 1999). This productive
region represents a major fish spawning area, especially
for small pelagic species like anchovy and sardine
(Sabatés 1996, Salat 1996, Agostini and Bakun 2002),
and supports one of the most important fishing fleets of
the western Mediterranean (Demestre et al. 1988,
Estrada 1996, Salat 1996). Additionally, submarine
canyons north of Barcelona are also thought to enhance
ocean productivity (Palanques et al. 2005).

At-sea surveys

All observations were made by the same observer (J.
M. Arcos) during 1999, 2000, and 2002 using stand-
ardized strip-transect techniques (Tasker et al. 1984)
adapted to match the specific conditions of the study
area. A 300-m strip-width transect band was used, with
the observer surveying both sides of the vessel (i.e., 600-
m band) only when conditions (visibility and wind) were
appropriate. The width of the band was checked
periodically using a range-finder (Heinemann 1981).
Snapshot counts were used to census flying birds (Tasker
et al. 1984). All Balearic Shearwaters observed within
the survey transect were recorded. Additionally, the
number of trawlers sighted within a three-nautical-mile
(5.58 km) band were also recorded, to account for the

Map of the study area showing all sample units (10 min bins; 1999-2002). Geographic references mentioned in the text

influence of fishing discards on the distribution of the
species. The shearwater and vessel sightings were
summed up into 10-minute survey bins.

Environmental variables

Sea surface temperature (SST, hereafter) and chlor-
ophyll a concentration (chl a, hereafter) are useful
proxies of water mass distributions, frontal systems, and
ocean productivity domains (e.g., LeFevre 1986, Long-
hurst 1998), and have been previously used to character-
ize the oceanographic habitats of seabirds (e.g., Spear et
al. 2001, Hyrenbach et al. 2002). We relied on remotely-
sensed environmental information, which is available at
a variety of spatial and temporal resolutions, to quantify
SST and chl a conditions during our seabird surveys. We
used the 8-day composites of 9-km pixel data because
the imagery at the finer daily temporal resolution was
obstructed by cloud cover to a great extent.

We used nighttime Pathfinder 4.1 SST imagery from
the Advanced Very High Resolution Radiometer
(AVHRR) to quantify water temperature during our
surveys (available online).® We derived the chl a
concentrations from Sea-viewing Wide Field-of-view
Sensor (SeaWiFS) imagery (available online).® We
discarded any values beyond the range of SeaWiFS
validation (0.05-50 mg/m>; Hooker and McClain 2000).
We considered four different productivity regimes based

8 (http://podaac.jpl.nasa.gov/pub/sea_surface_temperature/
avhrr/pathfinder/data_v4.1/)
9 (http://seawifs.gsfc.nasa.gov/SEAWIFS.html)
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on the chl a values: oligotrophic (low nutrient, chl a <
0.1 mg/m>); mesotrophic (intermediate nutrient, chl a =
0.1-0.3 mg/m®), eutrophic (high nutrient, chl a = 0.3-1
mg/m?>), and enriched waters (chl @ > 1 mg/m?) (Kahru
and Mitchell 2000).

Because water depth influences seabird distributions,
as indicated by the different communities that inhabit
distinct coastal and pelagic domains (Schneider 1997),
we included this variable in the habitat model. We
obtained bathymetric data from NOAA’s ETOPO five-
minute (spatial resolution of 7.5 and 8.2 km at 35° N and
42° N latitude, respectively) gridded elevation data set
(NGDC 1998).

Because these three habitat variables, SST, chl a
concentration, and water depth, were not normally
distributed, we used the median as a conservative
statistic to express the central tendency of these variables
within each 9-km cell grid (Zar 1999). In addition, we
quantified the spatial gradients of these properties for
each 9-km grid cell. We calculated the proportional
change (PC) in SST, chl a4, and depth within a
surrounding 3 X 3 pixel (27 X 27 km) grid as follows:
PC = [(maximum value — minimum value)100]/(max-
imum value). This dimensionless metric expresses the
magnitude of change in each habitat variable, scaled to
the maximum value.

To account for the influence of colonies on the
distribution of central-place-foraging seabirds at-sea
during the breeding season, we included the distance
from the centroid of each grid cell to the nearest
breeding site (see Louzao et al. 2006 for colony
locations). Finally, we also included the distance from
each grid cell to the nearest shoreline in the model to
account for additional potential onshore-offshore pat-
terns.

Data processing

We explored shearwater habitat associations using the
ArcView 3.2 Geographic Information Systems (GIS)
software (1999), by merging the seabird distribution
data with the environmental information. We first
standardized the survey effort to account for differences
in the area surveyed during each 10-min bins, due to
varying cruising speeds and strip widths. We aggregated
the survey bins into 9-km grid cells (81 km?), at the same
spatial scale of the remote sensing imagery, and
recalculated the occurrence and density of shearwaters
and trawlers for these grid cells. We repeated this
process for each 8-day survey period, to match the
temporal scale of the remote sensing imagery. Thus,
whenever a grid cell was visited repeatedly in the course
of the same cruise, it contributed a data point for each 8-
day period it was surveyed.

We then extracted the oceanographic variables (SST,
chl a, depth) for each grid cell using the WIM 6.26
software (Kahru 2000). Because the median and
gradient values for each grid cell were calculated within
a surrounding 3 X 3 pixel (27 X 27 km) neighborhood,
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the number of valid data points could range from 0 to 9;
we rejected those grids cells with fewer than two valid
data points. After standardization, we calculated the
distance between the centroid of each grid cell and the
nearest shearwater colony and shoreline using the
ArcView 3.2 GIS.

Data analysis

Spatial autocorrelation—Before undertaking the stat-
istical analysis of the Balearic Shearwater distributions,
we had to ensure that the observations were independent
(i.e., the number of birds in any grid cell was not related
to their distribution in adjacent grid cells). In clumped
distributions, like seabird flocks, adjacent observations
are often more similar than would be expected in
randomly distributed data, revealing significant positive
autocorrelation patterns (Schneider 1990, Sokal et al.
1998). Significant autocorrelation can cause the false
rejection of the null hypothesis (Type I error), giving
raise to spurious significant habitat relationships (Hurl-
bert 1984). We used the Moran’s I coefficient to assess
the spatial autocorrelation patterns in the seabird data.
This index, developed to quantify spatial patterns for
highly nonnormal distributions, ranges from —1 (neg-
ative autocorrelation) to +1 (positive autocorrelation),
with null values being indicative of a lack of spatial
structure (Sokal and Oden 1978).

We quantified the similarity of the Balearic Shear-
water occurrence (presence/absence) and density (birds/
100 km?) for all pairwise combinations of grid cells as a
function of their spatial distance, and considered up to
15 spatial lags at 9-km intervals (0~135 km) in any
direction (i.e., assuming an isotropic spatial autocorre-
lation structure). We assessed the significance of the
Moran’s I values using Monte Carlo randomization
tests (Manly 1994). Both the Moran’s / values and
randomization tests were performed using the Rook
Case V.1.6 software (Sawada 1999). Briefly, we per-
formed 1500 permutations at each lag distance and
contrasted the observed Moran’s I value with those
calculated by the randomization procedures. The
Bonferroni correction was used to account for multiple
testing.

Model building.—We related shearwater occurrence
(presence/absence) and density (when shearwaters were
present) to 11 explanatory variables. We used eight
environmental variables: median depth, depth gradient,
distance to shoreline, distance to the closest colony,
median SST, SST gradient, median chl @, and chl a
gradient. Due to unequal survey effort in each grid cell,
we included survey effort (km?) as a covariate in the
analysis to account for potential biases. Also, we
included the occurrence and density of trawlers because
of the potential influence of fishery discards on shear-
water distribution. Finally, we considered the effect of
“year” to assess interannual variability in shearwater
distribution and abundance during our study.
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Bivariate Spearman rank P values (above diagonal) and correlations between environmental variables (below diagonal)

Distance to Distance to Median Depth Median Chl a Median SST
Variable shoreline colony depth gradient chla gradient SST gradient
Distance to shoreline 1.000 <0.001 <0.001 <0.001 <0.001 NS NS <0.05
Distance to colony —0.271 1.000 <0.001 <0.01 <0.001 NS <0.001 <0.01
Median depth 0.323 0415 1.000 <0.001 <0.05 <0.05 <0.001 <0.001
Depth gradient —0.668 0.124 —0.381 1.000 <0.001 NS NS <0.001
Median chl a —0.196 0.419 —0.083 0.153 1.000 <0.001 <0.001 <0.001
Chl a gradient 0.024 -0.025 —0.095 0.001 0.370 1.000 <0.01 NS
Median SST 0.057 —0.384 —0.178 -0.017 —0.462 —0.122 1.000 <0.001
SST gradient 0.107 0.110 0.167 —0.169 0.155 0.057 —0.180 1.000

Note: Ns, nonsignificant.

Because the environmental conditions in the study
area were cross-correlated (Table 1), we used multi-
variate statistics to assess the relative influence of each
habitat variable on shearwater distribution. We used
generalized linear models (GENMOD procedure; SAS
Institute 2000), and adopted a hierarchical modeling
approach, where we first characterized the overall range
of the species using occurrence (presence/absence)
records from the entire data set. We built this model
assuming a binomial distribution and using the logit-link
function, and evaluated the goodness of fit using the
Pearson’s chi-square statistic (Crawley 1993). Then,
after excluding those bins where shearwaters were
absent, we quantified the areas of high aggregation
using the continuously distributed density data using the
identity link function.

We assembled the best-fit model iteratively using a
stepwise procedure by rejecting/retaining the variables
with the lowest/highest explanatory power one at a time
(variables were discarded at o > 0.05, and retained
otherwise). Then, we calculated the probability of
shearwater occurrence for each surveyed grid cell in
each year, using the final logistic model developed with
the presence/absence data. We calculated the Linear
Predictor (LP) using the constant and the variable
coefficients from the best-fit model, and calculated the
probability of shearwater occurrence predicted by the
model (P) as follows: Pr=e"F(1 +¢"F)~! (Crawley 1993).

Suitable habitat.—The receiver operator curve (ROC)
plots provide a powerful approach to assess the
performance of predictive ecological models based on
presence/absence data (van Erkel and Pattynama 1998,
Pearce and Ferrier 2000). This graphical method
portrays the trade-off between the “sensitivity” (per-
centage of presence events correctly predicted) and “1 —
specificity” (percentage of the absence events correctly
predicted) of the predictive model (van Erkel and
Pattynama 1998, Boyce et al. 2002). Moreover, the area
under the ROC curve (AUC) provides a metric of the
predictive power of the model (Thuiller et al. 2003),
which ranges between 0.5 (null predictive power,
corresponding to the line of 45°) and 1 (a perfect model)
(Boyce et al. 2002). We calculated the sensitivity and
specificity of the model for a range of probabilities, and

calculated the corresponding AUC value using the
approach of Watkins (2000). We identified the proba-
bility value, which maximized the sensitivity and
specificity of the model predictions using the ROC and
AUC results (Pearce and Ferrier 2000, Boyce et al. 2002,
Pearson et al. 2004). This threshold value was deter-
mined by the probability level where the sensitivity and
the specificity curves intersected (Thuiller et al. 2003,
Pearson et al. 2004).

REsuLTS '
At-sea surveys

We surveyed a total of 1409 10-min bins, which we
aggregated into 680 grid cells during 95 survey days
spanning the three years of our study (Table 2). Due to
cloud cover, we discarded 16.6% of the surveyed grid
cells with incomplete remote sensing information. We
used the remaining grid cells (n = 567) for the analysis of
shearwater occurrence, and those grids with shearwater
presence (n = 140) for the analysis of density. We sighted
657 shearwaters over three years, with their maximum
densities varying between 900 and 3453 birds per 100
km? from year to year (Table 3). Overall, most of the
shearwater sightings occurred between Cape Creus
(42.3° N) and the vicinity of Cape Palos (38.0° N; Fig. 1).

Spatial autocorrelation

We found no evidence of significant spatial autocor-
relation in the at-sea distribution of the Balearic
Shearwater, neither for the occurrence nor the density
data. These results indicated that the 9-km grid cells
yielded independent observations, and thus provided a

TaBLE 2. Summary of seabird surveys showing the dates and
survey effort during MEDITS cruises in 1999, 2000, and
2002.

Surveyed area Number of
Year Cruise dates (km?) grid cells
1999 4 May—4 June 588.6 211
2000 22 May-22 June 571.6 163
2002 11 May-13 June 612.5 193
Total 95 days 1772.6 567

Note: Effort is expressed as both the area (km?) and the
number of 9-km grid cells surveyed.
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TaBLE 3. Summary of the Balearic Shearwater observations 0.6
showing the total number of birds sighted, the number and a Q —e— 1999
proportion of occurrences, and the maximum density during 0.51
each survey year.
0.4
Number Maximum density 0.3 -
Year recorded Occurencet (birds/100 km?)
0.2 1
1999 387 56 (26.5%) 3453
2000 175 37 (22.7%) 1675 0.1
2002 95 47 (24.3%) 900 0.0
Total 657 140 (24.7%) '
- 0.1 4

Note: Occurrence and density statistics are derived from the
9-km grid cells used for analysis.

t “Occurence” is the number of grids where shearwaters are
present. Numbers in parentheses are the percentages of grids
where shearwaters are present.

suitable spatial scale of analysis (Fig. 2). Both the
occurrence and density correlograms did not show
significant patterns. However, the occurrence correlo-
gram suggested some degree of aggregation up to fairly
large spatial scales (54-63 km) in 1999 and 2000 and at a
smaller spatial scale (18-27 km) in 2002. Overall, the
shearwater distribution pattern seemed more spatially
constrained in 2000, with larger positive Moran’s [
values at smaller lags (9—54 km) and negative values at
larger lags (>90 km). Conversely, all Moran’s I values
were positive in 1999 and 2002 (Fig. 2a). For the density
data, all the Moran’s I values were close to 0, suggesting
a random distribution (Fig. 2b).

Association to oceanographic habitats

Balearic Shearwater occurrence.—The analysis of the
presence/absence data identified seven significant pre-
dictor variables: distance to the nearest colony, distance
to the shoreline, median depth, depth gradient, chl a
gradient, survey effort, and year of survey (Table 4). The
interpretation of these results is based on the positive or
negative sign of the estimated response coefficients,
where a positive or negative sign is indicative of a greater
or smaller probability of encountering a shearwater in a
given grid cell, respectively. Therefore, the negative signs
of the distance to the nearest colony and shoreline, the
median depth, and depth gradient were suggestive of the
distribution of the species along the Iberian continental
shelf, close to the coast and to breeding colonies. The
positive sign of the chl a gradient estimate suggested the
association of the Balearic Shearwater with oceano-
graphic fronts indicative of productive coastal waters
and river plumes. The positive association with the
survey effort suggested that the greater the area surveyed
within a 9-km grid cell, the greater the probability of
encountering a shearwater. Because the interannual
effect was calculated relative to the last year of the
study, the encounter probability was higher in 1999 and
2000 than in 2002 (see the null value of 2002 listed in
Table 4). Altogether, the best-fit model explained 21% of
the observed deviance. The goodness-of-fit test indicated

100 120 140

0 20 40 60 80
Lag distance (km)

Fic. 2. Analysis of spatial autocorrelation: Moran’s [
correlogram for Balearic Shearwater (a) occurrence and (b)
density during the three years of surveys (1999-2002). The solid,
horizontal line at zero represents a baseline showing no spatial
pattern. All Moran’s / values were nonsignificant.

that the model performed well (x*=579.00, P=0.74, df
= 558).

Once we identified the significant variables, we
represented the shearwater distribution and the under-
lying environmental datasets graphically using GIS.
Balearic Shearwaters occurred predominantly around
the Ebro Delta and in the vicinity of Cape La Nao,
especially in 1999 and 2000. In 2002, the shearwaters

TaBLe 4. Results of the generalized linear model (GLM)
analysis of the Balearic Shearwater occurrence during the
three years of this study.

Estimate
Variable parameter s df $ P

Distance to colony —0.007 0.001 1 33.82 <0.0001
Distance to shoreline  —0.026  0.012 ‘1  4.69  0.030
Median depth -0.003 0.001 1 75.22 <0.0001
Depth gradient —0.020 0.006 1 438 0.0364
Chl a gradient 0.015 0005 1 531 0.021
Survey effort 0232 0062 1 554 <0.019
Year (1999) 0.639 0269 2 7.39  0.025
Year (2000) 0.037  0.288

Year (2002) 0.000  0.000

Notes: Only significant variables are shown. Degrees of
freedom, chi-square, and signficance are given for the global
contribution of the year effect and not for each specific year
since the year variable is categorical.
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showed a more widely scattered pattern, with sightings
from Cape Creus to Cape Palos (Fig. 3). We super-
imposed the shearwater distributions over- the average
chl a gradients for each year using the monthly data
from those months which better matched the temporal
windows of the annual surveys: May (1999 and 2002)
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and June (2000) (cf. Table 2). We used the chl @ monthly
average data only for mapping because they provided a
more complete (i.e., cloud-free) spatial coverage of the
study area. However, the habitat-use models used the
finer-scale satellite imagery exclusively (see Methods).
Testing model accuracy and predictive power.—We
obtained an AUC value of 0.795 £ 0.006 (*sk; Fig. 4a),
which was indicative of a good model performance
(Swests 1988). The model accurately classified 71.4% of
the presences and 72.6% of the absences of Balearic
Shearwaters in 9-km grid cells. When we intersected the
sensitivity and specificity curves, we identified a prob-
ability threshold of 0.3 (Fig. 4b). Thus, we considered
those 9-km grid cells where the predicted encounter
probability exceeded 0.3 as the suitable habitat for the
Balearic Shearwater. We generated maps of suitable
habitat for each year, extending the area of interest to
the northwestern African coast and including the
breeding colonies in the Balearic archipelago (Fig. 5).
We used the seven significant variables identified by the
model to recalculate occurrence probabilities within this
expanded area for each year. From the centroid of each
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Fic. 4. Receiver operator curves (ROC) showing the trade-
offs when (a) the sensitivity is plotted vs. 1 — specificity, where
the 1:1 line represents the expected probabilities if shearwaters
were randomly distributed, and (b) the sensitivity and the
specificity are calculated for each probability level to identify
the suitable oceanographic habitat threshold (Pr = 0.3 in this
case) (see Methods: Data analysis: Suitable habitat).
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grid cell we computed the four variables that did not
vary between years: distance to the nearest colony,
distance to the shoreline, median depth, and depth
gradient. To account for biases in survey effort, we
calculated an average survey effort for the entire study
period and applied that same value to all the grid cells.
However, the monthly average values of the chl a
gradients and the year coefficients varied over time,
driving the interannual variability in the location and
extent of the suitable oceanographic habitat.

For the entire study period (1999-2002), the suitable
oceanographic habitat included, in general terms, two
areas in the Iberian continental shelf: the Ebro Delta
area in the north and Cape La Nao in the south
(latitudinal limit of 38.0° N); and waters close to the
breeding colonies at the Balearic archipelago. These

TABLE 5. Results of generalized linear model (GLM) analysis
of the Balearic Shearwater density during the three years of
this study.

Estimate
Variable parameter SE df x’ P
Chl a median 287.490 118.490 1 6.88  0.009
Survey effort —48.204 15.978 1 8.90  0.003
Year (1999) 193.622 73868 2 6.79 0.034
Year (2000) 82.693 81.557
Year (2002) 0.000 . 0.000

Note: Only significant variables are shown. Degrees of
freedom, chi-square, and significance are given for the global
contribution of the year effect and not for each specific year
since the year variable is categorical.

areas were classified as suitable shearwater habitat in at
least two of the three survey years (Fig. 5).

Balearic Shearwater density.—The analysis of shear-
water densities identified three significant predictor
variables: median chl a, survey effort, and year (Table
5). The positive effect of median chl a suggested that
shearwaters were more abundant in highly productive
waters. The survey effort revealed a sampling bias, with
apparent shearwater densities within a grid cell dimin-
ishing with increasing survey area. Thus, shearwater
sightings in grids with low survey effort tended to yield
higher apparent density values. Finally, the year effect
suggested that shearwater densities were higher during
the first two years of the study (1999, 2000) than in 2002.
Altogether, the best-fit model explained 15% of the
observed deviance.

To illustrate the spatial distribution of shearwater
aggregations, we plotted their density over the extent of
different productivity regimes (Kahru and Mitchell
2000), defined using the monthly averages of median
chl a for each year separately (Fig. 6). The study area
was characterized by a general mesotrophic regime
(intermediate productivity). Some continental shelf
locations were annually characterized by eutrophic (high
nutrient) and some highly enriched areas. The area
north of Cape Creus was highly productive in 1999, and
the area around the Ebro Delta was characterized by
elevated chl a concentrations in 2000 and 2002 (Fig. 6).

The observed maximum values of shearwater density
diminished over the study period (Table 3) and the
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distribution patterns displayed noticeable interannual
variability (Fig. 6). In 1999, two main areas of shear-
water aggregations were identified, in both cases
associated with mesotrophic conditions. The area
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around the Ebro Delta supported the highest densities,
while the area around Cape La Nao was characterized
by lower densities (Fig. 6a). In 2000, shearwaters were
more strongly concentrated off the Ebro Delta, asso-
ciated with the highest (highly eutrophic) chl a levels
(Fig. 6b). However, in 2002, shearwaters were widely
distributed across the Iberian continental shelf from
Cape Creus to the latitudinal limit of 38.0° N. We did
not identify any areas of dense foraging aggregations,
even though the Ebro Delta region registered the highest
chl a levels in 2002.

DiscussioNn
Oceanographic habitat of the Balearic Shearwater

Although the Mediterranean is considered an oligo-
trophic sea, local ocean productivity is considerably
variable in time and space (Estrada 1996, Agostini and
Bakun 2002, Arnau et al. 2004). For instance, the
remotely-sensed chl a values documented in the study
area were generally characteristic of a mesotrophic
regime (Kahru and Mitchell 2000), even though the
highly productive areas of the Ebro Delta and the
Alboran Sea gyres were characterized by highly enriched
phytoplankton pigment concentrations. The foraging
range of the Balearic Shearwater during the chick-
rearing season mainly comprised the Iberian continental
shelf between 42.3° N and 38.0° N. These analyses
revealed that shearwaters were present in shallow shelf
and coastal waters characterized by frontal systems in
areas closer to their breeding colonies. Within this larger
foraging range, shearwaters were most numerous in the
highly productive waters with elevated chl a concen-
trations around the Ebro Delta (especially in 2000) and
the area extending to the south of Cape La Nao. These
results suggested that the shearwaters were responding
to diverse oceanographic processes. They were likely
aggregating off the Ebro Delta in response to plumes of
higher productivity associated with the spring—summer
input of surface nutrients from the Ebro River, during a
period of weak vertical mixing (Salat et al. 2000). The
shearwater sightings around Cape Creus could also be
explained by the presence of mesoscale oceanographic
features (Arnau et al. 2004) and submarine canyons
(Palanques et al. 2005) acting to increase localized
productivity and aggregate prey. Both the distribution
and abundance patterns showed substantial interannual
variability, which was likely associated with the influ-
ence of some additional explanatory variables not
included in the models. Namely, year-to-year changes
in the discharge of the Ebro River, shifts in the stocks of
small pelagic fish, and spatiotemporal variability of the
fishing effort and fishery discards, as well as variability
of survey effort, could influence shearwater distribution
patterns (Lloret et al. 2001, Agostini and Bakun 2002,
Arnau et al. 2004).

The oceanographic habitat model results matched the
foraging range described by the observed data, and also
identified the waters close to the breeding colonies in the
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Balearic Islands as potentially suitable habitat for the
Balearic Shearwater. Conversely, the Alboran Sea was
not identified as suitable shearwater habitat, although it
was characterized by high primary productivity asso-
ciated with high chl a gradients and hydrographic fronts
(Millot and Taupier-Letage 2004). We hypothesize that
the large distance between the breeding colonies and the
Alboran Sea make these productive waters unsuitable
for central place foraging shearwaters.

~ Our results agree with previous studies, which have
underscored the near-shore distribution of the Balearic
Shearwater and its tendency to occur in the vicinity of
the Ebro Delta (Abelldo and Oro 1998, Arcos and Oro
2002, Abello et al. 2003). Yet, to our knowledge, this is
the first time that a significant association of Balearic
Shearwaters and frontal systems has been documented
on the basis of quantitative analyses of oceanographic
variables. The association of this endangered species
with dynamic oceanographic habitats, defined by the
extent of hydrographic features (e.g., frontal systems,
productive river plumes), has important implications for
its management and conservation.

In particular, frontal regions where adjacent water
masses of different properties come together are often
characterized by convergence zones which aggregate
marine organisms, including seabirds and their zoo-
plankton and fish prey (LeFevre 1986, Franks et al.
1992, Hunt et al. 1996). Aggregations of upper-trophic-
level organisms are presumably the consequence of the
tight coupling of predator—prey interactions at frontal
systems, due to either enhanced aggregation or avail-
ability of subsurface prey to diving predators (Schneider
1993). Several previous studies have revealed dense
aggregations (100-1000 birds/km?) of diving shear-
waters at narrow (~10 km) tidal fronts characterized
by elevated and persistent productivity within broad
continental shelves (Hunt et al. 1996, Begg and Reid
1997). While Balearic Shearwaters did not aggregate
into such dense flocks, we documented intense aggrega-
tions (10—40 birds/km?) in the vicinity of the Ebro Delta
(Table 3, Fig. 6).

As part of our analysis, we did not detect any
significant association of shearwaters with trawlers,
suggesting that while fishery discards make an important
contribution to the energetic requirements of the species
(Arcos and Oro 2002), they do not influence their
distribution over large spatial scales (tens to hundreds of
kilometers; cf. Skov and Durinck 2001). Thus, we
hypothesize that discards represent a quantitatively
important, yet secondary, foraging resource, taken
opportunistically in the absence of alternative prey (cf.,
Arcos et al. 2006). In this case, oceanographic con-
ditions were the major determinant of the Balearic
Shearwater distribution, rather than trawl fishery
distribution, as has been previously suggested for other
opportunistic scavenging seabirds in the North Sea
(Camphuysen and Garthe 1997). Nevertheless, since the
highly productive areas used by the shearwaters also
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sustain demersal trawling fleets (Demestre et al. 1988), it
is difficult to tease apart the influence of natural (e.g.,
spawning aggregations) and anthropogenic (e.g., fishery
discards) food sources on their distributions.

One of the main contributions of this study to the
ecology of the Balearic Shearwater is the ability to map
potentially suitable habitat in other areas of the western
Mediterranean not surveyed using ship-based surveys.
However, this approach must be taken with caution
because it assumes that the habitat associations we
defined for the study area can be extrapolated to other
unsurveyed areas, such as the Gulf of Lions and the
North African Coast. This example illustrates the need
for repeated surveys during contrasting oceanographic
conditions to validate habitat suitability models devel-
oped for a specific area (Forney 2001, Raymond and
Woehler 2003), and shows the value of predictive models
as an exploratory tool to identify additional potential
habitats of highly endangered species in other poorly
studied areas. Suitable habitat areas identified by model
results could be targeted for exploratory ship-based and
aerial surveys. In both cases, the ability to repeatedly
survey protected species distributions and concurrent
oceanographic conditions over different seasons and
years is critical for developing, validating, and refining
habitat suitability models. In particular, these stand-
ardized surveys are critical to identifying time trends
both between seasons (early-late spring) and across
years (population trends).

Future research should also focus on obtaining a
mechanistic understanding of the small-scale interac-
tions between local oceanographic conditions, prey
distribution, and the aggregation patterns and behavior
of Balearic Shearwaters within the high-use foraging
grounds identified in the present study. Promising
avenues entail satellite tracking of individual foragers
and small-scale surveys along the frontal systems where
the species concentrates (e.g., Begg and Reid 1997,
Hyrenbach et al. 2002).

Conservation measures: implementation
of marine protected areas

The degree of aggregation and the habitat associa-
tions of far-ranging seabirds greatly influence their
susceptibility to anthropogenic threats, such as longline
bycatch and oil spills, and the potential use of marine
protected areas (MPAs) to mitigate those threats
(Anderson et al. 2003, Hyrenbach et al. 2006). Seabirds
are particularly susceptible to anthropogenic impacts at
certain time periods (e.g., breeding season) and localities
(e.g., foraging grounds) when/where they aggregate in
dense concentrations (Hunt et al. 1996, Huettmann and
Diamond 2000). Similarly, the feasibility and effective-
ness of specific management practices depend on both
the spatial extent and the degree of aggregation of the
protected species and the threats in question.

Nevertheless, given its delicate status, marine zoning
measures may greatly benefit the conservation of the
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Balearic Shearwater by extending protective measures
beyond the breeding colonies. In particular, MPAs and
time—area closures may help mitigate fisheries bycatch,
impacts from wind farms, and the risk of catastrophic
oil spills. Habitat models could guide the design of
effective, spatially explicit conservation measures by
characterizing those areas of special interest for con-
servation such as foraging areas and movement corri-
dors (e.g., BirdLife International 2004). In principle,
marine zoning strategies based on geographically fixed
features (e.g., seamounts, shelf-breaks, submarine can-
yons) are much more conducive to implementation,
because their boundaries are defined by the extent of
static depth contours. Dynamic MPA boundaries would
be much more difficult, but not impossible, to imple-
ment (Hyrenbach et al. 2000, Norse et al. 2005).
However, there is a clear need to develop such an
MPA model, and marine zoning measures defined by
seasonal and interannual changes in water mass
distributions have already been used to mitigate fisheries
bycatch (e.g., Nagao et al. 1993, NOAA 2002).

Following the model of a core-buffer MPA, we
envision the following marine zoning approach to
protect Balearic Shearwaters during the breeding season.
Areas of dense aggregations could serve as the core
regions deserving elevated protection. Namely, the area
of influence by the Ebro River discharge and Cape La
Nao region' would be ideal candidates for stringent
protective measures, including prohibition of oil tanker
traffic and the adoption of adequate measures to help
shearwaters to avoid fisheries bycatch (Arcos and Oro
2004, Arcos et al. 2006). The dynamic nature and
interannual variability of fronts raises the necessity of
the periodical revision of their geographic extension.
Nevertheless, these features could be monitored re-
motely using satellite imagery and certain areas of likely
habitat could be delineated on the basis of the
probability of occurrence of these frontal systems. Other
areas identified by the modeling of suitable habitat (e.g.,
areas surrounding the breeding colonies) should be
surveyed to evaluate their importance as foraging
grounds for the species, and could presumably be
integrated into an MPA network linking the distant
foraging grounds identified in the Iberian continental
shelf (Roberts et al. 2001).

In addition to the core foraging grounds, other more
diffuse protective measures could be implemented within
a larger buffer region delineated by the range of the
species. Namely, a compulsory fishery observer program
to record potential bycatch in longline fisheries, and the
study of potential impacts of wind farms would apply to
the continental shelf region, especially in the vicinity of
the Ebro Delta. Currently, a marine wind farm is
planned just a few kilometers off the Ebro Delta.

While we acknowledge that effective conservation of
the Balearic Shearwater may require the implementation
of protective measures throughout the life cycle of the
species, we recognize that MPAs identified in this study
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(restricted to the chick-rearing period) may not be
feasible or effective during the post-breeding and
juvenile dispersal stages. Thus, we advocate the judi-
cious use of marine zoning strategies for MPA
identification outside the breeding season in conjunction
with other non-site-specific management measures (e.g.,
bycatch mitigation and oil spill prevention programs),
when the species disperses into the Western Mediterra-
nean and the North Atlantic. Ultimately, non-site-
specific management measures should always comple-
ment site-specific measures (MPAs), even when a well-
designed and thorough MPA network is implemented.
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