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Abstract: 1 

Hexavalent chromium compounds such as chromate and dichromate, commonly designated as Cr (VI) compounds, 2 

are widely used heavy metals in different industries and are considered highly toxic to most life forms. 3 

Unfortunately, they have become a major pollutant of groundwater and rivers around dichromate using industries. 4 

Bioremediation is widely used to decrease the amount of dichromate in wastewater but requires large amounts of 5 

precious fresh water. Here we tested two marine micro-algal species, Phaeodactylum tricornutum strain CCY0033 6 

and Navicula pelliculosa strain CCMP543, for their ability of dichromate bioremediation and concomitantly 7 

producing lipids that can serve as biofuel. Dichromate tolerance of the strains was investigated under different 8 

growth conditions in order to obtain high biomass yields, high lipid accumulation and high dichromate removal from 9 

the medium. Both algal strains grew well and produced high biomass in media containing up to 1 mg of dichromate 10 

per liter. Variations in growth conditions revealed that dichromate removal from the medium correlated positively 11 

with biomass yield. Dichromate removal using living cells was in the same order of magnitude as with autoclaved 12 

dead cells or when using extracted extracellular polymeric substances (EPS). This suggests biosorption of 13 

dichromate to cell-associated polymeric substances as the major mechanism of the bioremediation process. For both 14 

strains, optimal dichromate removal and lipid production were achieved at a light intensity of 55 μmol m
-2

s
-1

 and at a 15 

sodium nitrate concentration of 3 mM. The optimal temperature for dichromate removal and lipid production was 23 16 

°C for P. tricornutum and 27 °C for N. pelliculosa. Compared to P. tricornutum strain CCY0033, N. pelliculosa 17 

strain CCMP543 produced an overall higher lipid yield under these conditions. 18 

Keywords: diatoms, chromium (VI), bioremediation, lipids 19 

 20 

 21 

 22 

1. Introduction 23 

Chromium exists in three major forms in nature: the uncharged metallic form (Cr), a trivalent form (Cr (III)) and a 24 

hexavalent form (Cr (VI)) (Greenwood and Earnshaw, 1997). Chromium has several important industrial 25 

applications such as in the leather industry, chrome plating, textile manufacturing, and steel industry (U.S. 26 

Department of Health and Human Services, 2008). Cr and Cr (III) are considered nontoxic and non-carcinogenic or 27 

possess only low toxicity. Moreover, in trace concentrations, Cr (III) is even an essential element for life (Straif et 28 
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al., 2009; U.S. Department of Health and Human Services, 2016). Cr (VI), however, is classified as a human 29 

carcinogen (Straif et al., 2009) and is toxic to animals (Velma et al., 2009), plants (Shanker et al., 2005) and 30 

microorganisms (Agency for Toxic Substances and Disease Registry, 2012; Petrilli and De Flora, 1977; Wong and 31 

Trevors, 1988; Yao et al., 2008). An estimated 50 to 80 % of all plant and algal species are negatively affected by Cr 32 

concentrations exceeding 100 µg/L (Federal Environmental Quality Guidelines, 2017). Toxic concentrations of Cr 33 

(VI) for microalgae varied from 1 µg/L for the diatom Thalassiosira pseudonana to up to 10 mg/L for a Chlorella 34 

sp. (Wong and Trevors, 1988). Cr (VI) toxicity affects microorganisms in pure cultures (Petrilli and De Flora, 1977) 35 

as well as in natural microbial communities. Increasing the concentration of Cr (VI) resulted in decreased microbial 36 

activity (Yao et al., 2008).  37 

Many ecosystems and surface- and groundwaters are polluted by heavy metals including Cr (VI), mostly in the form 38 

of chromate (CrO4
2-

) or dichromate (Cr2O7
2-

) (Agency for Toxic Substances and Disease Registry, 2012), in which 39 

Cr (VI) concentrations range from 0.5 mg/L to up to 20 mg/L (Agency for Toxic Substances and Disease Registry, 40 

2012; Zhitkovich, 2011). In 1991, the United States Environmental Protection Agency (US-EPA) has set the 41 

maximum allowable contamination level for total chromium at 100 ppb (100 µg/L). In a 2014 revision, the 42 

acceptable contamination level was decreased to 10 ppb (10 µg/L) and is aiming at a public health goal to reach 0.02 43 

ppb (20 ng/L) (Federal Environmental Quality Guidelines, 2017; Agency for Toxic Substances and Disease 44 

Registry, 2012; U.S. Department of Health and Human Services, 2016). This has led to the development of various 45 

abiotic and biological approaches for the treatment of wastewater or ecosystems in order to eliminate Cr (IV) 46 

contamination (Barrera-Díaz et al., 2012). Bioremediation uses autochthonous or introduced living organisms, often 47 

microorganisms, algae, or plants in order to remove or detoxify contaminants. While plants, heterotrophic bacteria, 48 

and fungi have been widely used in bioremediation of Cr (VI) contaminated sites, the potential of applying 49 

phototrophic microorganisms has received much less attention (Barrera-Díaz et al., 2012). This is surprising because 50 

just as plants, microalgae and cyanobacteria are photoautotrophic and harvest sunlight energy, which would 51 

decrease process costs and could therefore be commercially attractive. In addition, microalgae and some 52 

cyanobacteria are known to accumulate lipids and hence their biomass can be used for the development of so-called 53 

third-generation biofuels. These organisms, in addition to their bioremediation capacities, can be grown on non-54 

arable land and when choosing marine or salt-adapted organisms, competition with food production and the use of 55 

precious freshwater could be avoided (Sharma et al., 2012). Furthermore, biosorption using extracellular polymeric 56 
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substances (EPS) is one of the major mechanisms of heavy metal bioremediation by microalgae and cyanobacteria, 57 

and it would therefore be possible to recover metals such as Cr (IV) from these biosorbents (Sen and Dastidar, 58 

2010).  59 

Bacillariophyta (diatoms) comprise a large and diverse group of microalgae that are widespread in aquatic 60 

ecosystems. They are often the dominant group of eukaryotic phytoplankton and are responsible for 40-45% of the 61 

primary production in the ocean (Sarthou et al., 2005; Smetacek, 1999). Moreover, diatoms are key to a worldwide 62 

algae-based bioeconomy that is used for food, feedstock, and biofilm production (Laurens et al., 2017). There have 63 

been many applications using diatoms including bioremediation of heavy metals (Bozarth et al., 2009; Pereira et al., 64 

2011). Moreover, several strains of diatoms are known to possess natural high contents of neutral lipids that can be 65 

converted into biodiesel (Zhu et al., 2016). 66 

This study aimed at the use of diatoms to combine the sequestration of toxic chromium (VI) and the optimization of 67 

lipid accumulation for biofuel production. For this, we have used two species, Phaeodactylum tricornutum and 68 

Navicula pelliculosa. These benthic diatoms have been shown to be oleaginous (produce lipid) and produce high 69 

amounts of extracellular polymeric substances (EPS) while growing at low silicate concentration (Coombs et al., 70 

1967; Kaur, 2014; Lewin, 1955). By varying the culturing parameters, we optimized growth yield, chromium 71 

removal, and lipid production. 72 

 73 

2. Materials and methods 74 

2.1 Organisms and culture conditions 75 

The diatoms, P. tricornutum CCY0033, isolated from an intertidal sediment from the North Sea beach of the Dutch 76 

barrier island Schiermonnikoog, the Netherlands, and N. pelliculosa CCMP543/CCY0399, originally isolated from 77 

Oyster Pond, Martha's Vineyard, Massachusetts USA, were obtained from the Culture Collection Yerseke (CCY), 78 

Royal Netherlands Institute of Sea Research. Cultures were grown in MDV medium (Supplementary material) 79 

containing 6 mM nitrate and 150 µM silicate in 250 mL polystyrene tissue culture flask (TTP, 90026, Switzerland). 80 

To 92 mL of fresh medium, 8 mL (8% v/v) of an actively growing, 3 weeks old pre-culture was added. The cultures 81 

were incubated at 14 °C and 55 μmol m
-2

s
-1

 light (photon flux density) at a 16-8 h light-dark regime. The pH of the 82 

media was adjusted at 7±0.2. These conditions are hereafter called “standard growth conditions”. Culturing was 83 
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always performed in triplicate and the growth was followed by measuring the optical density at 600 nm (OD600) 84 

using sterile MDV medium as a blank.  85 

 86 

2.2 Chromium (VI) tolerance 87 

To determine Cr (VI) tolerance, both diatoms were grown as described above in MDV medium containing Cr (VI) 88 

in the form of potassium dichromate K2Cr2O7 at final concentrations ranging from 0 to 10 mg/L. Growth was 89 

assessed by end-point measuring the optical density at 600 nm (OD600)) after 15 days of incubation. 90 

 91 

2.3 Analysis of dichromate concentration 92 

Residual Cr (VI) in the medium after biosorption was assayed using a colorimetric test upon reaction with diphenyl 93 

carbazide (DPC) according to recommendations by the American Public Health Association (APHA Method 3500-94 

Cr: Standard Methods for the Examination of Water and Wastewater (chromium), 1989 and 1996) and the 95 

microalgae samples were prepared as described by Dönmez and Aksu (2002). The samples were centrifuged for 15 96 

min at 5,000 rcf before adding DPC to the supernatant. Hexavalent chromium concentration was determined by 97 

measuring the colorimetric at 540 nm using various concentration of Cr (VI) (0, 0.25, 0.5, 0.75, and 1 mg/L) in 98 

sterile MDV medium as calibration curve.  99 

 100 

2.4 Evaluation of heat-killed P. tricornutum and N. pelliculosa for chromium removal  101 

To establish potential modes of chromium removal (enzymatic versus passive biosorption), chromium removal by 102 

living cells were compared with removal with heat-killed diatom cells. Diatoms were grown for 15 days in Cr (VI)-103 

free MDV medium (100 mL) and killed by autoclaving for 20 min at 121 °C. After cooling down, the 100 mL of 104 

heat-killed cells were transferred to a dialysis tube (3 kDa cut-off) and placed in a sterile flask (Blue Cap Screw Cap 105 

bottle, 500 mL, DURAN) containing 100 mL sterile MDV. Filter sterilized Cr (VI) was added to the medium at a 106 

final concentration of 1 mg/L and incubated under standard growth conditions while stirring with a magnetic bar at 107 

150 rpm. Incubation was maintained for 3 days to establish an equilibrium in Cr (VI) concentration and the residual 108 

hexavalent chromium concentration in the external medium was determined as described above. 109 

 110 

2.5 Potential role of extracellular polymeric substances in chromium (VI) biosorption 111 
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EPS is abundantly produced by both diatom species and can be present as colloidal molecules suspended in the 112 

medium or attached to the cells (Staats et al., 1999). Extraction of both EPS fractions was carried out according to 113 

Staats et al. (1999) with slight modifications. Non-attached EPS was separated from the cells in both diatom cultures 114 

(100 mL) by centrifugation at 20,000 rcf (15 min and 10°C). The loosely bound attached-EPS fraction was extracted 115 

from the cell pellet by resuspending it in 5 mL of sterile MDV medium and incubated for 1 h at 30 °C in a shaking 116 

water bath. Subsequently, the suspension was centrifuged at room temperature for 30 min at 20,000 rcf and the 117 

supernatant was combined with the non-attached EPS-containing supernatant from the previous step. Instead of 118 

precipitating the EPS, we followed Sharma et al. (2008) using EPS for heavy metal bioremediation. Briefly, the 119 

collected cell-free culture supernatant containing the EPS was filter sterilized (0.2 µm filters, cellulose acetate 120 

membrane, VMR, 514-0061), subsequently freeze-dried in a sterile bottle, and stored at -20 ºC until further use. For 121 

chromium biosorption testing, the freeze-dried EPS (extracted from 100 mL culture) was dissolved in 20 mL of 122 

sterile MilliQ water and put into a dialysis tube (3 kDa cut-off). The dialysis tube was placed in a flask containing 123 

70 mL sterile MilliQ water then the volume was adjusted to 100 mL and filter sterilized Cr (VI) was added at a final 124 

concentration of 1 mg/L. The flasks with the EPS-containing dialysis tube were incubated under standard cultivation 125 

condition with mild shaking at 150 rpm. After 3 days the residual hexavalent chromium concentration in the 126 

medium was determined as described above. 127 

 128 

2.6 Lipid measurement 129 

The lipid accumulation in diatom cells was visualized using the fluorescent stain 4,4-difluoro-1,3,5,7-tetramethyl-4-130 

bora-3a,4a-diaza-s-indacene (BODIPY 505/515; Invitrogen). The lipid content was measured using the sulfo-131 

phospho-vanillin (SPV) assay (Mishra et al., 2014). Calibration was done with triolein (Sigma) as standard. The 132 

lipid concentration in the culture was expressed as µg triolein/mL. 133 

 134 

2.7 Variation in growth condition of the diatoms 135 

The effect of different growth conditions on biomass production, lipid production, and chromium bioremediation 136 

was investigated. These included different culture media, temperature, light intensity, nitrogen source and -137 

concentration, silicate depletion, the presence of azide, and long vs short-term exposure to Cr (VI). 138 

 139 
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2.8 Statistics 140 

The results were statistically analyzed using a one way ANOVA and testing the significance of the variance using 141 

Tukey's Honest Significant Difference (TukeyHSD). Both ANOVA and TukeyHSD were performed using the core 142 

R code (R Core Team, 2017). All experiments were performed in triplicate and p-values < 0.05 were considered 143 

significant.  144 

 145 

3. Results and discussion  146 

Different growth conditions were applied in order to test whether the diatoms P. tricornutum and N. pelliculosa are 147 

potential candidates for bioremediation and concomitantly accumulate high amounts of neutral lipids, which could 148 

be used as a resource for biofuels. For efficient Cr (VI) removal and obtaining high lipid yields, it is essential to 149 

maintain a relatively high biomass and only cultures with an OD600 > 0.2 were considered for further analysis. 150 

For establishing the optimal condition for the aforementioned goals, several growth factors were tested in media 151 

containing 1 mg/L Cr (VI). The diatoms were grown in the presence of 1 mg/L of Cr (VI), in different artificial 152 

seawater media (MDV, ASNIII, and T+), different temperatures (14, 18, 23, 27, 30, and 37 °C), different light 153 

intensities (30, 55, and 80 μmol m
-2

s
-1

), different nitrogen sources (nitrate, nitrite, urea, and ammonium nitrate) at 154 

different concentrations (0, 0.6, 3, 4.5, 6 and 7.5 mM), and silicate concentration (1.5 and 150 µM). Furthermore, 155 

the cultures were treated by the respiratory inhibitor, sodium azide, at 0, 10, 25, 50, 100 µM. The effect of long- or 156 

short-term exposure to Cr (VI) was tested in cultures that were grown for 15 days in the presence of 1 mg/L Cr (VI) 157 

and cultures that were grown without Cr (VI) and subsequently exposed for 24 h to 1 mg/L Cr (VI). 158 

 159 

3.1 Tolerance of P. tricornutum and N. pelliculosa to Cr (VI) and their potential to remove it  160 

The diatoms revealed tolerance to Cr (VI) up to 1 mg/mL (Table 1). At concentrations of 5 and 10 mg/L the growth 161 

yield was considerably lower, even though N. pelliculosa appeared to be less susceptible. The biomass-normalized 162 

Cr (VI) removal was highest at 1 mg/mL. Both strains removed up to 30-35% of the added Cr (VI) (Fig. 1A & B). 163 

At 5 mg Cr (VI)/L, N. pelliculosa removed 20% albeit at a lower standing stock of biomass. At higher Cr (VI) 164 

concentrations the biomass was too low to obtain a significant Cr removal (Table 1). Hence, for application of the 165 

tested diatom strains for treatment of contaminated water the concentration of Cr (VI) should not exceed 1mg/L. 166 

Subsequent experiments were therefore performed at 1 mg/L. 167 
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In general, hexavalent chromium is considered toxic and carcinogen. For human purposes (e.g. drinking water) the 168 

maximum allowable concentration has been set at 10 ppb (10µg/L) and EPA aims to decrease it even further to less 169 

than 0.02 ppb (20 ng/L) for public health (Federal Environmental Quality Guidelines, 2017; Agency for Toxic 170 

Substances and Disease Registry, 2012; U.S. Department of Health and Human Services, 2016). Moreover, Cr (VI) 171 

has been shown to be highly toxic and non-essential for microalgae and bacteria, although some strains have shown 172 

some level of resistance to Cr (VI) (Agency for Toxic Substances and Disease Registry, 2012; Cervantes et al., 173 

2001; Wong and Trevors, 1988). The toxic concentration depends on the species and ranges from 1 µg/L for the 174 

estuarine diatom Thalassiosira pseudonana, 20 µg/L for Chlorella pyrenoidosa, 150 µg/L for Ulothrix fimbriata up 175 

to 980 µg/L for Skeletonema costatum. Few microalgal species have been reported to resist concentrations higher 176 

than 1 mg/L (Riedel, 1984; Wong and Trevors, 1988). Moreover, when adding 0.4 mg/L chromium to a natural 177 

community, the composition shifted in dominance from diatoms to green microalgae and cyanobacteria, indicating a 178 

higher susceptibility of diatoms to Cr (VI) (Patrick, 1978). Previous studies reported that exposure of N. pelliculosa 179 

or P. tricornutum to heavy metals such as chromate resulted in a significant decrease or a complete inhibition of 180 

growth (Gabbasova et al., 2017; Irving et al., 2009). Gabbasova et al. (2017) studied the effect of Cr (VI) on diatoms 181 

and reported that the biomass yield of P. tricornutum at 2.5, 5, 10, 15 and 25 mg/L Cr (VI) was 60, 45, 25, 20, and 182 

10% of the control, respectively. This is in agreement with our study in which 1 mg/L Cr (VI) had no effect on the 183 

biomass yield of P. tricornutum, while 5 and 10 mg/L Cr (VI) resulted in a decrease of 60-80% (Table 1). This 184 

confirms that the negative effects of Cr (VI) on growth and photosynthesis of P. tricornutum starts in the 185 

concentration range of 1-2.5 mg/L dichromate. The mechanism underlying the different sensitivity to Cr in 186 

microalgae remains to be clarified, yet some suggestions have been made to explain it such as interference with the 187 

cell cycle, inhibition of respiration and/or photosynthesis, or loss of motility (Cervantes et al., 2001). Gabbasova et 188 

al. (2017) found that chromate may inhibit photosystem II of P. tricornutum. Riedell (1984) proposed that chromium 189 

toxicity in diatoms is caused by competition with sulfate. Because the concentration of sulfate in our media was high 190 

(23 mM) it might explain the relatively low toxicity of chromium in the marine diatoms we investigated. 191 

 192 

3.2 Optimizing growth 193 

Both strains were tested for growth on three different media, the standard MDV, T+, and ASNIII media. The highest 194 

OD600 value was obtained when growing on the standard MDV medium (Table 1). T+ medium yielded only slightly 195 
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lower biomass compared to MDV but ASNIII decreased the growth yield by nearly 50% and 65% in P. tricornutum 196 

and N. pelliculosa, respectively. The diatoms for subsequent experiments were therefore cultured in MDV medium. 197 

The nitrogen source of all three media was NaNO3 at a concentration of 6 mM and all three containing 150 µM 198 

silicate to support frustule production by diatoms. However, there are several differences between the three media 199 

with regards to their ingredients (Mg, Ca, K, P, S, carbonate, trace element and supplementary vitamin mix) and 200 

their respective concentrations (supplementary material) that may affect the growth yield. The two prominent 201 

differences between MDV and T+ versus ASNIII are that the first two contain a supplementary vitamin mix and 202 

higher carbonate concentrations (~10 times). Previous studies demonstrated that both factors can stimulate higher 203 

biomass production by microalgae (Danesh et al., 2018; Eppley, 1977; Lohman et al., 2015).  204 

Increasing the growth temperature to 23 °C and 27 °C for respectively P. tricornutum and N. pelliculosa resulted in 205 

an increase in biomass (Table 1). Above these temperatures the diatoms did not grow. The biomass increased with 206 

approximately 0.1 OD600 units at their maximum growth temperature relative to the routinely applied growth 207 

temperature of 14 °C. 208 

For P. tricornutum, increasing the light intensity from 30 to 50 μmol m
-2

s
-1

 and from 50 to 80 μmol m
-2

s
-1

 showed no 209 

significant change in OD600, however, comparing light intensity at 30 to 80 μmol m
-2

s
-1

 showed a slight decrease in 210 

biomass. At 30 μmol m
-2

s
-1

 the biomass was approximately 0.05 to 0.06 OD600 units higher. For N. pelliculosa there 211 

was no significant difference in biomass yield at any of the tested light intensities. 212 

Previous studies demonstrated that the type of nitrogen source could significantly affect growth yield and lipid 213 

production in microalgae. For example, while sodium nitrate or sodium nitrite can stimulate growth in many 214 

microalgal species, non-toxic ammonium (NH4
+
) can dissociate to the more toxic form of ammonia (NH3) (Qiao et 215 

al., 2016; Sharma et al., 2012; Zhu et al., 2016). The standard medium contains nitrate (6 mM). The same 216 

concentration of nitrite did not affect growth of P. tricornutum and N. pelliculosa. Urea did not affect growth of P. 217 

tricornutum but decreased the growth yield of N. pelliculosa. Ammonium nitrate decreased the growth yield by 0.15 218 

OD600 units for N. pelliculosa, while P. tricornutum did not grow very well on this nitrogen source (Table 1). Use of 219 

either 6 mM nitrate or nitrite is possible but ammonium at this concentration appears to be toxic (Admiraal, 1977) 220 

due to pH effects (Fidalgo Paredes et al., 1995). Although urea has not been reported to be as toxic as ammonia, 221 

previous studies demonstrated a toxic effect at high concentrations (Admiraal, 1977; Yongmanitchai and Ward, 222 

1991).  223 
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Growth yield of both strains is furthermore positively correlated with NaNO3 concentration. Without NaNO3 growth 224 

halted. P. tricornutum and N. pelliculosa required respectively at least 3 mM and 4.5 mM nitrate for highest growth 225 

yield. Higher concentrations of NaNO3 did not further increase the growth yield (Table 1).  226 

Another important nutrient for diatoms is silicate, essential for the formation of their frustules (Coombs et al., 1967). 227 

The effect of silicate concentration was combined with different concentrations of NaNO3 (Table 1). Silicate 228 

deprivation had no significant growth effect on P. tricornutum and decreased growth yield only at low NaNO3 (0.6 229 

mM). In contrast, the growth yield of N. pelliculosa was dramatically decreased (to ~0.1 OD600 units) independent 230 

on the concentration of NaNO3. At 150 µM silicate, growth yield of N. pelliculosa was ~0.27 OD600 units at 0.6 mM 231 

NaNO3 and was higher at 3 and 6 mM NaNO3. N. pelliculosa obviously requires silicate for growth. This species is 232 

known to be sensitive to silicate deprivation. Without silicate, the growth of N. pelliculosa ceases and cell 233 

metabolism is restricted to maintenance until silicate becomes available (Coombs et al., 1967). In contrast, P. 234 

tricornutum is the only reported diatom species so far, that grows well without silicate (Lewin, 1958). P. 235 

tricornutum has a unique morphological plasticity and only forms a silicified frustule in its oval form. This 236 

morphology is mostly found in intertidal sediments and is essential for gliding motility and general stress resistance 237 

(Borowitzka and Volcani, 1978; De Martino et al., 2007). In liquid medium frustules are not formed by P. 238 

tricornutum. 239 

 240 

3.3 Effect of growth condition on Cr (IV) bioremediation 241 

3.3.1 The role of extracellular polymeric substances (EPS) in dichromate removal  242 

The mechanism of Cr removal in P. tricornutum and N. pelliculosa is not precisely known. In general, removal of 243 

heavy metals such as dissolved Cr (VI) from the medium could be through sequestration, either by e.g. active uptake 244 

by the cells or by biosorption to (extracellular) substances produced by the cells, or by enzymatic reduction of the 245 

compound (Mantzorou et al., 2018; Perales-Vela et al., 2006). However, previous studies suggest that biosorption to 246 

extracellular materials produced by the microorganisms (such as phytochelatins) is an important mechanism for 247 

bioremediation of heavy metals by microalgae including diatoms such as P. tricornutum (Bertrand and Poirier, 248 

2005; Cassin et al., 2018; Morelli and Scarano, 2001; Mota et al., 2016; Perales-Vela et al., 2006; Richards and 249 

Mullins, 2013). 250 
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In order to determine the underlying mechanism (enzymatic reduction, active uptake, or biosorption), chromium 251 

removal by living diatoms was compared with heat-killed (autoclaved) cell suspensions (Okeke, 2008). The living 252 

cultures of P. tricornutum and N. pelliculosa removed up to 30-35% Cr (VI) (Fig. 2A & B). However, when the 253 

autoclaved cell suspensions were exposed for three days (to ensure equilibrium) to 1 mg/L of Cr (VI), the amount of 254 

Cr (VI) removed was 76% and 72% of the removal by living cultures of P. tricornutum and N. pelliculosa, 255 

respectively (Table 2). The positive correlation of Cr (VI) removal with biomass, the removal of Cr (VI) by heat-256 

killed cells, and the difference in removal after short or long time exposure all suggest a minimal contribution of 257 

metabolism-dependent Cr (VI) (active uptake and enzymatic reduction) to the bioremediation process, and that Cr 258 

(VI) removal is rather caused by biosorption (Okeke, 2008; Okeke et al., 2008). 259 

Biosorption to the EPS would be a possibility to immobilize toxic metal ions (Cassin et al., 2018; Mantzorou et al., 260 

2018; Pereira et al., 2011; Sharma et al., 2008). Since EPS is continuously produced and a part of it is released into 261 

the environment, toxic metal ions may be immobilized for the long term (Mota et al., 2016). To test whether EPS 262 

from P. tricornutum and N. pelliculosa is capable of binding Cr (VI), EPS was extracted from the diatom cultures 263 

and tested for chromium removal. The experiment was performed in accordance to Sharma et al. (2008) and 264 

chromium removal was measured after 3 days. Although extraction may change the conformation of the EPS, 265 

previous studies demonstrated that the extracted EPS still retain its heavy metal biosorption capacity (Mota et al., 266 

2016; Sharma et al., 2008). Our results show that for P. tricornutum EPS, the amount of Cr (VI) removed was 32% 267 

and 24% of the removal by dead and live cells, respectively, and for N. pelliculosa EPS, these numbers were 268 

respectively 37% and 27 % (Table 2). This indicates that EPS plays a major role in the bioremoval process. 269 

Bioremediation through binding to EPS may be attributed to phytochelatins (Cassin et al., 2018; Mantzorou et al., 270 

2018) but may also be the result of the presence of negatively charged groups that bind the positively charged 271 

metallic ions (Mota et al., 2016). Carboxyl, hydroxyl, phosphoryl, sulfhydryl, and amino functional groups have 272 

been reported to be involved in the metal binding process, depending on the copiousness, accessibility and chemical 273 

state of the sites, and on the affinity between the metal and biosorption sites of the EPS (De Philippis et al., 2011). 274 

Moreover, Mota et al. (2016) argued that hexavalent chromium ion has a 6 valence positive charge and therefore has 275 

a strong affinity for binding to EPS. Although other positively charged metal ions are present in MDV medium, it 276 

has been argued that some heavy metal cations such as Cr (VI) are capable of replacing others that are bound to EPS 277 

through a cation exchange (Irving et al., 2009; Mota et al., 2016).  278 
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Chromium removal normalized to OD600 under the different cultivation conditions varied between 30% and 40 % 279 

per OD600 unit (Fig. 2A & B, panels a-h). In the short term vs long term exposure experiment, the effect of 15 280 

versus 1 day exposure to 1 mg Cr (V)/L was compared. For both strains, short exposure led to a 20 to 25% Cr (VI) 281 

bioremediation compared to the 40% that was observed after 15 days incubation and this was independent of the 282 

amount of NaNO3 (3 versus 6 mM) used in this experiment.  283 

For improving Cr (VI) removal we investigated several growth conditions. Compared to the standard growth 284 

conditions only increasing temperature from 14
o
 to 23

o
 (P. tricornutum) and 27

o
C (N. pelliculosa) improved Cr (VI) 285 

removal, while other growth parameters, including lower light intensity, using ammonium nitrate as nitrogen source, 286 

lower nitrate concentration, or silicate limitation (N. pelliculosa) in fact affected Cr (VI) removal negatively (Fig. 1). 287 

Sodium azide at the tested concentrations did not change biomass yield nor chromium bioremediation. This 288 

indicates that the amount of biomass appeared to be important for chromium removal. Growth parameters that led to 289 

a higher biomass also favored chromium bioremediation but conditions that decreased biomass yield affected 290 

chromium removal in a negative way. 291 

  292 

3.4 Assessing and optimization of lipid production in the presence of chromium (VI) 293 

Cultures were analyzed for their lipid content when grown in the presence of 1 mg/L Cr (VI). Biomass-normalized 294 

lipid content under standard growth conditions in the absence of Cr (VI) was ~40 µg triolein/ OD600 unit for P. 295 

tricornutum and ~ 30 µg triolein/ OD600 unit for N. pelliculosa. Addition of Cr (VI) at 1 mg/L to P. tricornutum 296 

cultures and in 1 – 5 mg/L to N. pelliculosa cultures did not significantly affect OD600 normalized lipid production. 297 

Lipid production in N. pelliculosa and P. tricornutum responded in the same way to the growth conditions. 298 

Differences were only associated with conditions when the growth of one of the two diatoms was impaired. Lipid 299 

content in cultures of P. tricornutum was negligibly higher when grown in T+ medium but significantly lower in 300 

ASN (III) relative to MDV (Fig. 2A & B panel b). Previous studies on lipid production by microalgae demonstrated 301 

that presence of vitamin mix in the medium (in our study MDV and T+ medium) not only supported higher biomass 302 

production but also it led to higher lipid accumulation (Danesh et al., 2018; Lohman et al., 2015). 303 

Increasing the growth temperature of the P. tricornutum cultures from 14 to 23 °C resulted in a 43% increase in lipid 304 

accumulation. For N. pelliculosa, which grew at its highest rate at 27 °C a nearly 300 % increase in lipid content was 305 

observed relative to 14 °C grown cells, from 29 to 114 µg triolein/ OD600 unit. 306 
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Biomass and lipid accumulation exponentially increase with temperature (Sharma et al., 2012; Zhu et al., 2016). 307 

During growth, cells accumulate little lipid but this changes during the stationary phase when lipid accumulates to a 308 

high amount (Sharma et al., 2012; Zhu et al., 2016). Previous studies argued that a faster growth rate means a higher 309 

biomass production and, hence, a higher rate of nutrient (nitrogen) consumption. This leads to nitrogen depletion 310 

triggering a higher lipid accumulation (KaiXian and Borowitzka, 1993; Zhu et al., 2016). Our results suggest that 311 

nutrition limitation (most likely nitrate limitation) probably happens faster at 23 and 27°C and when the initial 312 

nitrogen (nitrate) concentration was 3 mM. Under these conditions, P. tricornutum and N. pelliculosa produced 313 

sufficient biomass containing a higher amount of lipid compared to standard conditions (Fig. 2).  314 

Different microalgae species achieve their highest lipid content at different light intensities, which is due to their 315 

difference in light use efficiencies (Zhu et al., 2016). Limiting light or too high intensities may hinder the growth of 316 

microalgae. Low light intensities result in low biomass yield and lipid accumulation (Sharma et al., 2012; Vitova et 317 

al., 2015; Zhu et al., 2016), while high light intensity may cause photoinhibition, damages the photosystems and 318 

therefore results in a lower lipid accumulation (KaiXian and Borowitzka, 1993; Sharma et al., 2012; Vitova et al., 319 

2015; Zhu et al., 2016). 320 

In our study, we showed that maintaining light intensity at 55 μmol m
-2

s
-1 

or higher is essential to maintain lipid 321 

accumulation. In comparison, at 30 µmol m
-2

s
-1 

lipid accumulation is decreased by more than 50% in P. tricornutum 322 

and with 25% in N. pelliculosa, while increasing the light intensity to 80 μmol m
-2

s
-1 

had no effect on lipid 323 

accumulation. Increased lipid content in P. tricornutum has been reported in response to increasing light intensities 324 

(KaiXian and Borowitzka, 1993; Zhu et al., 2016).  325 

The source of nitrogen (sodium nitrate, sodium nitrite, urea, and ammonium nitrate) was not important for the 326 

biomass normalized lipid production (Fig. 2 A & B, panel e), while decreasing the NaNO3 concentration increased 327 

the biomass-normalized lipid content dramatically (Fig. 2 A & B, panel f). A nearly 1100% increase in biomass-328 

normalized lipid content was found in P. tricornutum when grown at 0.6 mM NaNO3, resulting in a lipid content of 329 

663 µg triolein/1 OD600 units. For N. pelliculosa, a more than 400% increase to 517 µg triolein/1 OD600 units was 330 

found at 0.6 mM NaNO3 relatively to cultures that were grown at 6 mM nitrate. However, despite the higher lipid 331 

content, the total biomass of cultures growing at 0.6 mM decreased by more than 50%. Nutrient starvation is known 332 

as the most successful and widely used strategy to enhance lipid productivity. Increasing sodium nitrate 333 

concentration significantly enhanced biomass production by P. tricornutum and resulted in decreased lipid 334 
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content/biomass (Yodsuwan et al., 2017) and using low nitrogen concentrations results in a dramatic decrease of 335 

biomass, but with high lipid content (KaiXian and Borowitzka, 1993).  336 

In this study, the desirable condition is a trade-off between a high lipid content and a good chromium bioremoval. 337 

Three mM nitrate and 23 and 27 °C for P. tricornutum and N. pelliculosa, respectively, shortened the time to the 338 

stationary phase and nutrition (nitrogen) limitation triggering lipid accumulation, while sufficient chromium 339 

biosorption occurred.  340 

 341 

4. Conclusion 342 

Compared to other microorganisms, microalgae and cyanobacteria are not exceptional for their bioremediation 343 

capacities, but they have several attributes that make them an interesting and advantageous alternative for 344 

bioremediation. They are the primary producers in many ecosystems and many strains grow in marine and brackish 345 

habitats. This avoids the requirement of fresh water and arable land for biotechnological applications. These 346 

organisms can even be used for multiple purposes such as combining heavy metal bioremediation and lipid 347 

production (Perales-Vela et al., 2006; Richards and Mullins, 2013; Wilde and Benemann, 1993). These features 348 

raised an increasing interest in the use of these phototrophic microorganisms for biotechnological applications, 349 

including bioremediation.  350 

We showed that P. tricornutum and N. pelliculosa not only produced sufficient biomass and accumulated large 351 

amounts of lipid but are also capable of bioremediation of hexavalent chromium at concentrations toxic for human 352 

(1 mg/L). The positive correlation of Cr (VI) removal with biomass, effective removal in heat-inactivated cells and 353 

the difference in removal after short or long time exposure and biosorption of chromium cations by extracted EPS 354 

hinted to a cell biosorption mechanism with EPS capture as the main mechanism used by the two strains for 355 

bioremediation process.  356 

The chromium bioremoval capacity of these strains was correlated to the amount of biomass. Biomass production 357 

was enhanced at an increased temperature. However, a high lipid content that was triggered by nutrient (nitrogen) 358 

depletion was not in favor of a high biomass production and consequently Cr bioremediation. Cr removal and lipid 359 

accumulation by these strains require optimization of the growth conditions in order to achieve both goals. 360 
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Figure 1. Effect of growth condition on Cr(VI) removal 

 

Figure 2. Effect of growth condition on lipid production 

 

 

Figure captions
Click here to download Figure: Fig captions.docx

http://ees.elsevier.com/jema/download.aspx?id=1168426&guid=98d74cdb-09d9-4b31-beb2-1a6c025a49d6&scheme=1


Table 1. Biomass production yield by P. tricornutum and N. pelliculosa at different growth variations 

Experiment Variations P. tricornutum   N. pelliculosa  

OD600 ± SD
a
  OD600 

Cr (VI) tolerance 

 

0 0.491 ± 0.006  0.474 ± 0.014 

50 µg/L 0.496 ± 0.007  0.483 ± 0.030 

100 µg/L 0.506 ± 0.011  0.490 ± 0.016 

500 µg/L 0.505 ± 0.015  0.507 ± 0.007 

1 mg/L 0.479 ± 0.006  0.477 ± 0.011 

5 mg/L 0.196 ± 0.004  0.318 ± 0.003 

10 mg/L 0.096 ± 0.002  0.191 ± 0.003 

     

Media MDV 0.477 ± 0.010  0.462 ± 0.019 

T+ 0.419 ± 0.016  0.417 ± 0.010 

ASNIII 0.246 ± 0.020  0.177 ± 0.020 

     

Temperature  

(°C) 

14  0.477 ± 0.010  0.461 ± 0.022 

18 0.491 ± 0.012  0.492 ± 0.010 

23  0.537 ± 0.012  0.521 ± 0.006 

27  NG 
b
 
  0.554 ± 0.011 

30  NG   NG  
33  NG   NG  
37  NG   NG  

     
Light intensity 

(μmol m
-2

s
-1

) 

30 0.573 ± 0.004  0.580 ± 0.010 

55 0.550 ± 0.015  0.562 ± 0.013 

80 0.519 ± 0.009  0.524 ± 0.009 

     

Nitrogen source Sodium nitrate 0.566 ± 0.009  0.572 ± 0.009 

Sodium nitrite 0.556 ± 0.008  0.558 ± 0.006 

Urea 0.552 ± 0.010  0.509 ± 0.007 

Ammonium nitrite 0.073 ± 0.001  0.423 ± 0.009 

     

Nitrogen concentration 

(mM) 

0.0  NG  NG  

0.6  0.275 ± 0.009  0.268 ± 0.010 

1.5  0.467 ± 0.004  0.426 ± 0.011 

3.0  0.522 ± 0.009  0.510 ± 0.008 

4.5  0.541 ± 0.012  0.558 ± 0.013 

6.0  0.536 ± 0.017  0.568 ± 0.014 

7.5  0.556 ± 0.010  0.561 ± 0.005 

     

Silicate 150 µM Silicate (6.0 mM nitrate) 0.534 ± 0.007  0.555 ± 0.019 

15 µM Silicate(6.0 mM nitrate) 0.517 ± 0.007  0.111 ± 0.013 

150 µM Silicate (3.0 mM nitrate) 0.509 ± 0.004  0.506 ± 0.006 

15 µM Silicate(3.0 mM nitrate) 0.514 ± 0.005  0.085 ± 0.004 

150 µM Silicate (0.6 mM nitrate) 0.275 ± 0.009  0.268 ± 0.010 

15 µM Silicate(0.6 mM nitrate) 0.104 ± 0.006  0.070 ± 0.002 

     

Sodium azide 0 µM Sodium azide (6.0 mM nitrate) 0.536 ± 0.013  0.543 ± 0.007 

10 µM Sodium azide (6.0 mM nitrate) 0.529 ± 0.010  0.570 ± 0.010 

25 µM Sodium azide (6.0 mM nitrate) 0.532 ± 0.007  0.524 ± 0.011 

50 µM Sodium azide (6.0 mM nitrate) 0.544 ± 0.018  0.533 ± 0.010 

100 µM Sodium azide (6.0 mM nitrate) 0.538 ± 0.022  0.553 ± 0.017 

0 µM Sodium azide (3.0 mM nitrate) 0.508 ± 0.004  0.511 ± 0.011 

10 µM Sodium azide (3.0 mM nitrate) 0.500 ± 0.003  0.510 ± 0.005 

Table
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25 µM sodium azide (3.0 mM nitrate) 0.497 ± 0.007  0.514 ± 0.008 

50 µM sodium azide (3.0 mM nitrate) 0.518 ± 0.006  0.496 ± 0.003 

100 µM sodium azide (3.0 mM nitrate) 0.503 ± 0.005  0.489 ± 0.004 

 

a  SD = Standard deviation  

b  NG = No growth observed 



Table 2. Cr(VI) biosorption by living cultures, heat-killed cell suspension, and EPS extract of P. 

tricornutum and N. pelliculosa 

 

 

Experiment 
Cr(VI) bioremediation* ± SD

a
 (%) 

P. tricornutum   N. pelliculosa 

living cultures (A) 35 ± 1 32 ± 2 
heat-killed cells (B) 27 ± 2 23 ± 1 

EPS extract (C) 9 ± 0 9 ± 0 
(B/A) * 100 76 72 

(C/A) * 100 24 27 
(C/B) * 100 32 37 

 

a SD = Standard deviation 

* Biomass-normalized Cr(VI) bioremediation  

 



MDV 

Minerals  Stock Solutions (g/L)  Quantity (mL Stock/L Media)  Molarity (mM) 

NaCl  241  100  400 

MgCl2 .6H2O  435  20  43 

KCl  54  10  7.2 

Na2SO4  32  100  23 

CaCl2 .2H2O  160  10  11 

Adjust to 900mL with mQ water and autoclave. 

After cooling, add the following filter sterilized (0.2 µm) components to complete the medium: 

Minerals  Stock Solutions (g/L)  Quantity (mL Stock/L Media)  Molarity (mM) 

NaNO3  100  5  6 

NaHCO3  18  10  2 

NaH2PO4 
. H2O  6.9  1  0.05 

Na2SiO3
.9H2O  21.3  2  0.15 

Citrate mix  See recipe below  10 ‐

Trace metal mix  See recipe below  1 ‐

Vitamins 8 Mix  See recipe below  1 ‐

M2  See recipe below  1 ‐

For solid medium use 7g/L of agarose. Sterilize the agarose separately in 550 ml of milliQ water. In 

this case the mineral solution is filled up to 400 ml. 

Supplementary Materials, List of the media, their ingredients, and preparation procedure.

 The main procedure is addressed in the following pages. The only difference is that T+ and ASNIII 
media are supplemented with 0.15 mM silicate in order to support diatom growth. The second 
changes is that The Nitrate concentration of T+ and ASNII was adjusted at 6 mM.



 

Trace Metal Mix: 

Trace metals  Stock1 (g/L) 
Trace metal mix 
 (Stock1 mL/L) 

 
CuSO4

. 5 H2O 

 
9.8 

 
1 

ZnSO4
. 7H2O  22  1 

CoCl2. 6H2O  10  1 

MnCl2. 4H2O  18  1 

Na2MoO4
. 2H2O  6.3  1 

Na2SeO3
. 5H2O  0.016  0.1 

 

Prepare apart a stock solution for each Trace metal (Stock1) and use the quantity indicated for the 

final Trace Metal Mix 

 

 

Citrate Mix: 

Trace metals  Quantity g/L 

 
C6H8O7

. H2O 

 
0.3 

Fe‐NH4‐citrate  0.36 

 

 

M2: 

Trace metals  Quantity (g/L) 

 
KBr 

 
39 

SrCl2.6H2O  10 

AlCl3.6H2O  0.014 

LiCl  0.003 

KI  0.010 

H3BO3  11 

RbCl  0.03 

 

 

 



 

 

Vitamins 8 mix: 

Vitamins  Stock 1 (g/100mL)  Vitamins 8 mix 
 (Stock1 mL/100mL) 

 
Biotin* 

 
0.004 

 
0.1 

Thiamine‐HCl  0.02  10 

Cyanocobalamin  0.08  0.1 

Folic acid*  0.008  0.1 

Inositol  0.02  1 

Nicotinic acid  0.04  1 

Thymine*  0.012  1 

Ca‐d‐pantothenate  0.04  1 
 

*Dissolve first in 1N NaOH and then bring to volume with mQ water. 

Prepare apart a stock solution for each Vitamin (Stock1) and use the quantity indicated for the final 

Vitamins 8 mix. 

 



T+ 

(Modified from: Chen Y. B., Zehr J. P., Mellon M., 1996. Growth and nitrogen fixation of the 

diazotrophic filamentous non‐heterocystous cyanobacterium Trichodesmium sp. IMS 101 in defined 

media: evidence for a circadian rhythm . J Phycol. 32: 916‐923.) 

 

Minerals  Stock Solutions (g/L)  Quantity (mL Stock/L Media) 
Final Concentration 

(mM) 

 
NaCl 

 
245.45 

 
100 

 
420 

MgCl2 .6 H2O  406.6  10  20 

KCl  74.60  10  10 

MgSO4
. 7 H2O  603.8  10  25 

CaCl2 .2 H2O  147  10  10 

 

Adjust to 900mL with mQ water and autoclave. 

After cooling, add the following filter sterilized (0.2 µm) components to complete the medium: 

Minerals  Stock Solutions (g/L)  Quantity (mL Stock/L Media) 
Final Concentration 

(mM) 

 
NaNO3 

 
150 

 
10 

 
16 

NaHCO3  21  10  2.5 

K2HPO4 
. 3H2O  6.8  1  0.03 

Na2CO3  26.5  0.6  0.15 

Fe‐NH4‐citrate  6  0.25  ‐ 

KBr  115.7  1  0.97 

NaF  2.9  1  0.07 

Trace Metal Mix 4  See recipe below  1  ‐ 

Trace Metal Mix  See recipe below  1  ‐ 

Vitamins3 Mix  See recipe below  1  ‐ 

 

Check the pH, has to be between 8.12 and 8.2. 

 

For solid medium use 7g/L of agarose. Sterilize the agarose separately in 550 ml of milliQ  water. In 

this case the mineral solution is filled up to 400 ml. 

 

 

 



 

 

Trace Metal Mix 4: 

Trace metals  Quantity g/L 
Concentration in the final media 

(mM) 

 
H3BO3 

 
35.9 

 
0.0006 

SrCl2. 6H2O  17.3  0.00006 

LiCl  1.1  0.00003 

Na2SeO3
. 5H2O  0.5mL of a stock of 32mg/L  0.00000006 

 

 

Trace Metal Mix: 

Trace metals  Stock 1 (g/100mL) 
Trace metal mix  
(Stock1 mL/L) 

Concentration in the final 
media (mM) 

 
EDTA 

 
‐ 

 
0.74 g 

 
2.5 

FeCl3 . 6H2O  ‐  0.11 g  0.0004 

MnCl2 . 4H2O  0.4  1  0.00002 

ZnSO4 . 7H2O  0.12  1  0.000004 

CoCl2 . 6H2O  0.06  1  0.000002 

Na2MoO4 . 2H2O  0.27  1  0.00001 

CuSO4 . 5H2O  0.025  1  0.000001 

 

 

 

Vitamins 3 Mix: 

Vitamins  Vitamins 3 mix (quantity/100mL) 

 
Thiamine‐HCl 

 
10 mg 

d‐biotin*  100 µL (from a stock of 5 mg in 10mL) 

VItamin B12  100 µL (from a stock of 5 mg in 10mL) 
 

*Dissolve first in 0.1 mL 2M NaOH. Then add 9.9 mL of mQ water. 



ASN3 

(Modified from: Rippka R., 1988. Isolation and purification of cyanobacteria. Method Enzymol. 167: 3‐

27.) 

 

Minerals  Stock Solutions (g/L)  Quantity (mL Stock/L Media) 
Final Concentration 

(mM) 

 
NaCl 

 
250 

 
100 

 
428 

MgCl2 . 6H2O  200  10  10 

KCl  50  10  6.5 

MgSO4
. 7H2O  350  10  14 

CaCl2 . 2H2O  50  10  3 

Na3‐citrate  0.6  5  0.012 

Na2‐EDTA. 2H2O  0.1  5  0.0013 

Trace metal mix 
(A5 + Co) 

See recipe below 
 

1  ‐ 

Adjust to 900mL with mQ water and autoclave. 

 

After cooling, add the following filter sterilized (0.2 µm) components to complete the medium: 

Minerals  Stock Solutions (g/L)  Quantity (mL Stock/L Media) 
Final Concentration 

(mM) 

 
NaNO3 

 
150 

 
5 

 
8.8 

K2HPO4 
. 3H2O  4  5  0.088 

Na2CO3  20  1  0.19 

Fe‐NH4‐citrate  6  0.5  ‐ 

Vitamin B12 
(Cyanocobalamin) 
 

0.02  1  ‐ 

For solid medium use 7g/L of agarose. Sterilize the agarose separately in 550 ml of milliQ  water. In 

this case the mineral solution is filled up to 400 ml. 

 

Trace metal mix A5 + Co: 

Trace metals  Quantity g/L 
Concentration in the final 

media (mM) 

 
H3BO3 

 
2.86 

 
0.047 

MnCl2. 4H2O  1.81  0.009 

ZnSO4
. 7H2O  0.22  0.0007 

Na2MoO4
. 2H2O  0.39  0.0016 

CuSO4
. 5H2O  0.08  0.0003 

Co(NO3)2. 6H2O  0.05  0.0002 
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