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a b s t r a c t

Nowadays, species are driven to extinction at a high rate. To reduce this rate it is important to delineate
suitable habitats for these species in such a way that these areas can be suggested as conservation areas.
The use of habitat suitability models (HSMs) can be of great importance for the delineation of such areas.
In this study MaxEnt, a presence-only modelling technique, is used to develop HSMs for 223 nematode
species of the Southern Bight of the North Sea. However, it is essential that these models are beyond
discussion and they should be checked for potential errors. In this study we focused on two categories (1)
errors which can be attributed to the database such as preferential sampling and spatial autocorrelation
and (2) errors induced by the modelling technique such as overfitting, In order to quantify these adverse
effects thousands of nulls models were created. The effect of preferential sampling (i.e. some areas where
visited more frequenty than others) was investigated by comparing model outcomes based from null
ematoda models sampling the actual sampling stations and null models sampling the entire mapping area (Raes
and ter Steege, 2007). Overfitting is exposed by a fivefold cross-validation and the influence of spatial
autocorrelation is assessed by separating test and training sets in space. Our results clearly show that all
these effects are present: preferential sampling has a strong effect on the selection of non-random species
models. Crossvalidation seems to have less influence on the model selection and spatial autocorrelation
is also strongly present. It is clear from this study that predefined thresholds are not readily applicable

nal t
to all datasets and additio

. Introduction

Biodiversity and the conservation of species is a major concern
n ecology nowadays. Species are driven to extinction at a high rate
ue to overexploitation, climate change and resource consumption
Butchart et al., 2010). Not only the terrestrial space is fragmented
nd confronted with disappearing natural habitats, also the natural
abitats in the oceans are endangered (Hoegh-Guldberg and Bruno,
010).

The sea bottom is under peril due to bottom trawling, aggre-
ate extraction, dredging and dumping. These habitat disturbances
ay threaten species to disappear. For conservation strategies, it is

mportant to investigate the habitat preferences of species, and par-

icularly of rare species to delineate and protect suitable habitats
or these species.

Habitat suitability models (HSMs) can be a tool in protecting
nd conserving species (Rodriguez et al., 2007). However, it is of
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ests are needed in model selection.
© 2010 Elsevier B.V. All rights reserved.

major importance that these models are beyond discussion. These
models need to be tested profoundly before they can be consid-
ered for conservation purposes. Several potential pitfalls need to
be circumvented during modelling: spatial autocorrelation, pref-
erential sampling, overfitting due to the use of oversized models
and the use of redundant information (Pearson et al., 2007; Parolo
et al., 2008). Different validating techniques can be applied dur-
ing the modelling process: cross-validation is known to cope with
overfitting, while null-models help in identifying models signif-
icantly different from random. The latter approach also helps in
identifying preferential sampling in datasets (Raes and ter Steege,
2007). The influence of spatial autocorrelation on the performance
of the models can be tested by subdividing the data in spatially sep-
arated subsets which are in our case at least 5 or 10 km apart. In this
study, we combine cross-validation and the null-model approach to
identify those models which are truly significantly different from
random and not subject to preferential sampling, overfitting and
spatial autocorrelation.
These modelling techniques are applied to a dataset of free-
living marine benthic nematodes from the Southern Bight of the
North Sea. Nematodes are usually the dominant taxon within
the meiofauna, comprizing metazoans passing through a 1 mm
mesh sieve but retained on a 38 �m mesh sieve. These free-living

dx.doi.org/10.1016/j.ecolmodel.2010.11.016
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:bea.merckx@ugent.be
dx.doi.org/10.1016/j.ecolmodel.2010.11.016


l Modelling 222 (2011) 588–597 589

r
b
1
s
f
n
1
b
t
e
l

2

2

s
t
2
n
r
m
a
f

W
R
M
m
F

Table 1
Range and median values of environmental variables of the environmental variables
of the maps.

Unit Min Max Median

Mud content % 0 84 0.053
Total suspended matter (average) g/m3 1.0 24 2.6
Total suspended matter (maximum) g/m3 2.3 66 7.3
Total suspended matter (minimum) g/m3 0.2 14 0.8
Chlorophyll a (average) mg/m3 1.3 26 3.2
B. Merckx et al. / Ecologica

oundworms represent the highest metazoan diversity in many
enthic environments in terms of species numbers (Heip et al.,
985). Owing to their interstitial life style, properties of the
ediment, such as grain size distribution, the silt–clay fraction and
ood availability have a strong influence on the composition of
ematode assemblages (Heip et al., 1985; Vincx, 1990; Vanreusel,
990; Merckx et al., 2009, 2010). Nematode communities seem to
e resilient to disturbance and their restoration occurs easily after
emporal, low impacts (Kennedy and Jacoby, 1999; Schratzberger
t al., 2002), making them a perfect community to model based on
ong term environmental and full coverage data.

. Materials and methods

.1. Data

The research area, with a total surface of about 18,000 km2, is
ituated in the Southern Bight of the North Sea, near the Belgian and
he Dutch coastal area (latitude 51◦6′2′′ N–52◦59′19′′ N; longitude
◦14′39′′ E–4◦30′43′′ E) (Fig. 1). The seafloor is not at all homoge-
eous in this area; it is characterised by sand dunes and a wide
ange of sediment types, varying from muddy to sandy environ-
ents (Van Hoey et al., 2004). The coastal zone is characterised by
high amount of total suspended matter, chlorophyll a and silt–clay

raction, especially near the Belgian coast.
The nematode data were retrieved from the MANUELA database.

ithin the EU Network of Excellence MarBEF, MANUELA is a

esearch Project focusing on the meiobenthic assemblages. The
ANUELA database was compiled capturing the available data on
eiobenthos on a broad European scale (Vandepitte et al., 2009).

or this paper the area of research was restricted to the Southern

Fig. 1. Study area and location of the sampling stations (�).
Chlorophyll a (maximum) mg/m3 2.7 39 12.0
Chlorophyll a (minimum) mg/m3 0.04 20 1.1
Depth of the water column m −1.3 53 26.0

Bight of the North Sea since full coverage environmental maps were
available for this region.

The environmental variables were retrieved from maps
acquired by remote sensing and maps interpolated from data sam-
pled in the field.

The first group of maps summarises data on total suspended
matter and chlorophyll a in the water column (Park et al., 2006).
The data is collected by remote sensing by the MERIS spectrometer
on board of the Envisat satellite of the ESA data. Eighty chlorophyll
a maps and 90 total suspended matter maps were gathered dur-
ing the time frame 2003–2005. These maps were reduced to three
biologically relevant maps revealing the minimum, maximum and
average values. This data reduction technique is often applied in
ecological modelling (Loiselle et al., 2008; Cunningham et al., 2009;
Echarri et al., 2009). Satellite data are restricted to the water column
but are of relevance for seafloor inhabiting organism as sedimenta-
tion and degradation of chlorophyll a and total suspended matter
enrich the bottom organic matter (Druon et al., 2004). This input of
organic matter is known to influence nematodes directly as it serves
as a food source (Vanaverbeke et al., 2004; Franco et al., 2008) or
indirectly as microbial degradation often results in oxygen stressed
sediments (Graf, 1992) which can have a strong adverse effect on
nematodes (Steyaert et al., 1999).

The second group contains maps derived from point sampling at
sea. It comprises data on sediment characteristics, such as median
grain size and the silt–clay fraction, and bathymetry. These maps
were supplied by the Renard Centre of Marine Geology, Ghent
University (Verfaillie et al., 2006) and TNO Built Environment and
Geosciences—Geological Survey of the Netherlands. The bathymet-
rical data were provided by the Ministry of the Flemish Community
Department of Environment and Infrastructure, Waterways and
Marine Affairs Administration and completed with data from the
Hydrographic Service of the Royal Netherlands Navy and by the
Directorate-General of Public Works and Water Management of
the Dutch Ministry of Transport, Public Works and Water Man-
agement. The silt–clay fraction and the median grain size are
important factors determining the meiobenthic community (Heip
et al., 1985; Steyaert et al., 1999; Vanaverbeke et al., 2002; Merckx
et al., 2009). Depth in shallow waters does not directly affect the
nematode community, but it modifies effects of other factors such
as trophic conditions, sediment properties and current properties.
An overview of the range of the environmental data in the dataset
is shown in Table 1.

2.2. Habitat suitability modelling

Numerous modelling techniques and algorithms exist to investi-
gate relationships between species and their environment in order

to map their spatial distribution (Guisan and Zimmermann, 2000;
Guisan and Thuiller, 2005). In several independent cases, the use
of Maxent resulted in good predictive models compared to other
presence-only models (Elith et al., 2006; Hernandez et al., 2006,
2008; Hijmans and Graham, 2006; Pearson et al., 2007; Sergio et al.,
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Table 2
Number of random models = (subdivisions of the number of data points in the
training sets) × (number of models: five in case of cross-validation, one if no cross-
validation is applied) × (number of null models).

Number of random models

No cross-validation Complete area 20 × 1 × 500
Stations 20 × 1 × 500
Cross-validation Complete area 22 × 5 × 500
90 B. Merckx et al. / Ecologica

007; Carnaval and Moritz, 2008; Ortega-Huerta and Peterson,
008; Wisz et al., 2008; Benito et al., 2009; Roura-Pascual et al.,
009). The reliability of the results of Maxent has been confirmed
y its good capacity to predict novel presence localities for poorly
nown species (Pearson et al., 2007). Besides the good predictive
ualities of the technique, it has several other advantages: (1) It
equires only presence data. For nematode data, this is an advan-
age as species absence is never certain since only a subsample of
hese inconspicuous organisms is identified in ecological research.
2) Overfitting can be avoided by using a regularization mecha-
ism (Phillips et al., 2006). (3) Maxent is a generative approach,
ather than discriminative, which can be an inherent advantage
hen the amount of training data is limited (Phillips et al., 2006).

his allows to use the technique with as little as 4 sampling points
Pearson et al., 2007). (5) It is possible to automize the calcula-
ion of thousands of HSMs by batch-files which are text-files with
imple commands. In spite of these promising features, Maxent
odels seem to have a drawback: the models fail to make general

redictions (Peterson et al., 2007).
Maxent creates HSMs by combining presence-only data with

nvironmental layers using a machine-learning approach known
s maximum entropy (i.e. that is closest to uniform). Maximum
ntropy estimates a species’ ecological niche by finding a proba-
ility distribution which is based on a distribution of maximum
ntropy under the constraint that the expected value of each envi-
onmental variable under this estimated distribution matches its
mpirical mean (Phillips et al., 2006). This method is equivalent to
nding the maximum-likelihood distribution of a species (Phillips
t al., 2004). The resulting probability distribution reflects the suit-
bility of the environment for the species of interest. The model
valuates the suitability of each raster cell as a function of the
nvironmental variables at that cell.

We used standard settings of MaxEnt and a logistic output, with
uitability values ranging from 0 (unsuitable habitat) to 1 (optimal
abitat) (Phillips and Dudík, 2008). Using standard settings, and
hus auto feature selection, implicates that MaxEnt will automati-
ally add modelling features with increasing number of samples in
he training set: below 10 samples only linear functions are used;
etween 10 and 14 samples quadratic features are added; between
5 and 79 samples hinge features are added and above 79 samples
roduct and threshold features are allowed.

.3. Validation of the models

Whenever data is supplied in the correct format, MaxEnt will
reate a habitat suitability model. The question however is whether
his model meets all the quality conditions and if the model output
s not influenced by overfitting, preferential sampling and spatial
utocorrelation.

Models are qualified using quality parameters. The most com-
only used measure is the area under the curve (AUC). It is a

hreshold independent measure of overall accuracy of the model. It
easures the probability that the model will assign a higher proba-

ility of occurrence to the observed presences (Bonn and Schröder,
001). The values of the AUC vary from 0.5 (model not different
rom random) to 1.0 (perfect accuracy). However, in presence-only

odelling the upper limit is always smaller than 1 (Wiley et al.,
003). If the species’ distribution covers a fraction a of the pixels,
hen the maximum achievable AUC is 1 − a/2. Unfortunately, a is
ot known, so it is impossible to know how close to optimal a given
UC value is (Phillips et al., 2006).
The AUC is the most commonly used performance parameter.
e screened 53 articles where MaxEnt was used for habitat suit-

bility modelling; in 31 of them the AUC-value was the only quality
arameter. Most of these 31 articles mentioned the use of a test set,
owever for some publications it was not clear if the data was split
Stations 22 × 5 × 500
Autocorrelation 5 km 18 × 5 × 500
Autocorrelation 10 km 18 × 5 × 500

in a training set and a test set. If no test set is used, this may result
in unrealistic high AUC values, because the performance parame-
ter is calculated on the same data that was used to built the model
and not on an independent data set. These 53 articles use fixed
thresholds for the AUC to delineate good models. Depending on the
source models with an AUC higher than 0.6 (Parisien and Moritz,
2009), 0.7 (Cordellier and Pfenninger, 2009), 0.75 (Elith et al., 2006;
Suarez-Seoane et al., 2008; Stachura-Skierczynska et al., 2009), or
0.85 (Brown et al., 2008) are considered to be more informative
than random or as good models. Araujo and Guisan (2006) defined
a rough guide for classifying model accuracy: 0.6–0.7 poor, 0.7–0.8,
average, 0.8–0.9 good, 0.9–1 excellent. Fifteen articles combined
the AUC with other parameters and methods to test for significance,
such as the test gain (Riordan and Rundel, 2009), null models (Raes
and ter Steege, 2007; Ficetola et al., 2009), or with threshold depen-
dent accuracy parameters such as the Kappa statistic (Echarri et al.,
2009) or other methods.

2.4. Null models

In this study the significance of the models was tested by the
use of null-models as described by Raes and ter Steege (2007). The
general idea behind the null model approach is to create random
‘imaginary’ species by selecting random spots where the species
has been ‘observed’. This can be done in two ways: (1) by select-
ing random points from the entire map area or (2) by selecting
points from the stations where nematodes were effectively sam-
pled (Fig. 1). The first method will yield random models as if
the complete area has been sampled. However, scientists tend to
visit some areas more frequently, resulting in collection bias (i.e.
preferential sampling). The influence of the collection bias on the
accuracy of the HSM depends largely on the range of the values
of the environmental variables covered by the stations, known as
environmental bias (Kadmon et al., 2004). If sampling is environ-
mentally biased, a HSM is more likely to deviate significantly from
a null-model that does not include the bias (Raes and ter Steege,
2007). Thus, if the locations of the random species are restricted
to the biased sampling stations, these models are more likely to
be significantly different from random. Thus, the second strategy
can reveal collection bias or preferential sampling in the data set.
This is important since MaxEnt predictions are vulnerable to spatial
biases in input data (Peterson et al., 2007). The number of observa-
tions in the data set may also influence the AUC value of the model.
Therefore 500 null models were calculated for 20 different num-
bers of observations (Table 2). For each group of 500 null models
the average AUC and the 95% Confidence Interval (CI) is calculated.
The AUC of each ‘real’ species is then compared with the 95% CI of
the ‘random’ species; if the AUC of the real species is higher than
the 95% quantile value, this species is significantly different from

random.

Overfitting generally occurs when a model is excessively com-
plex, such as having too many degrees of freedom in relation to the
amount of data available. An overfitted model will generally have
poor predictive performance, as it can exaggerate minor fluctua-
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ions in the data. This predictive performance can be derived from
he AUC of the independent test set. In case of overfitting the AUC
alue of the test set will be significantly lower than the AUC value of
he training set. We applied a fivefold cross-validation; the data is
plit in 5 equal parts (±1 data point) and every data point is assigned
nce to each of the 5 sets. Five models are then created where each
et is used once as a test set and the remaining four fifth of the
ata is used as training data. Overfitting will decrease the average
UC of the test set while preferential sampling and spatial auto-
orrelation will have a positive effect on the AUC of the test set.
his method allows thus to differentiate between overfitting and
referential sampling because when no cross-validation is applied
referential sampling and spatial autocorrelation will still increase
he AUC. But in addition overfitting of the training set (which is
he only set used) will also have a positive effect on the AUC-value,
ecause the AUC value is derived from the values of the training set
hich are estimated too optimistically.

Aside preferential sampling and overfitting, spatial autocorre-
ation may interfere with the modelling process as well. Species
bservations may be clustered around certain stations. This may
nflate validation statistics by including localities that are not spa-
ially independent (Pearson et al., 2007). In order to check whether
his effect is present in the data, we selected the data in each set
n such a way that all the data points in the test set are at least 5
r 10 km apart from all the data points in the training set. (Pearson
t al., 2007; Murray-Smith et al., 2009).

In total 220,000 random models were created (Table 2). The 0.95
uantile values of these random models are then used to delin-
ate the random models from the non-random models of the real
pecies.

.5. Species AUC

To delineate random from non-random species, the AUC values
f the ‘real species’ models are compared with the 0.95 quantile
alues obtained from the null models. As four modelling tech-
iques were applied for the null models, we followed the same
trategy for the species data in order to allow for a valid compari-
on. This implied modelling (1) without cross-validation (i.e. all the
bservations where used to create the model); (2) using a fivefold
ross-validation; (3) using a fivefold cross-validation, with the data
n the test set at least 5 km apart from the data in the training set
nd (4) a fivefold cross-validation, with the data in the test set at
east 10 km apart from the data in the training set. For the latter two
echniques the data division algorithm needed to be changed since
t was not always feasible to divide all the data in 5 equal parts in
uch a way that all the points in the five sets are 5 or 10 km apart
rom all the other points in the other sets. Thus, the data division
lgorithm was adapted in order to meet two conditions: (1) the
umber of data in each set is maximized and each set contained
ore or less the same number of data (±1 data point) and (2) all

oints in each set are at least 5 or 10 km apart from the data points
n the other sets.

Furthermore, it is interesting to assess why certain species mod-
ls are significantly different from random, while this is not the case
or other models. It has been noted before that specialists, which
ave specific habitat requirements, tend to have higher AUC val-
es, while generalists have lower AUC values (Elith et al., 2006;
aes and ter Steege, 2007; Lobo et al., 2008; Wollan et al., 2008).
eneralists show no specific niche preference and are expected to
ppear across the complete study area. Therefore we calculated

he correlation between the AUC of the species and four parame-
ers indicating the generalistic occurrence of a certain species: (1)
he number of times a species is found in different stations; (2)
he niche breadth; (3) the area occupied by the species and 4) the
verage distance between the stations where the species is found.
lling 222 (2011) 588–597 591

The niche breadth of a species was calculated as the mean
Euclidean distance of the environmental variables between the sta-
tions where the species is found:

EDi = 2 ·
∑Si−1

k=1

∑Si
1=k+1

√∑N
j=1(xjk − xjl)

2/N

Si − (Si − 1)

All environmental variables were standardized to mean 0 and
standard deviation one. The variable xjk is the standardized value
of the environmental variable j at station k where the species is
found. N is the total number of environmental variables in the
dataset and Si is the number of stations where the species is
found.

The area occupied by the species is estimated by calculating the
area included by the straight lines connecting the extreme points
of the stations where the species is found.

3. Results

The results of the six randomization techniques are summarised
in Figs. 2 and 3. Continuous lines for each of the six techniques are
created by interpolation.

3.1. Average of randomisations

The average AUC values of the models built for the random
species selected from the total area are smaller than the AUC
values obtained for random species selected from the actual sam-
pling stations, both for cross-validation and non-cross-validation
approaches (Fig. 2A and B).

When no cross-validation is applied the average AUC of the
training sets are used since no test sets were created. In this case an
increasing number of sampling locations for a set of Maxent mod-
elling features leads to a decrease in the average AUC. However,
when all the features are applied (i.e. when the number of sampling
stations > 79) the AUC value stabilizes to 0.75 when considering the
total area, and to 0.85 when only the sampling stations are used.
Adding a modelling feature always results in a strong increase in
average AUC.

A completely different pattern is observed when cross-
validation is applied. The average AUC is approximately 0.5 when
the random species are sampled across the complete area. This
value is independent of the number of observations and the added
features. This shows that in this case the ‘random’ species are
truly random. However, when the random species are restricted
to the sampling stations, the average AUC starts off around 0.55
for 5 sampling spots and gradually increases with increasing data
points. The curve levels off to an average AUC value of 0.7; thus
the test sets of imaginary species already yields an average AUC of
0.7.

When cross-validation is applied, the addition of features has
only a limited effect on the AUC of the test sets. Only in case hinge
features are added to the model (i.e. between 14 and 15 samples),
a small increase is clear.

Since preferential sampling is clearly present, the effect of spa-
tial autocorrelation was only tested on ‘random’ species selected
from actual sampling stations. When species are sampled in such
a way that the samples in the test set are at least 5 or 10 km apart
from the samples in the training sets, a decrease in the average
AUC is clear. This decrease is stronger for data sets with a distance
between the data points of at least 10 km.
3.2. 95% C.I. of randomisations

When selecting a species model, it is essential to know which
model is significantly different from random. Therefore a one-sided
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ig. 2. (A and B) Average AUC of the random species. Random species sampled from
andom species selected from the sampled stations and the total area without any
istances between test and training set at least at 5 km or at 10 km distance (B).

5% confidence interval is constructed to delineate random from
on-random species models. Fig. 3A and B shows the 0.95 quan-
ile values of the random models. Continuous lines are created by
nterpolation.

As for the average AUC, the effect of preferential sampling on the
5% C.I. is clear. The AUC-values of the random species selected from
he stations are clearly higher than those selected from the com-
lete area, both for the cross-validation and non-cross-validation
pproaches.

If no cross-validation is applied there is always a jump to higher
UC values whenever a feature is added. This increase can be con-
iderable: when hinge features are added (between 14 and 15
bservations), the AUC-value of the 95% C.I. jumps from 0.76 to 0.87

hen the whole area is considered. These jumps are much smaller

nd have nearly disappeared when cross-validation is applied. The
nly observable jump to higher values is in case where species are
ampled from the actual sampling stations and hinge features are
dded (between 14 and 15 observations).

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1
.95 quantile of the AUC

Number of samples in the training set

.9
5 

qu
an

til
e 

of
 th

e 
A

U
C

 o
f t

he
 r

an
do

m
 s

pe
ci

es

 

 

No Cross Validation − Stations
No Cross Validation − Complete area
Cross Validation − Stations
Cross Validation − Complete area

A

ig. 3. (A and B) 95% quantile of the AUC of the random species. Random species sampled fr
A). Random species selected from the sampled stations and the total area without any rest
istances between test and training set at least at 5 km or at 10 km distance (B).
tal area or from the sampled stations and with or without cross-validation (A). And
ctions to the sampling distances between the different subsets and with sampling

Without cross-validation the curves of the average AUC and
those of the 95% C.I. are quite similarly shaped. The pattern of the
95% C.I.-curves is clearly different from that of the average AUC
when cross-validation is applied: the average AUC of the random
species is constant or increasing with increasing number of obser-
vations in the training set while the opposite is true for the 95% C.I.
Hence, there is a very high error rate at small sample sizes.

The influence of spatial autocorrelation on the 95% C.I. is also
clear: the AUC decreases with increasing distance between the sta-
tions in the training and the test set.

3.3. Selecting non-random species models
The boundary between random and non-random models is
defined by the 95% C.I. of the AUCs of the random models (Fig. 2). The
AUCs of the real species models are plotted against these borders
(Figs. 4 and 5). Every test which has been applied on the random
species was also applied to the real species data. Thus, four tests
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When the entire geographical area is sampled and no cross-
alidation is applied, we found 186 species models (XX%) with an
UC higher than the corresponding 0.95 C.I. Hence, these mod-
ls are considered to be significantly different from random. With
ross-validation this number even increases to 188. If only the
ampling stations are considered these numbers decrease to 126
no cross-validation) and 122 (cross validation) (Table 3). Notwith-
tanding the fact that with or without cross-validation almost the
ame number of species models are considered to be significantly
ifferent from random, these species are not the same: 111 species
ass both tests. From the 15 species which are uniquely selected by
ross-validation, 9 models changed from a more complex model

ithout application of cross-validation to a simpler model when

ross-validation was applied. This is due to the fact that the number
f samples in the training set equals the number of observations of
hat species. When applying cross-validation, the number of sam-
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ples in the training set is one fifth smaller, because one fifth of the
data is used for the test set. Since the complexity of feature interac-
tions changes at defined thresholds this explains why the algorithm
can shift to simpler interactions.

The Spearman rank correlations between the AUC of the species
and the parameters indicating that a species is a generalist can be
found in Table 4. All factors show a significant (p < 0.05) negative
correlation with the AUC, indicating that significant models are not
easily created for generalist species. The strongest negative corre-
lation is found between the AUC and the average distance between
the stations.

When spatial autocorrelation is considered it seems that the 5
and 10 km subsets could only be created for 150 and 137 species,
respectively. Of these species models 76 and 63 pass the 5 km and
10 km test, respectively. Only 54 species models pass all the tests

(Table 3).

Spatial autocorrelation not only causes a decrease in interpo-
lated 95% quantile curves, but also results in lower AUC values.
The decrease for the species models is even a little stronger than
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Table 3
Number of species passing the different tests: preferential sampling, cross-validation and spatial autocorrelation (5 and 10 km).

Minimum distance between
cross-validation datasets (km)

Number of species with an AUC
higher than the 0.95 CI of the
random species

Total number of
species analysed

Total area Stations

No cross-validation – 186 126 223
Cross-validation 0 188 122 223
Passing both tests 180 111
CV – 5 km 5 – 76 150
CV – 10 km 10 – 63 137
Passing all tests 54

Table 4
Spearman rank correlation between the AUC of the species and parameters indicating a species is a generalist: number of observations, niche breadth, area occupied by the
species and average distance between the stations where the species is found.
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Number of observations Niche breadth

No cross-validation −0.15 −0.30
Cross-validation −0.14 −0.28

or the curves which are based on the random species models. For
he 5 km subsets the AUC curves lower on average 0.031 for the
andom species models while the species AUC decrease 0.046. For
he 10 km subsets the decrease of the curves is 0.071 for the ran-
om species models and for the species it reaches on average 0.110.
Wilcoxon rank test pointed out that in both cases the decrease

or the species models is significantly larger than the decrease in
he 0.95 C.I. It is thus clear that spatial autocorrelation does indeed
nflate the AUC-values of the species.

. Discussion

Three important modelling issues are addressed with this null
odel approach: preferential sampling, spatial autocorrelation and

verfitting. Preferential sampling and spatial autocorrelation are
ssues linked to the database while overfitting can be attributed to
he model.

.1. Average of randomizations

In the ideal scenario, sampling intensity should be equally
ivided among all sampling stations within a geographical area. In
eality this is rarely the case. Preferential sampling is clearly present
n our dataset as well. The average AUC of the null models already
eaches values around 0.85. Even with cross-validation, average
est set values of about 0.7 are not unusual. These random mod-
ls would be classified as different from random or even as good
odels according to several sources which have defined a fixed

hreshold to delineate good from poor models (Parisien and Moritz,
009; Cordellier and Pfenninger, 2009). This clearly indicates that
sing a fixed threshold to delineate good models is precarious since
ost databases are subject to preferential sampling.
If no cross-validation is applied, the average AUC of the mod-

ls for the random species selected from the complete area is high.
patial autocorrelation and overfitting may attribute to these high
UC values. Cross-validation helps in differentiating between both
ffects: spatial autocorrelation leads to high values in the test set,
hile overfitting will cause lower AUC values. In our case over-

tting seems to be strongly present because the average AUC of
he test set is much lower. Cross-validation thus clearly reveals
verfitting. However, since one fifth of the data is used for test-
ng, a disadvantage of cross-validation is that less of the available
nformation can be used to construct the model.
a occupied by the species Mean distance between stations of the species

60 −0.80
62 −0.77

If no cross-validation is applied there are strong jumps when-
ever a feature is added to the algorithm. These increases in AUC can
result from overfitting or from an improvement in the model owing
to the extra feature. Cross-validation again helps in distinguishing
between these two phenomena: the jump to higher AUC-values
will disappear in the case of overfitting because the test set will
not yield better results. It is clear from Fig. 2A that these jumps can
be mainly attributed to overfitting. Only the addition of hinge fea-
tures seem to improve the AUC of the test set. Thus, adding hinge
features helps explaining the variation in the data. However, in this
case it is peculiar, because the samples are randomly picked from
the sample stations and this improvement must thus be attributed
to preferential sampling.

The influence of preferential sampling is stronger with
increasing number of observations in the training set when cross-
validation is applied. This is caused by the increasing chance of
incorporating samples from the preferentially sampled area in both
the training and test set, with increasing sample numbers.

Random models with an average AUC of 0.5 are only observed in
the case of cross-validation combined with random sampling across
the whole region. An increase in the average AUC is observed when
only the sampling stations are considered during modelling, which
can be attributed to preferential sampling or to spatial autocorre-
lation of the samples. Both aspects are not clear when only a few
stations are sampled, but with an increasing number of samples
these effects become more obvious. Autocorrelation is a difficult
topic to toggle, because it is difficult to differentiate between spa-
tial autocorrelation and regionally restricted species with strong
environmental preferences. Spatially separating test and training
set clearly lowers the AUC of the test set, meaning that the unseen
test data is harder to predict. If no spatial division is made for the
test and the training set the AUC of the test set is considerably
higher. Thus spatial autocorrelation clearly influence the results of
the models.

As such, we showed clearly that combination of preferential
sampling, spatial autocorrelation and overfitting lead to inflated
AUC values of 0.85 for a random model while on average it should
have an AUC of 0.5.
4.2. 95% Quantile of the randomisations

The 0.95 quantile curves are used to distinguish random from
non random species models. It is clear that without cross-validaton
models with AUC-values as high as 0.9 are not necessarily different
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rom random. With cross-validation and at low sample sizes AUC
alues of 0.85 are not unusual. With increasing sample numbers this
alue decreases to about 0.75. It is thus clear that the predefined
hresholds are not applicable to this dataset.

Although the four curves look quite similar, it is clear that the
urves obtained after cross-validation are again less sensitive to the
ddition of a feature.

The test for spatial autocorrelation (Fig. 3B) shows that the AUC
f the random model decreases with increasing distance between
tations in the test and training set. This is not surprising because
he chance of sampling a different environment increases with
ncreasing distance between the stations, which makes it hard to
redict the values of the test set.

.3. Selecting non-random species models

The 0.95 quantile curves allow for significance testing of HSMs.
pecies models performing better then random reflect species with
pecific niche requirements that can be relatively easy predicted.
n the other hand, the reason why species models are performing
orse than random may be attributed to different causes: (1) the

pecies are generalists and have no specific environmental require-
ents; (2) the environmental variable explaining the distribution

f the species is not available; (3) the distribution of the species is
ot well estimated because of a sampling bias. The generalist theory

s further supported by the strong negative correlation between the
UC and the average distance between two sites where the species

s found. This strong correlation indicates that the species which are
ot confined to a limited area are hard to predict. The negative cor-
elation between the niche breadth (based on the environmental
ariables and not on the location in space) and the AUC is less strong
ut still significant, thus the variation in environmental space can
lso partly explain why some species are harder to predict than
thers.

If the sampling locations are environmentally biased this may
ead to HSMs predicting an underestimation of the true geograph-
cal range of the species (Raes and ter Steege, 2007). In our case
referential sampling has clearly the strongest effect on the selec-
ion of the species models.

Subsets meeting the 5 km distance criterion could be created
nly for 150 out of 223 species. This indicates that the 73 other
pecies are strongly concentrated in space, making it impossible to
nd five samples with a minimum distance of 5 km from each other.
owever, does this mean that the models of these 73 species are

nadequate? This would suggests that it would be impossible to cor-
ectly predict the distribution of species restricted to a small area
rom which the species presence are therefore auto correlated. We
elieve this is not necessarily the case; however, the AUC-values of
hese models should be treated with caution. It has been shown that
patial autocorrelation may represent a problem for species’ distri-
ution models. Significance values of the models may be severely

nflated (Segurado et al., 2006) because the test and training set
re not entirely independent. Also the choice of the environmental
ariables by the model is questionable. Indeed, all environmental
ariables show spatial autocorrelation. Therefore, all the environ-
ental variables have more or less the same value within this area.

hus, the selection of the environmental variables explaining the
istribution of the species may be arbitrary.

This methodology allows distinguishing between random and
on-random species models. However, when these models are used

or management purposes it is important that the models are able

o predict unseen data correctly and have a good predictive per-
ormance. Although this approach can reveal overfitting, it is not
olving the problem. An advantage of MaxEnt is that it is able to
ounteract overfitting by choosing the regularization setting. We
sed the default value of one (Phillips et al., 2006). It is clear from
lling 222 (2011) 588–597 595

Fig. 4 that overfitting is still present. Overfitting can be further
dealt with by setting a different regularization multiplier, by fea-
ture selection or by selecting fewer environmental factors. In this
way the reduced model will have a better predictive performance
with unseen data. In our case the final models were selected by
backwards and forwards selection of the environmental factors
(unpublished data).

In addition to the research of Raes and ter Steege (2007), we
also investigated the influence of spatial autocorrelation. Spatial
autocorrelation also attributes to the inflated AUC-values.

The modelling issues which are clearly present in this historical
database are not necessarily present in every database. Sampling
campaigns which are set up according to the statistical principle of
random and independent sampling, will not suffer from preferen-
tial sampling and spatial autocorrelation. However, to assure that
samples are truly independent, the extent of the range of spatial
autocorrelation should be known before sampling starts, which is
often not the case. The issue of overfitting is a modelling issue and
should always be addressed during modelling.

4.4. Drawbacks

Despite many interesting features of the methodology described
here, there are some drawbacks as well: our approach is labour
intensive and not applicable to all data sets. There is a need for a
lot of sampling stations where the species has not been detected.
This does not necessarily mean that the species is absent in these
stations, with inconspicuous species as nematode species absence
is never certain. However, these stations where the species is not
detected can be interpreted as a station with a low presence proba-
bility or as a pseudo-absence, similar to the back-ground data used
by the algorithm. In contrast however, these ‘pseudo-absences’ are
not uniformly chosen but restricted to the sampling stations.

The methodology is applicable to specialist species. However,
with this methodology it is not possible to delineate generalist
species from random species although the model may reflect the
true habitat of the generalist. Nevertheless, for conservation pur-
poses, this is not really a problem, since conservation biologists are
mainly interested in rare and specialist species.

5. Conclusions

Our results show clearly that the commonly used thresholds
(Parisien and Moritz, 2009; Cordellier and Pfenninger, 2009; Elith
et al., 2006; Suarez-Seoane et al., 2008; Stachura-Skierczynska
et al., 2009; Brown et al., 2008; Araujo and Guisan, 2006) are not
readily applicable to all datasets and should be treated with cau-
tion. Many aspects may influence and inflate the final AUC-value
of a HSM. Therefore, a thorough examination of the dataset is nec-
essary: is there sample bias and thus preferential sampling in the
dataset? Can spatial autocorrelation partly explain the high AUC-
values of the models? Is overfitting present and can it be tackled?
These questions are not always addressed, but it is clear that these
aspects strongly influence the AUC: inflations of the AUC from 0.5
to 0.9 are possible. In habitat suitability modelling this is the dif-
ference between a random model and a good model!
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