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ABSTRACT |

The Late Quaternary history of the Baltic Sea is marked by a complex sequence of glacial, lacustrine and marine
phases (late Pleistocene, Baltic Ice Lake, Yoldia Lake, Ancylus Lake, Littorina Sea). Boomer data, acquired in October
2004, permitted to improve the knowledge of the late Quaternary geological evolution of Tromper Wiek, a semi-
enclosed bay, located in the north-eastern part of Riigen Island. The sedimentary deposits can be subdivided in 6
seismic units (Ul to U6). The upper part of the lowest unit (Ul) corresponds to Pleistocene till. Channels incise
the top of this till (surface S2), probably created during the first drainage of the Baltic Sea during the Late Glacial.
Subsequent channel filling (U2) occurred in two phases beginning with chaotic deposits, probably fluviatile of origin,
followed by graded deposits. This filling was stopped by an erosive period with the formation of surface S3, showing
channels at the same location as S2. The facies of the channel filling (U3 and U4), during a second phase, is similar
to the first one, but resembles a prograding sediment body, intercalated between the two units in the shallower part.
U3 shows a bar-shaped deposit at its top. The facies of U4 is very similar to a barrier/back-barrier facies similar to the
facies of unit Ub, partly composed of gravel. The deposits of U6 correspond to the post-Littorina Sea deposits.

The presence of gravel is linked to coastal cliffs, in which chalk layers, pushed up by glaciers, alternate with sections
of till and meltwater deposits and with submarine outcrops of till. Gravel deposits are present in unit U5. They are
strongly linked to the presence of a barrier. Four of the six units show a barrier facies (U2, U3, U4 and U5); gravel
deposits could be present inside all of these units and would represent a larger deposit than estimated previously.

ADDITIONAL INDEX WORDS: Baltic Sea, coastal evolution, barrier development, marine resources.

INTRODUCTION AND AIM OF THE STUDY

Gravel-dominated coastal deposits occur in several places
where sediment supply and wave energy favour the accumula-
tion of coarse debris in the littoral zone. The presence of rocky
cliffs, submarine outcrops and tectonic setting (e.g. raised
gravel beaches, associated with co-seismic uplift, such as in
New Zealand (BERRYMAN et al., 1992; WELLMAN, 1967), favour
these deposits (Davies, 1972; OrrorD, FORBES, and JENNINGS,
2002). Moreover, there is a latitudinal control (>40° N and S)
on the common occurrence of gravel deposits in continental
shelves and shore zones (Davigs, 1972; Havgs, 1967), which
correspond to periglacial deposits (CHURCH and RYDER, 1972).
On storm wave-dominated coasts gravel originates mainly
from glacigenic deposits (CARTER et al., 1987; ForBes and Tav-
LOR, 1987; ForBES and SyviTsKI, 1994).

The coastline of the Southwestern Baltic Sea (from Den-
mark via Germany to Poland) consists of an alternation of
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Pleistocene cliffs and lowlands, where the cliffs are composed
mainly of till, partly of meltwater deposits or older material,
pushed-up by advancing ice during the last glaciations. Most
of these cliffs are under erosion with an average retreat of ap-
proximately 30 cm/year (SCHWARZER, 2003).

Exploration and exploitation of offshore mineral resources
have been carried out in the former German Democratic Re-
public since the seventies (HARFF et al., 2004; JURGENS, 1999;
LEMKE et al., 1998; LEMKE, SCHWARZER, and DiksiNG, 2002).
Extraction has been carried out by means of anchor hopper
dredging in depths of up to -9 m mean sea level (msl). As a
result, the sea bottom is covered with furrows and pits with
diameters between 20 to 50 m and depths of up to 6 m below
the sea bed (DiksiNg, 2003; DigsING et al., 2004; KLEIN, 2003;
Kusicki, Manso, and DiesiNG, 2007; MaNso et al, this volume).
Our study area is situated in the northwestern part of Tromp-
er Wiek (Figure 1) where the seafloor is dominated by gravel.
The aim of this paper is to improve the knowledge of the geo-
logical setting of the study area and especially to understand
the geological development of gravel resources.
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(modified from Schwarzer et al., 2000).
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Figure 1. Localisation of Tromper Wiek. A- General map; B- Localisation of the seismic profiles and geological interpretation of the sea bottom
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Figure 2. Water-level changes close to the study area (modified from Lampe, 2005). In grey: water-level, as used in this paper.
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Table 1. Baltic Sea stages (adapted from Lampe, 2005). The transgressive stages noted Riigen 1 to Riigen 7 are derived from Schumacher and

Bayerl (1999). WL: water-level.

Baltic Sea stages  Date 14C (ky BP)

Possible evolution of the water-level Events

Post-Littorina 0
1.5 Riigen 7
3-2 Riigen 6
Rigen 5
5.8 Abrupt regression
6 Much slower rise
Littorina Sea Riigen 3

4-0 ky: only tectonic movements of minor importance
(Uscinowicz, 2002)
6-5 ky: regression phase? Neotectonic movements?

7-6 ky: temporary increase of the uplift

7.3-7.2 Riigen 4 then WL fall of ~1m Depth: -2 m (Janke and Lampe, 2000)
WL fall (from —6 to —7.5 m) Flooding of the Danish Strait — Depth: -15 m
7.8 Rapid rise (Lemke, 1998)
Ancylus Lake 7.8 Connection with the ocean
8-7.3 WL rise (Riigen 2) 8-7 ky: decrease of the rate of uplift
9.2-8.8 Sudden WL fall after 8.8 ky Regression (32 m below wl, Lemke et al., 1998)
9.5 Rapid rise (Riigen 1)
Yoldia Lake 9.5
9.9 Temporary link to the ocean
10.3
Baltic Ice Lake 10.3 WL drop of 25 m Connection with open ocean-drainage. Start of the early
WL rise Holocene incision phase on the mainland (Janke, 1978).
Late-glacial Lake transformed into a delta or river plain.
Melt-water pulse (Fairbanks, 1989) - Subglacial drainage,
11.5 WL drop of 5-10 m channel incisions.
12.5 14-11 ky: main uplift (Uscinowicz, 2002)
13.5-13 WL rise Connection with the ocean

GEOLOGICAL HISTORY OF THE BALTIC SEA
AND STUDY AREA

The Baltic Sea is an almost non-tidal water body with only
one narrow connection (Skagerrak) to the North Atlantic via
the North Sea. Its history is controlled by isostacy, eustasy
and resulting connections to the North Sea, for distinct peri-
ods during the Late Pleistocene and early Holocene (BJORK,
1995). Therefore its evolution is marked by lacustrine and ma-
rine phases, resulting in four stages: Baltic Ice Lake, Yoldia
Sea, Ancylus Lake and the Littorina Sea (Figure 2, Table 1)
(Bsorek, 1995; DuPHORN et al., 1995; Lampg, 2005). Below, a
description of the evolution of the Baltic Sea is given, with an
indication of conventional radiocarbon years.

During the pleniglacial (Figure 2), the water-level was high
in Pomerania, between 3 and 25 m above the mean sea level
(JANKE, 2002b). Here, the late Pleistocene history of the Bal-
tic Sea started with the retreat of the active ice from Rigen
Island and the Pomeranian Bight around 14 ky BP (GORSDORF
and Ka1sgRr, 2001; KRAMARSKA, 1998; LAGERLUND et al., 1995; Us-
ciNowicz, 1999). With the opening of several, probably subgla-
cial drainage channels at Mt. Billingen app. 11.2 ky BP, the
water-level dropped to at least —25 m msl and extensive river
erosion occurred. During the Younger Dryas, the water level
rose again from -40 to -20 m msl (Lampg, 2005) leading to the
full development of the Baltic Ice Lake (Table 1). The reopening
of a drainage pathway at Mt. Billingen, due to the retreat of the
Scandinavian ice sheet around 10.3 ky BP, caused a drop of the
water table to about -40 m (Bsorck, 1995). The early Holocene
marine incision phase Yoldia Sea started (JANKE, 1978), but due
to rapid uplift of Scandinavia the closure of the connection to
the open ocean followed 9.5 ky BP (Table 1). The Ancylus Lake
period began with a water level rise reaching a maximum high-

stand of =18 m msl (Lampg, 2005; LEMKE, 1998; LEMKE et al.,
1999), similar to the level of the Baltic Ice Lake. This highstand
was followed by a water level fall during the second half of the
Ancylus Lake period. The first phase of the following Littorina
Sea is marked by a rapid water level rise between 7.8-6 ky BP.
Since then, the water level had fluctuated within a range of
a few meters between —5 m msl and the present water level
(ScrHuMmAcHER and BAYERL, 1999). After 5 ky BP, the water level
almost reached its modern position (Figure 2). Water level low-
stands occurred at the end of Dryas 1, at the Yoldia Sea stage
and the regression of the Ancylus Lake (Table 1).

Rugen Island was reached by the Littorina transgression
about 7.2 ky BP (JANKE, 2002; LampE et al., 2002) and shows a
strongly undulating shoreline displacement curve with up to 17
regression and transgression phases (SCHUMACHER, 2002). This
island, a former archipelago comprising more than a dozen larg-
er and smaller Pleistocene islands, connected by barrier and
spit development during the younger Holocene (DUPHORN et al.,
1995, JANKE, 2002), is an uplifted area with rates of 0.24 mm/yr
for the north-eastern part (ScHUMACHER, 2002). KoLp (1979) and
DikTrIcH and LieBscH (2000) have shown the presence of a hinge
line of zero isostatic uplift, which stretches from the southern
Zingst peninsula to Usedom Island, separating an uplifted (Rii-
gen Island) from a subsiding area (southwestern Baltic Sea, e.g.
bays of Wismar, Liibeck and Kiel). The strong regression be-
tween 6-5 ky BP has been related to an uplift of 6 m between 7-5
ky BP (ScHUMACHER and BAYERL, 1999; SCHWARZER, DIESING, and
TRrIESCHMANN, 2000) and as a land upheaval on Riigen Island of
8 m (ScHUMACHER, 2002). The age of this uplift fits to the age of
the uplift of the Pomeranian Bight shoreline around 5.8-5 ky
BP (JankE and Lawmpg, 2000).

Tromper Wiek is a semi-enclosed bay located in the north-
eastern part of Rigen Island between the cliffs of Wittow and
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Jasmund (Figure 1). The cliffs are connected by a 12 km long
Holocene barrier named Schaabe, which developed after the
Littorina Transgression (DUPHORN et al., 1995; SCHUMACH-
ER and BAYERL, 1999). The cliffs, with a maximum height of
118 m at Jasmund, are characterized by a complicated pat-
tern of glacio-tectonically uplifted Late Cretaceous chalk and
Pleistocene deposits subdividing the chalk units (HErrIG and
ScHNICK, 1994). The chalk is soft and weakly cemented, inher-
iting black flint concretions (JANKE, 2002; ScHNICK, 2002). The
waters off Jasmund and Wittow are characterized by a steep
bathymetric gradient which continues in the north-western
part of Tromper Wiek where the water depth increases rapidly
from -12 to -18 m msl (STEPHAN et al., 1989).

The latest result of sediment distribution patterns in this
bay (Figure 1B) can be found in SCHWARZER, DiEsiNG, and Tri-
ESCHMANN (2000). Lag deposits occur in front of Wittow and
Jasmund cliffs. They situate the gravel deposit, which is lo-
cated in front of Wittow cliff and Schaabe barrier between —8
and —14 m msl. This deposit shows prominent morphological
ridges composed of well-rounded pebbles and cobbles up to 25
cm in diameter. Shallower than -10 m some till crops out. Fine
sand is located in front of Schaabe spit between —10 and —14
m msl. Muddy fine sand and sandy mud occurs in deeper parts
of Tromper Wiek.

JENSEN (1992); JENSEN et al. (1997); LEMKE et al. (1998);
LEMKE, ScHWARZER, and DiesiNG (2002) have identified five seis-
mostratigraphic units (E1 to E5) in the western Baltic Sea and
the area around Riigen. An uppermost till (E1) was incised by
late glacial channels, probably filled with glacio-lacustrine sedi-
ments (E2) of the early Baltic Ice Lake stage. A thick sedimen-
tary complex (E3) covered these deposits during the final phase
of the Baltic Ice Lake. The boundary separating E2 and E3 cor-
responds to a major discontinuity. At least in Tromper Wiek E3
is subdivided into E3a and E3b. E3a corresponds to an associ-
ated beach ridge - lagoon system and E3b is interpreted to be
either of fluvial or coastal origin, deposited during the lowstand
of the Yoldia Sea. E4 was deposited in the deeper central part
of the bay during the final phase of the Yoldia stage and in the
beginning phase of the Ancylus Lake. The maximum highstand
of the Ancylus Lake was around -18 m msl. It was followed by
a regression to about 30 m msl. Unit E5 is a brackish marine
mud, which reflects recent sedimentation.

In the shallower part of Tromper Wiek, an inner basin is
characterised by lagoonal deposits of E3a which are covered
by gravelly beach ridges. Further offshore, towards the central
part of Tromper Wiek, the till surface dips steeply, reaching a
level of more than —40 m msl and delimiting an outer basin
created by former ice (LEMKE, SCHWARZER, and DIESING, 2002).

METHODS

The Uniboom is an electro-acoustic sound converter produc-
ing a broad frequency band of acoustic pulses (0.5 to 15 kHz)
emitted vertically into the water column (ATzLER, 1995). The
boomer acoustic source is mounted on a catamaran and towed
behind the ship. The sound signal is reflected from boundaries
between different layers/structures within the sedimentary
sequence, consisting of different impedances. Reflected sig-
nals are received by a streamer, additionally towed behind the
ship, close beneath the sea surface. This signal is tuned in a
receiver and transferred to analogue and digital acquisition
units. Processing of the digital data consists of bandpass filter-

ing, stacking and the adjustment of a time varied gain (TVG).
Very-high resolution seismic profiles are interpreted accord-
ing to seismo-stratigraphy principles (POSAMENTIER et al., 1992;
POSAMENTIER, JERVEY, and VAIL, 1988; VAIL et al., 1977; VAN
WAGONER et al., 1988). Originally developed for low resolution
seismics, it can also be applied for high to very-high resolution
seismic (e. g. BRowNE, 1994; Cuiocci, ORLANDO, and TORTORA,
1991; CirAc et al., 1997; LericoLats, BErNE, and FENIES, 2001).

Limitations in the quality of the seismic profiles, due to
bad weather conditions during the surveys, complicate part-
ly the interpretation of the data into different seismostrati-
graphic units.

RESULTS

Several seismic units (U1 to U6) are present on the seismic
profiles (Figures 3 to 7). They are bounded by high amplitude
and often strongly erosive surfaces S2-S6. These units essen-
tially correspond to the filling of two basins. The first one, in
the shallower part of the bay, would correspond to a lagoonal
facies (LEMKE, SCHWARZER, and DIESING, 2002) and is located be-
tween —13 to —20 ms twt (app. —10 to —15 m msl) behind the
gravel barrier (SCHWARZER, DIESING, and TRIESCHMANN, 2000) on
our seismic profiles. Its maximum depth is about 20 ms (app.
-15 m) twt (two-way travel time) in our study area. The second
basin is situated offshore deeper than —24 ms twt (app. -18 m
msl) (Figure 3) and is marked by a steeply dipping surface. The
thickness of the sediment fill is more or less 25 ms twt (app. 20
m). Correlation between the two basins was achieved by com-
paring the seismic facies and the number of the seismic units
above unit U1, occurring in the whole study area without inter-
ruption. The unit U1 dips steeply offshore where it delimits the
offshore basin. The base of U1 is not accessible. Its upper part
constitutes of indented reflections which form channels.

The base of the onshore (lagoonal) basin corresponds to
an uneven high amplitude and to low to good continuity sur-
face S2 which can be followed throughout the whole study
area (Figures 3, 4 and 5). S2 shows channels right to the off-
shore boundary of the inner basin where it almost reaches
the sea bottom. In this area, three channels show a general
NW-SE strike and incise the substratum down to 36 ms twt
(app. -27 m) (Figure 5). They are separated by interfluves
shallower than 28 ms twt (app. 21-22 m h). The channels,
which almost disappear at the boundary between the two
basins, are filled by two different facies: the first one (U2a)
is chaotic and evolves upwards into a second facies (U2b),
which shows wavy parallel reflections (Figure 4). There is
no clear reflection horizon visible between these two seismic
facies.

Surface S3 shows similar characteristics as S2. It is an
uneven high amplitude and good continuity surface showing
channels. Nevertheless, the channels are generally smaller
than the previous ones. The first deposits filling the channels
(U3a) are composed of a chaotic facies with few parallel reflec-
tions on the interfluves. Another type of deposits (U3b) is only
located in the westernmost area. Its base is quite tabular. The
seismic facies corresponds to prograding reflections. U3b rap-
idly pinches out offshore. U3 shows a bar-shaped body in this
upper part (Figure 6).

The amplitude of the surface S4 is variable, but its conti-
nuity is good (Figure 4). It erodes the top of unit U3. Unit U4
corresponds to the last filling of the channels formed by S2 and
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Figure 5. Isochrons of surface S2 and details of the seismic profiles.

onlaps on S4. Further south this unit shows a complex pattern
of retrograding, prograding reflections and small channels with
only a few milliseconds (twt) deep. An offshore bar-shaped body
is present between the two basins, at the same place than the
U3 bar-shaped body. Its facies is chaotic (Figure 6).

The upper surface S5 exhibits high amplitude and good
continuity and can be followed almost throughout the inner
basin (Figures 3, 4 and 7). It shows NW-SE oriented isochrons
between 16 and 24 ms twt (app. -12 and -18 m) and a small
E-W oriented channel of only a few milliseconds deep. It is cov-
ered by the high amplitude facies U5 which is composed of two
units: a basin filling showing chaotic facies (Uba), prograding
and retrograding reflections as well as channels of 3-4 ms twt
which are very similar to the facies of U4, and a barrier-shaped
body (U5b) which ends up the facies offshore. The steep slope
of the ridges on the barrier (Figure 4) is directed towards the
coast and the gentle slope towards the sea. This barrier facies

is located exclusively in the shallow part of the bay where it
shows a thickness of up to 6 ms twt (app. 4,5 m). The thicker
parts are located on the barrier and in the shallowest area.
The unit U6 is a thin layer (less than 1 m) of deposits, which is
difficult to follow because it is mixed with the seafloor signal.
The seismic units U2, U3 and U4 reach the position of the
outer ridges and U3 and U4 pinch out at the end of the ridge
deposit. The thickness of each unit does not exceed 8 ms twt
(app. 6 m), with a mean around 3-4_ms twt (app. 2-3 m).
Between the two basins, the till deposit Ul is bounded by
the surface S2, covered by U2 in the northwest (Figures 3,
4 and 6). The facies of this unit shows channel filling in the
north (U2a, Figure 4). Towards the southeast, prograding and
retrograding reflections form a dome-shaped deposit (U2c¢) on
S2 and sometimes cover the channels formed by this surface.
Small channels are also present in the dome-shaped deposit.
U2c¢ was gently eroded by the formation of S3, except on its top
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where the erosion was stronger and probably younger than
the formation of S3, as U3 deposits are only present on each
side of the dome-shaped deposit (Figure 6). U2 and U3 are cov-
ered by a thin layer composed of the younger unit U6, which
thickens just at the foot of the barrier (app. 2-3 m thick), show-
ing parallel reflections at this location.

Into the offshore basin (Figure 3), the uneven surface S2
also corresponds to the base of the basin, which dips offshore
around 30 ms twt (app. 22 m). S2 shows channels of less than
5 ms twt (app. 3,5 m). S2 is covered by U2, which present simi-
lar seismic facies than in the onshore basin: the bottom deposit
is chaotic and evolves upwards from wavy to more or less par-
allel reflections. S3 does not correspond to an uneven surface
in the offshore basin. It corresponds to a planar surface with
a medium amplitude and continuity, locally disturbed by gas
presence. U3 presents high frequency parallel reflections. The
upper surface S4 is quite horizontal with a high amplitude
and continuity. It shows small channels of 2-3 ms twt deep
(app. 1.5-2 m). The seismic facies of unit U4 also corresponds
to high frequency parallel reflections. It is partly difficult to
differentiate U5 from U4 in the offshore basin, as U5 could
correspond to a part of facies U4. U6 is composed of parallel
reflections and becomes thicker offshore, increasingly.

The thickness of the units is regular and corresponds to 8
ms twt (app. 6,5 m) for U2, about 5-7 ms twt (app. 4-5,5 m) for
U3, 6-8 ms twt (app. 5-6,5 m) for U4 (plus U5?) and 1 to 3 ms
twt (app. 1-2,5 m) for U6.

DISCUSSION AND INTERPRETATION

History of the Western Part of Tromper Wiek
Comparing the results with previous investigations on
land, (HorrMaNN, LamPE, and BArRNAScH, 2005; SCHUMACHER and

BayerL, 1999) and inside Tromper Wiek (LEMKE et al., 1998;
LEMKE, SCHWARZER, and DiesiNGg, 2002; SCHWARZER, DIESING,
and TriescHMANN, 2000), the upper part of the unit Ul corre-
sponds to Pleistocene till (unit E1 in LEMKE et al., 1998; LEMKE,
SCHWARZER, and DiesiNg, 2002; Table 2). In fact, these authors
indicate that the surface of the uppermost till is characterised
by a high relief and channel-like depressions with the surface
dipping steeply towards the central part of Tromper Wiek, as
is the case for surface S2.

After the last glacial maximum about 18.5 ky BP (LLAMBECK
et al., 2000), during the Ice Sheet and the Ice Marginal Lake
periods, the melting of the ice led to an opening of the Baltic
Sea torwards the North Sea (Lampgk, 2005). The water-level
dropped more than 40 m, which probably initiated the for-
mation of the channels bounded by S2 (Figures 8A and 8B).
Channels generally form during water-level fall, but can also
be formed due to melt-water pulses or subglacial draining.
There were two important water-level falls due to the drain-
age of the Baltic Ice Lake. The first one (drainage at 13 ky
BP, Figure 2) occurring in the Baltic Sea was combined with
a melt-water pulse, as the ice retreat on Riigen Island is situ-
ated about 14 ky BP (GoOrsporr and Kaiser, 2001; KrRAMAR-
SKA, 1998; LAGERLUND et al., 1995; UsciNnowicz, 1999), and so
could lead to the formation of the more important channels,
bounded by surface S2. Between about 13 and 10 ky BP, the
water-level had been more or less stable, around -20 to -25 m
msl (SCHUMACHER, 2002) or rose up to a few meters on Rigen
Island considering the water-level evolution in the Arkona ba-
sin or in west Pomerania (BENNIKE and JENSEN, 1996; JENSEN,
1995; Lampg, 2005). The three channels, present in Figure 4,
incise from 26-28 ms twt (19-21 m msl) down to more than 36
ms twt (27 m msl). Therefore a water-level around 20-25 m
msl probably allowed the filling of the channels (U2, Figure
8C). Unit U2 was deposited in two steps during the water-

Table 2. Comparison between the seismic units of LEMKE et al. (1998) and those in this paper.

Lemke et al., 1998 This paper
Seismic units Sediment type Seismic units Supposed Age
E1: Till hyp: grey, partly clayey, Pleistocene U1 Pleistocene
chalk fragments
Channel surface Late glacial S2 (channel) ~13 ky (drainage)
E2: channel filling, glacio- hyp : Silty to sandy material Early Baltic Ice Lake stage U2 Baltic Ice Lake

lacustrine sequence

Major unconformity S3 (channel) ~11.5 ky (drainage)
E3: Baltic Ice Lake Baltic Ice Lake to Yoldia
E3a: Thick silt then olive grey, U3? Sea
fine laminated silt Upper part: ~10.1-10.5 ky U4?
........................... Us?
................... Silty fine sand From ~10.3 ky
E3b (below 35 m depth):
fluvial or coastal U5?
E4: fresh water lake deposit Below -34 m: grey silts Base: ~9.6 ky Us ? U6? Ancylus Lake
Ancylus Lake
E5 Olive grey sandy mud Post-Littorina U6 Post-Littorina Sea
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E- Yoldia Sea and Ancylus Lake-
3rd and last drainage. Formation of
S4. Then rapid WL rise and
formation of barrier and back-
barrier deposits (U4).

F- Ancylus Lake- WL stagnation.
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ravinement surface (S5) and
barrier and back-barrier deposits
(U5).

G-Littorina Sea- Rapid WL rise.
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US5. Deposition of U6.

Figure 8. Deposition model of the 6 seismic units, interpreted from the boomer profiles. WL: water-level.

level stagnation after 13 ky BP (Figure 8C). The lowest unit
(U2a) shows a chaotic facies, which might represent the final
melt water deposits, composed of heterogeneous and/or coarse
material. The unit above (U2b) shows alternating wavy bed-
ded reflections, following the underlying relief. This generally
gives evidence of more homogeneous and/or finer deposits.
This wavy facies is very similar to the E2 facies mentioned
in LEMKE, ScHWARZER, and DiesING (2002) where the authors

also indicate that the seismic facies represents silty to sandy
material. They interpret E2 as a glacio-lacustrine sequence
formed immediately after the final deglaciation of the area. In
front of the offshore basin, a dome-shaped body (U2¢c, Figure
6) seems to correspond to a barrier beach, formed during or af-
ter the filling of the channels since their deposition. It should
indicate a stabilisation of the water-level around 20-25 m msl
for a duration which is sufficient to create these deposits. This
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meets the water level curves for Riigen Island, presented by
SCHUMACHER (2002) and the position around 20-25 m depth of
the channels (S2). In the offshore basin, the initial filling of
the channels consists of similar facies.

The formation of the second set of channels, located in the
onshore basin (surface S3, Figure 8D), should be due to the
second important drainage of the Baltic Ice Lake around 11 ky

BP present on the water-level curves of the Arkona basin or
the west Pomerania (BENNIKE and JENSEN, 1996; JENSEN, 1995;
Lawmpg, 2005) (Figure 2). When forming this surface S3, a part
of the beach barrier, located offshore, was eroded. S3 seems
to correspond to the boundary between the units E2 and E3
which is mentioned in LEMKE, SCHWARZER, and DiEsiNG (2002);
ScHWARZER, DIESING, and TRIESCHMANN (2000). Moreover, these
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authors indicate that E3, corresponding to the seismic unit of
U3, was deposited prior to 10.3 ky BP.

More in detail, the lowermost deposits of U3 in the chan-
nels look similar to the facies of U2, i.e. heterogeneous and/
or coarse deposits (U3a). The facies above is different and cor-
responds to a small prograding deposit (U3b). Normally, this
indicates sediment input during a constant water-level. As it is
only located in the west part of the profile (Figures 3 and 4), it
could be formed due to local conditions, e.g. progradation of the
channel wall. U3 deposits do not show a large beach barrier
facies as U2c. Nevertheless, a deposit similar to a barrier is
present downstream of U2¢ (Figure 6). LEMKE, SCHWARZER, and
DiesiNG (2002); SCHWARZER, DIESING, and TRIESCHMANN (2000)
also indicate that this unit is correlated with a barrier-lagoon
system in the central part of Tromper Wiek, where the bar-
riers are composed of gravel. A barrier is also present in our
study area. So the barrier-lagoon system probably extended
towards the north. Nevertheless, in our study area the gravel
deposits do not correspond to U3, but to the younger unit (U5).
Therefore there should have been several periods of gravel
deposition with a shift of the centre of deposition towards the
north.

A third erosive surface is indicated by S4. This surface
could have been formed during the last drainage after 10.3 ky
BP. Onlaps, which are characteristic for a transgressive facies,
are present on S4 (Figures 4 and 8E). As such, U4 is a trans-
gressive facies which should have been formed during the first
part of the water-level rise about 10-9.5 ky BP. The channel-
filling continued as well, as also the construction of the barrier
which is already present in U3. A back-barrier/lagoon facies is
present also (Figure 6).

About 9.5 ky BP, the speed of the water-level rise slowed
down and remained stable at a level of 23-25 m msl, which is
about 10 m below the back-barrier system. Nevertheless, if we
consider an uplift of 6 m after 7 ky BP, then the gravel deposits
would have been located around 16-20 m msl, which was the
depth of the shoreface 9.5 ky BP ago (Figure 9A). The shape of
the gravel confirms this fact, as observations by scuba divers
revealed that these ridges are composed of well-rounded peb-
bles and cobbles of up to 25 cm in diameter (SCHWARZER, DIES-
ING, and TRIESCHMANN, 2000).

The water-level stagnation may have favoured the forma-
tion of a wave erosion surface (S5) at the top of U4 (Figures
8F and 9A). Due to stable water-level conditions during sev-
eral centuries, a barrier, larger than the former ones, had
been developed. Behind this barrier, a facies similar to the U4
facies has been deposited. The U5 deposit is oriented paral-
lel to the barrier (Figure 7). U5 would correspond to a barrier
and a back-barrier facies with channels alternating interfluves
showed by retrograding or prograding reflections.

The next water-level rise, after 9 ky BP, was likely rela-
tively fast. Due to the very coarse material, the gravel deposits
were preserved partly. Nevertheless, the barrier was probably
in part eroded due to its shallow water location, and its mor-
phology evolved in a berm system (steep slope shifted land-
wards; Figure 9B). The deposition of gravel probably decreased
quickly with increasing water depth. No gravel is present on
the actual coast, below -15 m msl. New systems of barriers
and berms might have formed on the gravel deposits (Figure
9C). Prior to the uplift approximately 5-7 ky BP, the gravel
deposits were probably located in 22 m water-depth. The
onshore boundary is more difficult to establish, but, by com-
parison with the actual depth, it was likely in approximately

15 m water-depth. Uplift raised Riigen Island with about 6 m
(ScHUMACHER and BAYERL, 1999; SCHWARZER, DIESING, and TRIE-
SCHMANN, 2000). Then the gravel deposits were located between
8 and 16 m msl, which is the actual depth (Figure 9D and E).
Due to the very coarse granulometry of the barrier sediments,
it was mostly preserved.

The last unit, U6, is a thin cover of fine sand, which repre-
sents the actual sedimentation onshore. Offshore, it can be sub-
divided in several sub-units, which have probably recorded the
oscillations of the water-level since 9000 years BP (Figure 8G).
This unit probably corresponds to the unit E5 of SCHWARZER,
DigesiNG, and TRrIESCHMANN (2000), which shows typical deposits
of the post-Littorina brackish marine Baltic Sea.

Gravel deposits: Barrier and back-barrier facies

We found a barrier facies in four of the six units (U2, U3, U4
and U5), generally in their upper part/top. In our study area,
a back-barrier/lagoon facies is present in two units (U4 and
U5) and other investigations (LEMKE, SCHWARZER, and DIESING,
2002; SCHWARZER, DIESING, and TRIESCHMANN, 2000) showed the
presence of a lagoon in E3/U3 in the central part of Tromper
Wiek. Two of these units crop out on the sea floor (U3 in the
central part of Tromper Wiek and U5 in our study area) show-
ing barriers composed of gravely sediments with a northwest-
southeast orientation for U3 and a northeast-southwest orien-
tation for U5.

The with gravel built-up unit U5 is intensively dredged,
showing pits of up to a few m deep (Diesing, 2003) (Figure 7).
The thickness of the gravel unit (U5) reaches 6 ms twt on our
seismic profiles (about 5 m thick) (Figure 7). U5 spreads over
more than 3500 m in a NE-SW direction and from about 300 m
(in the north) to more than 1000 m (in the south) in a NW-SE
direction.

It is possible that each of these units (U2, U3, U4 and U5)
shows gravel deposits on their upper part, especially in the
barrier facies. That means that the total gravel deposit is prob-
ably much more spread than the gravel deposits on the sea
bottom shows.

Generally, there are two sources of gravel: the seafloor itself
and the erosion of the cliffs (AnTHONY, 2002; CavioLa, 1997;
JOHNSON, 1919; OrrorD, ForBES, and JENNINGS, 2002; REGNAULD,
Mavuz, and Morzaptc-KERFOURN, 2003; SCcHROTTKE, 2001). The
gravel deposits formed when the water-level was about 15-20
m msl, considering the uplift of about 15-10 m modern msl.
Moreover, the barrier deposit built during quite high and sta-
ble water-levels. If the seafloor was the only source of the grav-
el, we should find gravel deposits in the outer basin; this is not
the case. So, the most probable source of the gravel deposits is
the erosion of Wittow cliff, composed of chalk, meltwater sedi-
ments, boulder and clay, present close to our study area. This
erosion is only possible when the water-level was about 15-20
m msl. Following, the cliff was eroded by wave and current
action and supplied the gravel needed for the formation of the
gravel deposits.

CONCLUSIONS

Six units (U1 to U6) have been identified in the western
part of Tromper Wiek and are bounded by 5 surfaces (S2 to
S6). U1 is attributed to the presence of Pleistocene till; its up-
per part was eroded by the formation of channels (52), proba-
bly related to the water-level drop during the Late Glacial. The
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filling of these channels (U2) began by fluviatile sediments,
which were later replaced with finer and homogeneous sedi-
ments. U2 shows a beach barrier facies deposited during or
after the filling of the channel. The location of this barrier is
slightly offshore of the modern barrier. The first reactivation of
the channels (S3) occurred probably during the Baltic Ice Lake
about 11 ky BP. Their filling (U3) is very similar to U2. At the
top of U3, a barrier is found at more or less the same position
as the actual barrier. Outside of the study area, investigations
have shown that U3 is partly composed of gravel barriers. S4
corresponds to the last reactivation of the channels formed by
S2 and could have been formed about 10 ky BP. The filling
of the channels (U4) occurred during the Yoldia Sea and the
Ancylus Lake. It is slightly different as it shows transgressive
deposits and a barrier and back-barrier facies. S5 would be an
erosional surface caused by waves as the water-level rise speed
decreased. U5 also shows a barrier and a back-barrier facies
similar to the U4 facies. This unit is nowadays dredged inten-
sively, because of its high gravel content. Due to the uplift of 6
m about 5-7 ky BP, the gravel deposited originally around 15-
20 m msl depth, which are the mean depth of the high water-
level between 9 and 13 ky BP, are now at about 10-15 m msl.
U6 would correspond to the last Littorina deposits.

Four of the six units (U2, U3, U4 and U5) show barrier
deposits. The two units (U3 and U5), outcropping on the sea
bottom, and showing a barrier, are composed of gravelly sedi-
ments. It is possible that the two others units (U2 and U4),
showing a barrier, are also composed, at least partly of gravel.
The gravel came from the erosion of the Wittow cliff during
periods of high water-level. The volume of gravel resources can
be more important than estimated before.
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