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“Such was the region the Nautilus was now visiting, a perfect meadow, a close carpet of seaweed, 
fucus, and tropical berries, so thick and so compact that the stem of a vessel could hardly tear its 

way through it.” – Jules Verne, Twenty Thousand Leagues under the Sea 
 

“What a magnificent spectacle was then outspread beneath the gaze of the travellers! The island of 
Zanzibar could be seen in its entire extent, marked out by its deeper color upon a vast planisphere; 
the fields had the appearance of patterns of different colors, and thick clumps of green indicated the 

groves and thickets.” – Jules Verne, Five Weeks in a Balloon 
 
Two quotes from a great visionary, perfectly illustrating my two passions: 
the biology of the seas, and looking at this from a bird’s eye perspective. I’ve 
been lucky enough to combine these two passions into one study during the 
past 6 years, and obviously this could not have been possible without the 
support from many, many people. 

A complete stranger to seaweeds prior to college, I developed a 
keen interest in these often disregarded organisms during my first year in 
Biology, unmistakably initiated by Eric. Later, the predominantly marine-
orientated courses convinced me to study zoology. However, Eric and Tom 
made me enthusiastic for the marine biogeographical and ecological 
research they were doing, and, although rather unheard of at that time in the 
botany department, welcomed me as a zoologist for my master’s thesis in 
the Phycology Research Group. And it didn’t stop there – thanking them 
for their open-minded research vision and giving me plenty of time to 
develop my own “niche” in seaweed research thereafter by hybridizing with 
geography would be an understatement anyhow. Likewise, Olivier 
supported me in every possible way when he took over as my supervisor, 
and, probably even more importantly, kept me focused and on track! 
Moreover, the opportunity they gave me to go on many a sampling trip and 
congress is simply invaluable. And speaking of invaluable, Christelle always 
brilliantly solved any administrative obstacles to these trips with a big smile! 
The Phycology group wouldn’t be complete without the technical help and 
countless fruitful and animated discussions (not just on phycology!) with my 
office buddies Heroen and first Tom, later Lennert (with our different 
backgrounds and interests we made for a very productive team I might say!), 
as well as Frederik, Ellen, Kenny, Aga, Ana, Frederique, Dioli, Sofie and 
Caroline, occasionally expanded during meetings, symposiums and the likes. 
I’d also like to thank the members of my PhD committee as well as 
anonymous article reviewers for their constructive remarks. 

Our research group may have been small, the many less phycology- 
related discussions were cheerfully joined by the protistologists Bart, 
Katrijn, Lander, Griet, Jeroen, Pieter, Annick, Dagmar, Annelies, Ines, 
Caroline, Nicolas, Els, Evelien, Jeroen, Elie, Koen, Wim, and so on, sharing 
our corridor.  

Down the corridor and downstairs, I found priceless technical 
advice to kick-start the geographical part of my research provided by Rudi, 



Tony and Peter, and lately also by Geert from the Archaeology Department. 
Together with the people from the ground floor marine lab, I kept a broad 
look on the coastal environment and enjoyed many trips to Wimereux with 
Joke, Jelle, Jan, Karen, Katja, Nele, Marijn, Ulrike and Ann. Many people 
also greatly helped me out with advice, among others Bea, Dirk and Jürgen. 

As I spent about a year combined abroad on sampling trips and 
field courses, many people were indispensible for assistance, support, help 
and entertainment, among which fellow students from Roscoff and 
Villefranche and the students who volunteered, or sacrificed, for a master’s 
thesis under my auspices. My elite field crew was further populated by Yoshi 
in Japan and the Omani buddies: Five Oceans’ Simon, Rob, Kris, Iain and 
Oli, as well as Barry and Ligaya who made Oman almost a second home for 
me, “Toxic” Tom and Else, Pieter, Michel, Ali, Mussallem and Toyota Land 
Cruiser 4500.  

Throughout the years, fellow students and colleagues became 
friends, and living in a joyful city as Ghent is also guaranteed to get you 
surrounded by friends who made work and life a pure pleasure. Next to 
people I have already mentioned stand, in no particular order, Wolf, Pieter, 
Griet, Mieke, Wouter, Matthias, Maureen, Martine, Sarah, Eva, ..., the 
underwater hockey gang and every single Intimate Voice, as well as the 
Didakites and Antwerp Flyer crew who cheered up the coastal life. 

Like I said in the beginning, many, many people contributed to this 
work one way or another. Not being mentioned in name here is a mere 
honor because you have made my life and work so much better without me 
even realizing how! 

On top of that, next to all the years of unconditional support, my 
twin-brother-lifeguard-musician Koen and brother-expert-on-road-trip-
music Jan did an amazing job as field biologists in Oman after a heroic crash 
course in snorkeling, unauthorized diving, make-do Arabic, better-than-me-
4WD-driving and, indeed, phycology. Eternal Respect to you, and Soetkin 
and Delfine whom I made temporarily husbandless! I can guarantee you a 
very important role in Peetje’s tough stories to your lovely kids(-to-be)! 

Het mag duidelijk zijn dat niets van dit hele werk mogelijk geweest 
zou zijn zonder de immer liefdevolle steun van Moeke, Moem en Vake, net 
als die van Jef en Gerda. Niemand van jullie spaarde ooit kost of moeite, 
bloed, zweet of tranen om mij te laten verwezenlijken waarin ik geloofde. 
Een warm nest in de zeebries, en een warm nest in de kempen, wie zou zich 
meer kunnen wensen... 

An, she-who-had-to-share-her-boyfriend-with-his-“mistress”/PhD, 
to you I dedicate this work. You made me enjoy all-things-non-biology, 
laugh and dance, while enjoying yourself all-things-biology I did all along. 
And as if that wouldn’t do, without you both this classy book and its 
predecessor would look like crappy street paper! I couldn’t dream of better! 
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ACRONYMS 
 
AUC  Area Under the Curve 
AVHRR  Advanced Very High Resolution Radiometer 
BEM  Bioclimate Envelope Modeling 
Bio-ORACLE Ocean Rasters for Analysis of Climate and Environment 
BNDVI Blue-substituted Normalized Difference Vegetation Index 
BRT  Boosted Regression Trees 
CAL  Calcite 
CCD  Charge-Coupled Device 
CHDK  Canon Hacker Development Kit 
CHL(-a)  Chlorophyll(-a) 
CHRIS  Compact High Resolution Imaging Spectrometer 
DA  Diffuse Attenuation 
DIVA  Data Interpolating Variational Analysis 
DN  Digital Number 
DOM  Dissolved Organic Matter 
EEZ  Exclusive Economic Zone 
EGNOS  European Geostationary Navigation Overlay 
ENFA  Ecological Niche Factor Analysis 
ENM  Ecological Niche Modeling 
ETM+  Enhanced Thematic Mapper + 
FAI  Floating Algae Index 
GAD  Generalized Additive Models 
GARP  Genetic Algorithm for Rule set Prediction 
GCP  Ground Control Point 
GEBCO  GEneral Bathymetric Chart of the Oceans 
GIS  Geographic Information System(s) 
GLM  Generalized Linear Models 
GPS  Global Positioning System 
GSD  Ground Sampling Distance 
HSM  Habitat Suitability Modeling 
IPCC  Intergovernmental Panel on Climate Change 
ITS  Internal Transcribed Spacer 
KAP  Kite Aerial Photography 
KIA  Kappa Index of Agreement 
LIDAR LIght Detection And Ranging or  

Laser Imaging Detection And Ranging 
Maxent  Maximum entropy 
MCMC  Markov Chain Monte Carlo 
MERIS  MEdium Resolution Imaging Spectrometer 
ML  Maximum Likelihood 
MODIS  MODerate resolution Imaging Spectroradiometer 
MPB  MicroPhytoBenthos 
NDVI  Normalized Difference Vegetation Index 
NIR  Near-InfraRed 
NOAA  National Oceanic and Atmospheric Administration 
OBIS  Ocean Biogeographic Information System 
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PAR  Photosynthetically Available Radiation or  
Photosynthetically Active Radiation 

PCA  Principal Component Analysis 
PIC  Particulate Inorganic Carbon 
POC  Particulate Organic Carbon 
PROBA  PRoject for OnBoard Autonomy 
RGB  Red Green Blue (also used separately) 
RMS(E)  Root Mean Square (Error) 
ROC  Receiver Operating Characteristic 
ROI  Region Of Interest 
SAL  Salinity 
SD  Standard Deviation 
SDM  Species Distribution Modeling 
SFM  Structure From Motion 
SeaWiFS  Sea-viewing Wide Field-of-view Sensor 
SLC  Scan Line Corrector 
SMOS  Soil Moisture and Ocean Salinity 
SST  Sea Surface Temperature 
SSU  Small SubUnit 
SWIR  Short-Wave InfraRed 
TIR  Thermal InfraRed 
TOA  Top Of Atmosphere 
UAV  Unmanned Aerial Vehicle 
UTM  Universal Transverse Mercator 
VIM  Variational Inverse Method 
VNIR  Visible and Near-InfraRed 
WAAS  Wide Area Augmentation System 
WOA  World Ocean Atlas 
WOD  World Ocean Database 
WOOD  Worldwide Ocean Optics Database 
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SUMMARY 

Marine habitats and environments are under increasing pressure worldwide. 
While human activities have long been demonstrated to impact coastal and 
pelagic communities, these effects will probably be aggravated by global 
change. It is therefore important to gain insight in spatial and temporal 
dynamics and patterns of primary producers such as macroalgae. However, 
spatial data suitable for seaweed research have only recently become 
available, and marine applications in general and phycological in particular 
have lagged behind on terrestrial applications in spatially explicit data 
acquisition and processing. This thesis aims at presenting case studies to 
identify current issues in GIS-based analysis, remote sensing and 
distribution modeling of algae, while suggesting workarounds, adaptations 
or solutions to these specific techniques to help answering biological 
questions. 
 
In chapter 1, the concepts of GIS and remote sensing are introduced to the 
phycological community, and the current state of spatial data integration in 
phycological research is reviewed. The storage and dissemination of spatial 
metadata is of particular concern, while this can be remedied with minimal 
effort to reveal valuable information for distribution modeling studies. 
Promising satellite sensors have been launched or are planned to reveal 
coarse scale environmental information which can be used as input in 
distribution modeling, but satellites suitable for high resolution seaweed 
mapping remain underrepresented. 
 
In chapter 2, following four ephemeral monotypic green algal Trichosolen 
blooms on catastrophically impacted coral reefs, from which the species was 
previously unknown, we use the records together with few other occurrence 
data in a niche modeling study. We aim to derive ecological and 
distributional information and delineate future bloom risk areas by 
overlaying the suitability map with a GIS coral reef database. A pantropical 
distribution was modeled, with several reef areas where the alga has not yet 
been recorded from delineated as bloom risk area. Response curves for 
chlorophyll differed markedly between blooms and non-blooms. While both 
blooms and non-bloom occurrences showed a strong preference for high 



Summary 

 4 

temperatures, blooms responded better to broader nutrient ranges than 
non-blooms. 
 
In chapter 3, we use occurrence records and their associated sea surface 
temperature and nutrient (chlorophyll) values of extant Halimeda spp. as 
input in ancestral state reconstruction techniques to infer their ancestral 
niche and the degree of niche conservatism. We also perform niche 
modeling to compare the potential niche to the known distributions. Results 
showed that the niche of Halimeda is conserved for tropical, nutrient-
depleted habitats, while one section of the genus invaded colder waters 
several times independently. Since known distribution ranges are 
considerably smaller than modeled potential ranges, we conclude that 
restricted geographical ranges are likely the result of dispersal limitation. We 
propose suitability hotspots in adjacent ocean basins to be targeted for 
fieldwork to discover sibling species. 
 
Chapter 4 aims to boost marine distribution modeling applications by 
providing Bio-ORACLE, the first global marine pre-packaged uniform set 
of environmental variables at 9km resolution, representing different 
dimensions in environmental space, freely available for download. Twenty-
three raster layers were constructed based on remote sensing data products 
and interpolation of in situ measurements, for which a uniform landmask 
was applied. We performed a modeling test on the invasive green alga 
Codium fragile subsp. fragile study which shows the predictive performance of 
the dataset by correctly predicting the current distribution. 
 
In chapter 5, a high-resolution environmental dataset for regional 
distribution modeling is assembled using Landsat 7 ETM+ imagery. Habitat 
layers relating to sea surface temperature, nutrient availability and turbidity 
as well as a substrate layer were based on 10 mosaiced scenes to cover a 
2000km stretch along the coast of Oman at 60m resolution. Niche models 
for 3 species occurring in the Arabian Sea, Gulf of Oman or both were 
modeled based on Landsat-derived variables as well as cropped Bio-
ORACLE variables equivalent to the Landsat information. It emerged that 
for all three species, Bio-ORACLE and Landsat-based predictions were 
similar for the Gulf of Oman with relatively little environmental variability. 
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By contrast, Bio-ORACLE showed overprediction for all three species in 
the more heterogeneous Arabian Sea, with Landsat models closely reflecting 
previously known distributions for the three species in the latter region. 
Hence, we conclude that spatial scale effects in heterogeneous marine 
environments should be considered when designing regional distribution 
modeling studies. 
 
In chapter 6, multispectral Landsat 7 ETM+ and superspectral 
PROBA/CHRIS imagery, both high resolution at 30m and 18m 
respectively, are used in a seasonal mapping effort focusing on macroalgal 
stands in an upwelling-exposed area in the south of Oman. While Landsat 7 
benefits from a SWIR band in a vegetation index to detect surfacing, 
floating and intertidal algae, classification accuracy was better for 
PROBA/CHRIS. Classification accuracy was also generally higher in the 
winter compared to the summer monsoon season, where turbid waters and 
dense algal stands cause bottom types to be very heterogeneous. 
Nonetheless, an important turnover between coral dominance in winter and 
algal dominance in summer was detected. Maxent models for brown algae 
and coral in the summer monsoon revealed extensive sub-pixel overgrowth 
of algae on coral, dominating the spectral signature of these mixed pixels. 
 
Chapter 7 presents a near-infrared enabled consumer-grade digital compact 
camera mounted on a kite as an effective low-cost monitoring tool for 
intertidal habitats, with a focus on seaweed mapping. Using computer vision 
software, photos were automatically aligned and a 3D terrain reconstruction 
was done in order to generate an orthophotomosaic. By using a red-
blocking filter in front of the lens, the camera captured blue, green and near-
infrared light only, and these band mosaics were used to create a 
segmentation image. The latter was used to aid pixel training for maximum 
likelihood classification. A modified normalized difference vegetation index 
was also calculated, substituting red by blue. We showed that a combination 
of blue, green, near-infrared and vegetation layers as input for the 
classification yielded superior results to true-color image processing. While 
not equaling the quality of professional UAV system-based aerial 
photography, this monitoring tool seems ideally suited for use in remote 
areas, adverse physical conditions and developing countries. 
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Based on these case studies, we presented several tools and techniques that 
enhance distribution modeling and mapping power for seaweed 
applications. This makes a growing body of spatially explicit information 
and processing algorithms suited for the marine environment available to 
answer biological questions on seaweed patterns in time and space. 
However, some issues would benefit from further research, such as more 
widely accepted model selection and evaluation tools and knowledge on 
model parameter settings. 
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SAMENVATTING 

Mariene habitats en milieus staan wereldwijd onder toenemende druk. Van 
menselijke activeiten is reeds lang aangetoond dat ze een impact hebben op 
kust- en zeegemeenschappen, en deze effecten zullen waarschijnlijk nog 
versterkt worden door global change. Om hierop in te spelen is het 
belangrijk een inzicht te verwerven in de dynamiek en patronen in ruimte en 
tijd van primaire producenten zoals zeewieren. Ruimtelijke gegevens die 
geschikt zijn voor onderzoek naar zeewieren zijn echter nog maar sinds kort 
beschikbaar, en mariene toepassingen in het algemeen en op wieren in het 
bijzonder hinken achterop in vergelijking met terrestrische toepassingen in 
ruimtelijke dataverwerving en –verwerking. Deze thesis heeft tot doel 
casestudies naar voor te brengen om de huidige moeilijkheden in GIS-
gebaseerde analyses, teledetectie en verspreidingsmodellering van wieren aan 
te tonen, om dan aanpassingen en oplossingen voor deze technieken aan te 
reiken en om biologische vraagstukken te helpen beantwoorden. 
 
In hoofdstuk 1 worden de concepten van geografische informatiesystemen 
(GIS) en teledetectie voorgesteld aan de algologische gemeenschap, en 
wordt de huidige staat van ruimtelijke data-integratie in algologisch 
onderzoek nagegaan. Vooral de opslag en verspreiding van ruimtelijke 
metadata van waarnemingen van zeewieren lijkt een probleem te vormen, 
terwijl daar voor de hand liggende oplossingen voor uitgewerkt kunnen 
worden zodat deze kostbare informatie kan aangewend worden in studies 
naar verspreidingsmodellering. Een aantal van de net gelanceerde of 
geplande satellieten zijn veelbelovend omwille van de omgevingsinformatie 
op globale schaal die ze beschikbaar gaan stellen, hetgeen gebruikt kan 
worden voor verspreidingsmodellering, maar satellieten die geschikt zijn om 
zeewieren in kaart te brengen met een hoge resolutie zijn nog steeds schaars. 
 
In hoofdstuk 2 gebruiken we de weinige beschikbare gegevens over het 
voorkomen van het groenwier Trichosolen om de niche ervan te modelleren, 
nadat het in vier gevallen een snelle, kortstondige bloei had gevormd op 
koraalriffen die net beschadigd waren. We willen hiermee de ecologische 
karakteristieken en de verspreiding van het wier achterhalen, en 
risicogebieden voor toekomstige bloeien gaan afbakenen door de 
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resulterende geschiktheidswaarden in een GIS over een ruimtelijke database 
van koraalriffen te leggen. Het model toonde dat het zeewier een 
verspreiding over de volledige tropen kent, waarbinnen verschillende 
koraalriffen van waar het wier nog niet gerapporteerd werd als 
bloeirisicogebied afgelijnd werden. De gemodelleerde responscurven van 
Trichosolen waren vooral verschillend voor wat betreft chlorofylconcentraties 
(en dus organische nutriënten) in de waterkolom. Waarnemingen van zowel 
bloeigevallen als niet-bloeiende populaties toonden een sterke voorkeur 
voor hoge temperaturen, maar het is waarschijnlijker bloeien aan te treffen 
in gebieden met ver uiteenlopende nutriëntenconcentraties. 
 
In hoofdstuk 3 gebruiken we gegevens over het voorkomen en de 
geassocieerde oppervlaktetemperatuur van het zeewater en de 
nutriëntentoestand (a.d.h. van chlorofyl) van de huidige soorten binnen het 
groenwiergenus Halimeda om als input te dienen voor de reconstructie van 
de toestand in het verleden. Zo kan de ancestrale niche bepaald worden en 
nagegaan worden of deze niche constant bleef in de tijd 
(nicheconservatisme) of niet. We maken ook nichemodellen om de 
potentiële niche van de huidige soorten te vergelijken met hun werkelijke 
(gekende) verspreiding. De resultaten toonden aan dat de niche van 
Halimeda beperkt is tot tropisch, nutriëntenarm water, maar dat binnen één 
sectie van het genus enkele soorten verschillende malen onafhankelijk van 
elkaar zich in koude wateren zijn gaan verspreiden. Omdat de gekende 
verspreidingspatronen aanzienlijk kleiner zijn dan de gemodelleerde 
potentiële verspreiding, besluiten we dat de beperkte geografische 
verspreiding van de huidige soorten vooral het gevolg is van 
dispersiebeperkingen, eerder dan aan een gebrek aan geschikte milieus. We 
stellen voor dat de hotspots van nichegeschiktheid die in de naburige 
oceanen te vinden zijn voorrang moeten krijgen om bemonsterd te worden 
met als doel nieuwe zustersoorten te ontdekken. 
 
Hoofstuk 4 heeft tot doel mariene verspreidingsmodellering te 
vergemakkelijken door Bio-ORACLE voor te stellen: de eerste globale, 
uniform gebundelde dataset van omgevingsvariabelen op 9km resolutie,  die 
gratis online ter beschikking staat. Deze gegevens omvatten verschillende 
dimensies in de omgevingsruimte en bestaan uit 23 rasterkaartlagen die 
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samengesteld zijn op basis van teledetectieproducten en interpolaties van in 
situ metingen, om daar dan op een uniforme manier landpixels in te 
maskeren. We hebben de dataset getest op de modellering van de 
verspreiding van Codium fragile subsp. fragile, een goed bestudeerde invasieve 
groenwiersoort. De resultaten hiervan toonden de kracht van de dataset aan 
door het huidige verspreidingsgebied correct te voorspellen. 
 
In hoofdstuk 5 wordt op basis van beelden van Landsat 7 ETM+ een 
hoge-resolutie dataset van omgevingsvariabelen samengesteld voor het 
maken van regionale verspreidingsmodellen. Habitatkaartlagen die verband 
houden met de oppervlaktetemperatuur van het zeewater, beschikbaarheid 
van nutriënten, turbiditeit en het substraat werden samengesteld op basis 
van 10 satellietbeelden die een strook van 2000km langs de kust van Oman 
dekken met een resolutie van 60m. Nichemodellen voor drie soorten die 
voorkomen in de Arabische Zee, de Golf van Oman of beide werden 
opgesteld op basis van zowel de Landsatkaartlagen als gegevens uit de Bio-
ORACLE dataset die verkleind werden tot het studiegebied, en waaruit die 
gegevens gehaald werden die equivalent zijn met de kaartlagen op basis van 
Landsat. Het bleek dat de verspreiding van de drie soorten even goed 
gemodelleerd werden op basis van zowel Bio-ORACLE als Landsat  in de 
Golf van Oman die gekenmerkt wordt door een lagere variabiliteit. 
Anderzijds vertoonden de modellen op basis van Bio-ORACLE voor alle 
soorten een overpredictie in de meer heterogene Arabische Zee, terwijl op 
Landsat-gebaseerde modellen daar net wel de gekende 
verspreidingspatronen goed weergaven. We besluiten daaruit dat de resolutie 
van omgevingsvariabelen waarmee gewerkt wordt in de modellering een rol 
speelt waarmee met name in heterogene milieus rekening gehouden moet 
worden bij het opzetten van modelleringsstudies.  
 
In hoofdstuk 6 worden hoge-resolutie multispectrale Landsat 7 ETM+ 
(30m resolutie) en superspectrale PROBA/CHRIS (18m resolutie) beelden 
gebruikt in een poging zeewiergemeenschappen seizoenaal in kaart te 
brengen in een gebied dat gekenmerkt wordt door intense opwelling, in het 
zuiden van Oman. Ondanks het voordeel van de korte-golf infrarood 
(SWIR) band van Landsat 7 voor gebruik in vegetatie-indices om 
bovendrijvende en intertidale wieren te herkennen, waren de 
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classificatieresultaten die behaald werden met PROBA/CHRIS beelden 
beter. De nauwkeurigheid van classificaties was ook beter in de winter dan 
in de zomer, wanneer een troebele waterkolom en dichte begroeiing door 
wieren ervoor zorgen dat de bodembedekking heel heterogeen wordt. 
Ondanks deze moeilijkheden werd een grote omschakeling gevonden van 
koraaldominantie in de winter naar zeewierdominantie in de zomer. 
Verspreidingsmodellen voor bruinwieren en koralen in de zomer maakten 
duidelijk dat er een uitgebreide overgroei van wieren op koralen plaatsvindt 
op een schaal kleiner dan de resolutie van de pixels; op deze manier 
domineren wieren het spectrale signaal dat van deze gemengde pixels 
uitgaat. 
 
Hoofdstuk 7 stelt een eenvoudige nabij-infrarood-geconverteerde digitale 
compactcamera, opgehangen aan een windvlieger, voor als een efficiënte 
manier om intertidale habitats op een goedkope manier te monitoren, met 
de nadruk op zeewiergemeenschappen. Met behulp van 
computervisiesoftware werden de foto’s automatisch gealigneerd en werd 
een 3D-reconstructie van het terrein gemaakt, wat vervolgens toeliet een 
orthofotomozaïek aan te maken. Door een rood-blokkerende filter voor de 
lens te gebruiken ontving de camera enkel blauw, groen en nabij-infrarood 
licht, en deze bandmozaïeken werden dan gebruikt om een beeldsegmentatie 
uit te voeren waarna de hele mozaïek geclassificeerd kon worden. Een 
aangepaste NDVI vegetatie-index kon ook berekend worden door de rode 
band te vervangen door de blauwe. We tonen aan dat de combinatie van 
blauw, groen, nabij-infrarood en de vegetatie-index betere resultaten 
opleverde voor classificatie in vergelijking met echte kleurenbeelden (blauw, 
groen, rood). Dit systeem haalt weliswaar niet de kwaliteit van camera’s aan 
boord van professionele onbemande vliegtuigen, maar het is wel geschikt 
voor zeer afgelegen gebieden, voor gebruik in barre omstandigheden en in 
ontwikkelingslanden. 
 
Op basis van deze casestudies hebben we verschillende methodes en 
technieken aangereikt die de verspreidingsmodellering en kartering van 
zeewieren op punt stellen. Daardoor komt een steeds groeiend deel van 
ruimtelijk expliciete informatie en verwerkingsmethodes binnen handbereik 
voor gebruik in het mariene milieu en om biologische vragen over 
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zeewierverspreidingspatronen in ruimte en tijd te beantwoorden. Hoe dan 
ook, sommige problemen blijven onopgelost; zo is er meer onderzoek nodig 
naar een algemeen aanvaarde vorm van modelselectie en –evaluatie en is een 
beter begrip van het aanpassen van bepaalde instellingen in het 
modelleringsproces noodzakelijk. 
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GIS AND REMOTE SENSING IN A NORI WRAP 

INTRODUCTION 
In the face of global change, spatially explicit studies or meta-analyses of 
published species data are much needed to understand the impact of the 
changing environment on living organisms, for instance by modeling and 
mapping species’ distributional shifts. A Nature Editorial (2008) recently 
discussed the need for spatially explicit biological data, stating that the 
absence or inaccuracy of geographical coordinates associated to every single 
sample prohibits, or at least jeopardizes, such studies in any research field. 
In this chapter, we show how geographic techniques such as remote sensing 
and applications based on geographic information systems (GIS) are the key 
to document changes in marine benthic macroalgal communities.  

Our aim is to introduce the evolution and basic principles of GIS and 
remote sensing to the phycological community and demonstrate their 
application in studies of marine macroalgae. Next, we review current 
geographical methods and techniques showing specific advantages and 
difficulties in spatial seaweed analyses. We conclude by demonstrating a 
remarkable lack of spatial data in seaweed studies to date and hence 
suggesting research priorities and new applications to gain more insight in 
global change-related seaweed issues. 
 

THE (R)EVOLUTION OF SPATIAL INFORMATION 

The need to share spatial information in a visual framework resulted in the 
creation of maps as early as many thousands of years ago. For instance, an 
approximately 6200 year old fresco map covering the city and a nearby 
erupting volcano was found in Çatal Höyük, Anatolia (Turkey). Dating back 
even further, the animals, dots and lines on the Lascaux cave walls (France) 
are thought to represent animal migration routes and star groups, some 
15000 years ago. Throughout written history, there has been a steady 
increase in both demand for and quality (i.e., the extent and amount of 
detail) of maps, concurrent with the ability to travel and observe one’s 
position on earth. Like many aspects in written and graphic history, 
however, a revolutionary expansion took place with the introduction of 
(personal) computers. This new technology allowed to store maps (or any 
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graphics) and additional information on certain map features in a digital 
format using an associated relational database (attribute information). It is 
important to note that the creation of GIS is not a goal in itself; instead, 
GIS are tools that facilitate spatial data management and analysis. For 
instance, a Nori farmer may wonder how to quantify the influence of water 
quality and boat traffic on the yields (the defined goals), and use GIS as 
tools to create and store maps and (remotely-sensed) images, and perform 
spatial analyses to achieve these goals (figure 1). 

At least 300001 publications dating back to 1972 involve GIS 
(Amsterdam et al., 1972), according to ISI Web of Knowledge2. However, 
twelve years went by before the first use of GIS in the coastal or marine 
realm was published (Ader, 1982), and since then only a meager 2257 have 
followed. 

Parallel to the evolution of mapping and GIS, the need to observe 
objects without being in physical contact with the target, remote sensing, 
has played an important role in spatial information throughout history. In its 
earliest forms, it might have involved looking from a cliff to gain an 
overview of migration routes or cities. However, three revolutions have 
shaped the modern concept of remote sensing. Halfway the 19th century, the 
development of (balloon) flight and photography allowed to make 
permanent images at a higher altitude (with the scale depending on the 
altitude and zoom lens) and at many more times or places than were 
previously feasible, making remote sensing a valuable data acquisition 
technique in mapping. Halfway the 20th century, satellites were developed 
for Earth observation, allowing to expand ground coverage. At the end of 
the 20th century, the ability to digitally record images through the use of 
(multiple) CCD and CMOS sensors quickly enhanced the abilities to import 
and edit remote sensing data in GIS.  

Two kinds of remote sensing have been developed. Active remote 
sensing involves the emission of signals with known properties, in order to 
analyze the reflection and backscatter, with RADAR (RAdio Detecting And 
Ranging) as the most wide-spread and best known application. 

                                                 
1 This number is based on the search term ‘”geographic* information system*”’. The search term 

‘GIS’ yielded 32706 records, but an unknown number of these, including the records prior to 1972, 
concern other meanings of the same acronym. 

2 All online database counts and records mentioned throughout this chapter, including ISI Web of 
Knowledge, OBIS and Algaebase records, refer to the status on July 1st, 2008. 
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Figure 1. Schematic overview of GIS data file types and remote sensing of a Nori farm in 
Tokyo Bay, Japan. 

 
Passive remote sensing means recording radiation emitted or reflected by 
distant objects, and most often the reflection of sunlight by objects is 
investigated. This chapter will only cover passive remote sensing and laser-
induced active remote sensing, as sound-based active sensing (RADAR, 
SONAR) is limited to (3D) geomorphological and topographical studies, 
rather than distinguishing benthic communities and their relevant 
oceanographic variables.  

The first remote sensing applications are almost a decade older than 
the first GIS publications (Bailey, 1963), and the first coastal or marine use 
of remote sensing appeared only few years later, starting with 
oceanographical applications (Polcyn & Sattinger, 1969; Stang, 1969) and 
followed by mapping efforts (Egan & Hair, 1971). Out of roughly 98500 
remote sensing records in ISI Web of Knowledge, however, little less than 
8500 cover coastal or marine topics. 
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SPATIAL DATA TYPES 

Analogous to manually drawn hard-copy maps, digitized maps (hard-copies 
transferred to computers) or computer-designed maps most often consist of 
three types of geometrical features expressed as vectors (figure 1): zero-
dimensional points, one-dimensional lines and two-dimensional polygons. 
For instance, a point could represent a tethered Nori platform in a bay, 
linked to a database containing quantitative fields (temperature, nutrients, 
salinity, biomass, number of active harvesting boats), Boolean fields 
(presence/absence of several species) and categorical fields (owner’s name, 
quality level label). In turn, polygons encompassing several of these points 
may depict farms, regions or jurisdictions. Lines could either intersect these 
polygons (in case of isobaths) or border them (in case of coastal structures). 
Vector maps and associated databases are easy to edit, scale, re-project and 
query while maintaining a limited file size.  

The raster data type (figure 1), also called grid or image data in which 
all remote sensing data come, differs greatly from vector map data. Each 
image (whether analogously acquired and subsequently scanned, directly 
digitally acquired, or computer-generated) is composed of x columns times y 
rows with square pixels (or cells) as the smallest unit. Each pixel is 
characterized by a certain spatial resolution (the spatial extent of a pixel 
side), typically ranging from 1m to 1000m, and an intensity (z-value). The 
radiometric resolution refers to the number of different intensities 
distinguished by a sensor, typically ranging from 8 bits (256) to 32 bits 
(4.3x109). In modern remote sensing platforms, different parts (called 
bands) of the incident electromagnetic spectrum are often recorded by 
different sensors in an array. In this case, a given scene (an image with a 
given length and width, the latter also termed swath, determined by the focal 
length and flight altitude) consists of several raster layers with the same 
resolution and extent, each resulting from a different sensor. The amount of 
sensors thus determines the spectral resolution. A “vertical” profile of a 
pixel or group of pixels through the different bands superimposed as layers, 
results in a spectral signature for the given pixel(s). The spectral signature 
can thus be visualized as a graph plotting radiometric intensity or pixel value 
against band number (figure 1). The term multispectral is used for up to ten 
sensors (bands), while hyperspectral means the presence of ten to hundreds 
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of sensors. Some authors propose the term superspectral, referring to the 
presence of 10 to 100 sensors, and reserve hyperspectral for more than 100 
sensors. Temporal resolution indicates the coverage of a given site by a 
satellite in time, i.e. the time between two overpasses. In the Nori farm 
example, one or more satellite images might be used as background layers in 
GIS (figure 1) to digitize farms and the surroundings (based on large-scale 
imagery in a geographic sense, i.e. with a high spatial resolution) or to detect 
correlations with sites and oceanographical conditions (based on small-scale 
imagery in a geographic sense, i.e. with a low spatial resolution). 

An important aspect in GIS and remote sensing is georeferencing. By 
indicating a limited number of tie points or ground control points (GCPs) 
for which geographical coordinates have been measured in the field or for 
which coordinates are known by the use of maps, coordinates for any 
location on a computer-loaded map can be calculated in seconds and 
subsequently instantly displayed. Almost coincidentally with GIS evolution, 
portable satellite-based navigation devices (Global Positioning System, GPS) 
have greatly facilitated accurate measurements and storage of geographical 
coordinates of points of interest. In the current example, a nautical chart 
overlaid with the satellite images covering the Nori farms might be used as 
the source to select GCPs (master-slave georeferencing), or alternatively, 
field-measured coordinates of rocky outcrops, roads and human 
constructions along the coast, serving as GCPs recognizable on the (large-
scale) satellite images, might be used for direct georeferencing (figure 1). 
 

GIS AND REMOTE SENSING: PHYCOLOGICAL 
APPLICATIONS 

GEOREFERENCING SPECIMENS 

Acquiring GPS coordinates has become self-evident, with handheld GPS 
devices nowadays fitting within any budget, provided that accuracy 
requirements are not smaller than 10-15m. Devices capable of handling 
publicly available differential correction signals like Wide Area 
Augmentation System (WAAS, covering North America), European 
Geostationary Navigation Overlay Service (EGNOS, covering Europe) and 
equivalent systems in Japan and India are slightly more expensive but offer 
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accuracies between 1 and 10m. However, contrary to terrestrial studies 
(Dodd, 2011), accuracies are almost always found to be better in coastal and 
marine practice, where the device would mostly be used in areas with a clear 
line of sight with the sky. Hence, field workers can accurately log shallow 
dives and snorkel tracks and revisit sampling points using consumer-grade 
GPS devices mounted on buoys that are dragged along. Accuracies within 
1m can be obtained with commercial differential GPS systems, although this 
increases the cost and reduces mobility of field workers as a large portable 
station needs to be carried along, hence restricting use on water to boats or 
relatively accessible intertidal terrain. Logging GPS coordinates does 
however not eliminate the need for textual location information, preferably 
using official names or transcriptions as featured on maps, and using a 
hierarchical format going from more to less inclusive entities (cf. GenBank 
locality information; NCBI, 2008). This is vital to allow for error checking 
(see further). Several authors have recently independently and 
unambiguously stated that a lack of geographic coordinates linked to each 
recently and future sampled specimen can no longer be excused (Nature 
Editorial, 2008; Kidd & Ritchie, 2006; Kozak et al., 2008). Moreover, 
recommendations were made to require a standardized and publicly 
available deposition of spatial meta-information on all used samples 
accompanying each publication, including non-spatially oriented studies. 
This idea is analogous to most journals requiring gene sequences to be 
deposited in GenBank, whenever they are mentioned in a publication 
(Nature Editorial, 2008). For instance, the Barcode of Life project, aiming at 
the collection and use of short, standardized gene regions in species 
identifications, already requires specimen coordinates to be deposited for 
each sequence in its online workbench (Ratnasingham & Hebert, 2007).  

Adding coordinates to existing collection databases can be a lot more 
challenging and time-consuming. At best, a locality description string in a 
certain format is already provided. In that case, gazetteers can be used to 
retrieve geographic coordinates. However, many coastal collections are 
made on remote localities without specific names, such as a series of small 
bays between two distant cities. Efforts have been made to develop software 
(e.g. GEOLocate; Rios & Bart, 1997) combining the use of gazetteers and 
civilian GPS databases to cope with information such as road names and 
distances from cities. Unfortunately, most of the existing automation efforts 
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are specifically designed for terrestrial collection databases, lacking proper 
maritime names, boundaries and functions. For instance, the software 
should allow specimens to be located at a certain distance from the 
shoreline. For relatively small collections, coordinates can also be manually 
obtained by identifying landmarks described in the locality fields or known 
by experienced field workers using Google Earth, a free GIS visualization 
tool with high to very high resolution satellite coverage of the entire globe 
(available online at http://earth.google.com). Manually adding specimen 
coordinates to database records does however increase the chance of errors 
in the coordinates, compared to automatically retrieving and adding 
coordinates. 

Quality control of specimen coordinates is crucial. GIS allow for 
overlaying collection data with administrative boundary maps such as 
Exclusive Economic Zone (EEZ) boundaries, and comparing respective 
attribute tables to check for implausible locations. A common error, for 
instance, involves an erroneous positive or negative sign to a coordinate 
pair, resulting in locations on the wrong hemisphere, on land, or in open 
ocean. Additionally, when used in niche modeling studies, sample localities 
should be overlaid with raster environmental variable maps, to check if 
samples are not located on masked-out land due to the often coarse raster 
resolution.  

 
REMOTE SENSING 

In documenting the consequences of global change, it is crucial to 
repeatedly and automatically obtain baseline thematic and change detection 
maps of (commercially or ecologically critical) seaweed beds. While not able 
to replace field work in detecting moderate changes in quantitative 
parameters and diversity, it has long been acknowledged that remote sensing 
is a powerful technique to overcome numerous problems in mapping and 
monitoring seaweed assemblages (Belsher et al., 1985). Accessibility of 
seaweed-dominated areas can be an issue if the location is remote, and the 
exploration of rocky intertidal shores can be hard or even hazardous. More 
importantly, most benthic marine macroalgal assemblages are permanently 
submerged, restricting their exploration to SCUBA techniques. Thus, 
mapping and monitoring extensive stretches on a regular basis is very time 
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and resource consuming when using in situ techniques only. This section 
provides an overview of different remote sensing approaches, without 
providing procedural information. For hands-on information on image 
processing techniques, see Green et al. (2000). 

From a technical point of view, airborne remote sensing would seem 
most appropriate for seaweed mapping (Theriault et al., 2006; Gagnon et al., 
2008). Light fixed-wing aircrafts are relatively easy to deploy, and sensors 
mounted on a light aircraft flying at low to moderate altitudes (1000m to 
4000m) will typically yield datasets with a very high spatial and spectral 
resolution. For instance, the Compact Airborne Spectrographic Imager can 
resolve features measuring only 0.25m x 0.25m in up to 288 bands 
programmable between 400nm and 1050nm in the visible and near-infrared 
(VNIR) light depending on the study object characteristics. Additionally, the 
low acquisition altitude can result in a negligible atmospheric influence. 
However, light aircraft are generally not equipped with advanced autopilot 
capabilities and are sensitive to winds and turbulence. It takes considerable 
time and effort to geometrically correct images acquired from such an 
unstable platform. Altitude differences combined with roll and pitch 
(aircraft rotations around its 2 horizontal axes) all result in different ground 
pixel dimensions. Moreover, low altitude acquisitions result in a limited 
swath, increasing both acquisition time (and hence expense) through the use 
of multiple flight transects and processing time to geometrically correct and 
concatenate the different scenes. Chapter 7 in this thesis presents a tethered 
low-altitude aerial photography-based mapping of the intertidal using novel 
software that copes with these conditions. Alternatively, a more advanced 
(and hence again, more expensive) and stable aircraft can acquire imagery at 
higher altitudes covering larger areas, but this is at the cost of spatial 
resolution and atmospheric influence. 

Overall, atmospheric and weather conditions play an important role 
in aerial seaweed studies, as the aircraft and the airborne and ground crew 
must be financed over an entire stand-by period in areas with unstable 
weather conditions (quite typical for coastal areas), as the weather 
conditions at the exact moment of acquisition cannot be forecasted long 
enough in advance during the planning stage of the campaign. 

By contrast, satellites are more stable platforms that can cover much 
larger areas in one scene daily to biweekly, making these ideal monitoring 
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resources (table 1a and 1b). However, satellite-based studies of seaweed 
assemblages were suffering from a lack of spatial resolution until the late 
nineties. Typically, seaweed assemblages are very heterogeneous due to the 
morphology of rocky substrates, characterized by many differences in 
exposure to light, temperature fluctuations, waves, grazers and nutrients on 
a small area. These differences result in many microclimates and –niches, 
creating patchy assemblages in the scale of several meters to less than a 
meter, while no satellite sensor resolved features less than 15m until 2000. 
From that year onwards, very high resolution sensors were developed and 
made commercially available (table 1a), allowing for detailed subtidal 
seaweed mapping and quantification studies in clear coastal waters (e.g. 
Andréfouët et al., 2004). 

With the availability of more advanced sensors in the 21st century, a 
trade-off between spatial and spectral resolution became apparent (figure 2) 
– an issue of particular relevance to seaweed studies. The trade-off situation 
evolved due to computer processing power and data storage capacity 
limitations at the time of sensor development - often 5 years prior to launch 
followed by another 5 years of operation. This is a long time in terms of 
Moore’s law (Moore, 1965), describing the pace at which computer 
processing power doubles. These historical limitations dictated a choice 
between a high spatial resolution or a high spectral resolution in current 
sensors, but not both, while seaweed studies would arguably benefit from 
both. While the main macroalgal classes (red, green and brown seaweeds) 
are theoretically spectrally separable from each other as well as from coral 
and seagrass in 3 bands, this is not the case on a generic level. Additionally, 
information from seaweeds at below 5-10m depth can only be retrieved 
from blue and green bands due to attenuation of red and NIR in the water 
column. Hence, the availability of several blue and green bands can increase 
thematic resolution and the resulting classification accuracies, and this is of 
particular value in turbid waters, characteristic of many coastal stretches. By 
contrast, the absence of a blue band combined with only one green band 
(see several sensors in table 1a and 1b) prevents spectral discrimination of 
submerged seaweeds altogether and confined early remote sensing studies 
on seaweeds to the intertidal range (Guillaumont et al., 1993).  
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Figure 2. Trade-off between Log spectral resolution plotted against Log VNIR spatial 
resolution in current and future satellite sensors. All sensors are spaceborne, except for the 
airborne CASI sensor, shown here for comparison. In order to demonstrate the trade-off 
extremes, the panchromatic-only missions Worldview-1 and GeoEye-2 are added in the 
figure but not further discussed for seaweed mapping. Likewise, the ocean color sensors 
MODIS and MERIS are displayed for illustrative purposes. We consider sensors featuring a 
spatial resolution between 0 and 30m and a spectral resolution above 15 bands in the visible 
and NIR spectrum of high value for seaweed mapping and monitoring (upper right 
quadrant). We therefore recommend future satellite sensor developments towards the CASI 
position, but note the position of the planned earth observation missions LDCM/OLI and 
Pleiades along the current trade-off situation. ♦ current sensors (on which the trade-off line 
is based); ■ future sensors; ▲ current sensors forming an exception to the general trade-off 
situation between spectral and spatial resolution in satellite sensors. 
  
Besides the intertidal, NIR bands are useful (in combination with red) to 
discriminate surfacing or floating seaweeds, and allow to discern 
decomposing macroalgae, as NIR reflection decreases with decreasing 
chlorophyll densities (Guillaumont et al., 1997). From figure 2, it should be 
noted that two high spatial resolution spectral imaging sensors have been 
developed recently, Hyperion (onboard EO-1) and CHRIS (onboard 
PROBA), with a spectral resolution approaching that of airborne sensors, 
hence forming an exception on the historical trade-off. Research by the first 
author of this chapter suggested that CHRIS imagery can be used to map 
and monitor benthic communities in turbid waters at the south coast of 
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Oman (Arabian Sea). Intertidal green, brown and red seaweeds as well as 
submerged mixed seaweed beds, coral and drifting decomposing seaweeds 
were discerned with reasonable accuracy during both monsoon seasons, as 
reported in Chapter 6 of this thesis.  

 

DISTRIBUTION AND NICHE MODELING 
For centuries, biogeographical patterns have been studied in a descriptive 
way by delineating provinces and regions based on observed species 
presences and degrees of endemism, rather than quantifying and explaining 
these patterns based on environmental variables (Adey & Steneck, 2001). 
The question as to which environmental variables best explain seaweed 
species’ niches and distributions, is however one of the most important in 
global change research. Biogeographical models based on these variables 
could allow for predicting range shifts and directing field work to discover 
unknown seaweed species and communities. 

It is widely recognized that temperature is a major forcing 
environmental variable for coastal macrobenthic communities in general and 
seaweeds in particular. Temperature plays a significant role in biochemical 
processes, and generally species have evolved to tolerate only a (small) 
portion of the entire range of temperatures in coastal waters. Thus, it is 
evident that sea surface temperature (SST, often used as a proxy for water 
column temperature in shallow coastal waters) plays a prominent role in 
seaweed niche distribution models. Furthermore, while temperature is often 
measured in a time-averaged manner (daily, monthly, yearly), it is important 
to note that the timing of seasons differs globally (even within hemispheres 
due to seasonal upwelling phenomena). As some seaweed species or specific 
life cycles are limited by maximum and others by minimum temperatures, it 
is obviously essential to base models on biologically more relevant 
maximum, minimum and related derived variables rather than on raw time-
averaged measurements.  

van den Hoek et al. (1990) gave an overview of how generalized or 
annual temperature isotherm maps could be used to explain the geographic 
distribution of seaweed species in the context of global change.  

Adey & Steneck (2001) later described a quantitative model based on 
maximum and minimum temperatures as the main variables, combined with 
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area and isolation, to explain coastal benthic macroalgal species 
distributions. Additionally, their thermogeographic model was integrated 
over time as they incorporated temperatures from glacial maxima, allowing 
biogeographical regions to dynamically shift in response to two historical 
stable states of temperature regimes (glacial maxima and interglacials). In 
this respect, their study is of significant value in global change research, 
although their graphic model outputs were not based on GIS and not 
straight-forward to interpret. Moreover, using analogous or vector 
isothermal SST maps, both studies suffered from a lack of resolution in SST 
input data, consequently compromising the resolution and accuracy of the 
model outputs. 

Recently, two major studies demonstrated how seaweed distribution 
models can benefit greatly from the extensive and free availability of 
environmental variables on a global scale through the use of satellite data. 
These data are not only geographically explicit and readily usable in GIS, but 
also provide much more accuracy than isotherm maps due to their 
continuity. Schils & Wilson (2006) used Aqua/MODIS three-monthly 
averaged SST data in an effort to explain an abrupt macroalgal turnover 
around the Arabian Peninsula. Their results pointed to a threshold of 28°C, 
defined by the average of the three warmest seasons, explaining diversity 
patterns of the seaweed floras across the entire Indian Ocean. They stressed 
that a single environmental factor can thus dominate the effect of other, 
potentially interacting and complex variables. On the other hand, Graham et 
al. (2007) took several other variables in consideration to build a global 
model predicting the distribution of deep-water kelps. Their study was 
essentially a 3D mapping effort to translate the fundamental niche of kelp 
species, as determined by ecophysiological experiments, from environmental 
space into geographical space, based on global bathymetry, 
photosynthetically active radiation (PAR), optical depth and thermocline 
depth stored in GIS. The latter was based on the interpolation of vertical 
profiles, while the former three variables were derived from satellite datasets 
(table 2). 

The latest advance in distribution modeling approaches concerns 
several Species’ Distribution Modeling (SDM) algorithms, also termed 
Ecological Niche Modeling (ENM), Bioclimatic Envelope Modeling (BEM) 
or Habitat Suitability Mapping (HSM). While the names are often mixed in 
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the same context, a slight difference in meaning exists (see box 1 for 
additional background). Many different algorithms and software 
implementations exist [Maxent (see box 2), GARP, ENFA, BioClim, GLM, 
GAD, BRT, but see Elith et al. (2006) for a review], but two fundamental 
properties are combined in these techniques, clearly separating them from 
the studies described in the previous paragraphs, which showed at most one 
of these properties. Firstly, input data are a combination of a vector point 
file, representing georeferenced field observations of a species (as opposed 
to ecophysiological experimental data) on the one hand, and climatic 
variables stored in a raster GIS on the other hand. The modeling algorithms 
then read the data out of GIS and use statistical functions to calculate the 
realized niche (as opposed to the fundamental niche; Hutchinson, 1957) in 
environmental space, subsequently projecting the niche back into 
geographical space in GIS. Secondly, instead of a binary identification of 
suitable and unsuitable areas, ENM output is a continuous probability 
distribution, which makes more sense from a biological point of view. 

 
Table 2. Current environmental variables retrievable from selected satellite data on a global 
scale. 

Variable Source Resolution (level 3) Available
Sea Surface Temperature (SST) NOAA/AVHRR/1-3 4-9km (2-5arcmin) 1985-…

Terra/MODIS 4km (2arcmin) 2000-…
Aqua/MODIS 4km (2arcmin) 2002-…
SeaWiFS 9km (5arcmin) 1997-2011
Envisat/MERIS 9km (5arcmin) 2002-…
Terra or Aqua/MODIS 4km (2arcmin) 2000-…

Photosynthetically active Radiation (PAR) SeaWiFS 9km (5arcmin) 1997-2011
Terra or Aqua/MODIS 4km (2arcmin) 2000-…

Diffuse Attenuation (DA) SeaWiFS 9km (5arcmin) 1997-2011
Terra or Aqua/MODIS 4km (2arcmin) 2000-…

Dissolved Organic Matter (DOM) SeaWiFS 9km (5arcmin) 1997-2011
Terra or Aqua/MODIS 4km (2arcmin) 2000-…

Particulate Organic Carbon (POC) SeaWiFS 9km (5arcmin) 1997-2011
Terra or Aqua/MODIS 4km (2arcmin) 2000-…

Particulate Inorganic Carbon (PIC) SeaWiFS 9km (5arcmin) 1997-2011
Terra or Aqua/MODIS 4km (2arcmin) 2000-…

Surface winds QuikSCAT/SeaWinds 25-110km 1999-2009
MetOp-A/ASCAT 12.5-25km 2006-…
SAC-D/Aquarius 110km (1arcdegree) 2011-…

Salinity SAC-D/Aquarius 110km (1arcdegree) 2011-…

Chlorophyll-a concentration (CHL)
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Box 1. Niches and niche modeling  
(after Peterson, 2006; Pearson, 2007; Soberón, 2007 and Colwell & Rangel, 2009) 
 
Species’ niches have been described in various ways since Grinnell’s first definition. 
The Grinnellian niche can be defined by fundamentally non-interacting habitat 
variables and abiotic environmental conditions on broad scales (so-called 
scenopoetic variables), relevant to understanding coarse-scale ecological and 
geographic properties of  species. The Eltonian niche focuses on biotic interactions 
and resource-consumer dynamics essentially acting at local scales (so-called 
bionomic variables). Grinnell and Elton viewed these niche concepts as an abstract 
set of  characteristics belonging to a certain place in geographical space. By 
contrast, the Hutchinsonian niche is viewed as a multidimensional volume in 
hyperspace defined by axes consisting of  conditions and resources, attributed to a 
species or population. The fundamental niche is then the full set of  conditions 
under which a species can exist, while this is often constrained by species 
interactions and/or dispersal limitations to the realized niche. In this concept, a 
species’ niche defined in environmental space can hence be translated to 
geographical space and vice versa. This duality forms the basis for ecological niche 
modeling, as shown below.  
 

 
 
The diagram above illustrates how a hypothetical species distribution model may 
be fitted to observed species occurrence records (Pearson, 2007). A modeling 
technique is used to characterize the species’ niche in environmental space by 
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relating observed occurrence localities to a suite of  environmental variables. 
Notice that, in environmental space, the model may not identify either the species’ 
occupied niche or fundamental niche; rather, the model identifies only that part of  
the niche defined by the observed records. When projected back into geographical 
space, the model will identify parts of  the actual distribution and potential 
distribution. For example, the model projection labeled 1 identifies the known 
distributional area. Projected area 2 identifies part of  the actual distribution that is 
currently unknown; however, a portion of  the actual distribution is not predicted 
because the observed occurrence records do not identify the full extent of  the 
occupied niche (i.e. there is incomplete sampling). Similarly, modeled area 3 
identifies an area of  potential distribution that is not inhabited (the full extent of  
the potential distribution is not identified because the observed occurrence records 
do not identify the full extent of  the fundamental niche due to, for example, 
incomplete sampling, biotic interactions, or constraints on species dispersal). 
Inherently, biotic samples from the physical world yield occurrence records in the 
realized part of  a species' niche, as opposed to its fundamental niche, since 
knowledge on all species interactions cannot be obtained in regular sampling 
campaigns and absence of  interactions cannot be assumed. Moreover, it is very 
hard to generate raster layers accounting for biotic interactions such as grazing, 
which would reflect a species' Eltonian niche. Hence, all the modeling case studies 
in this thesis are exclusively based on abiotic (so-called scenopoetic) variables, 
defining the (realized) Grinnellian niche (Colwell & Rangel, 2009; Rödder & 
Engler, 2011). It is important to note that although Eltonian niche factors are 
responsible for confining a species to its realized niche within its fundamental 
(Grinnellian) niche and that although exactly those Eltonian variables are not 
included in most niche modeling approaches, the modeled niche is still part of  the 
realized niche because of  the inherent input sample characteristics. This concept is 
especially important for macroalgae, because in many cases (for instance, on coral 
reefs), the only responsible factor for local absences (or lack of  occurrence data) 
may be grazing pressure. 
In the literature, the terms niche modeling, bioclimate envelope modeling, habitat 
suitability modeling and species distribution modeling are often mixed or used 
differently in a range of  contexts and goals. One distinction is sometimes made 
between presence-only modeling techniques, which have been referred to as niche 
or envelope modeling, and modeling techniques using actual presence and absence 
data, often termed distribution or suitability modeling. In the framework of  this 
thesis, a scale- and purpose-related definition would be more appropriate. When 
modeling in a broad biogeographic context where environmental variables on a 
global scale are considered and issues of  dispersal capacity play a role, ecological 
niche modeling would be the more appropriate term. By contrast, distribution or 
suitability modeling focuses on a much finer scale, where dispersal is not the 
limiting factor and species interactions would be more important. As such, 
Chapters 2 and 3 would be niche modeling studies, with Chapter 4 expanding the 
dimensions of  variables that can be included, while Chapters 5 and 6 would be 
more concerned with actual distribution and suitability modeling (although as 
explained earlier, bionomic variables are not included). However, when relating to 
other studies, a strict distinction cannot be maintained. 
 



 General Introduction 
 

 31 

Continuous probability maps may then be converted to binary maps using 
arbitrary thresholds. Additionally, ENM algorithms typically use several 
statistics to pinpoint the most important environmental variable in terms of 
model explanation, giving its percent contribution to the model output. 
Also, response curves can be calculated for the different variables, defining 
the niche optima. 

However, care must be taken to restrict model input to uncorrelated 
environmental variables to obtain valid results. With a growing availability of 
(global, gridded) environmental datasets which are often correlated or 
redundant, a data reduction strategy should be considered. One may 
perform a species-environment correlation analysis or ordination to make a 
first selection of relevant variables and perform a subsequent Pearson 
correlation test between environmental variables to get rid of redundant 
information. Alternatively, spatial principal component analysis (PCA, see 
box 2) may be performed to obtain uncorrelated variables, using PCA 
components as input variables (Verbruggen et al., 2009), although resulting 
variable contributions and response curves might be hard to calculate back 
to original variables.  

 
Box 2. Spatial techniques 
 
Maxent distribution modeling algorithm (after Pearson, 2007) 
Maxent is a general-purpose method for characterizing probability distributions 
from incomplete information. In estimating the probability distribution defining a 
species’ distribution across a study area, Maxent formalizes the principle that the 
estimated distribution must agree with everything that is known (or inferred from 
the environmental conditions where the species has been observed) but should 
avoid making any assumptions that are not supported by the data. The approach is 
thus to find the unique probability distribution P(x) of maximum entropy (the 
distribution that is most spread-out, or closest to uniform) subject to constraints 
imposed by the information available regarding the observed distribution of the 
species and environmental conditions across the study area.  

Z
exP

n

i
ii xfc∑

=
=

⋅
1

)(

)( , with c = scaling constants and Z = regularization parameter 

 
In the above equation, fi(x) denote functions of environmental variables and their 
interactions terms (so-called features). Features can take several forms, allowing to 
fit more or less complex models by combining features as exemplified in the figure 
below. More occurrence records are needed to fit increasingly complex functions. 
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The Maxent method does not require absence data for the species being modeled; 
instead it uses background environmental data for the entire study area. The 
method can utilize both continuous and categorical variables and the output is a 
continuous prediction (most commonly depicted as logistically scaled relative 
suitability from 0 to 1). The freely available software implementation developed by 
Phillips et al. (2006, 2008, 2009, to which the reader is referred for further 
mathematical details) also calculates a number of alternative thresholds to convert 
the continuous probability distribution to discrete maps, computes model 
validation statistics, and enables the user to run a jackknife procedure to determine 
which environmental variables contribute most to the model prediction. Maxent 
has been shown to perform well in comparison with alternative methods (Elith et 
al., 2006). One drawback of the Maxent approach is that it uses an exponential 
model that can predict high suitability for environmental conditions that are 
outside the range present in the study area (i.e. extrapolation). To alleviate this 
problem, when predicting for variable values that are outside the range found in 
the study area, these values can be set (or ‘clamped’) to match the upper or lower 
values found in the study area. Alternatively, extrapolation can be used to identify 
potential suitable areas under new climate scenarios.  
 
Spatial PCA (after Clark Labs IDRISI manual) 
Principal Component Analysis (PCA) is a linear transformation technique related 
to Factor Analysis. Given a set of image bands, PCA produces a new set of images, 
known as components that are uncorrelated with each other and explain 
progressively less of the variance found in the original set of bands. Both 
standardized and unstandardized principal component analyses can be performed. 
In the standardized case, the correlation matrix is used for input rather than the 
usual variance/covariance matrix. 
PCA has traditionally been used in remote sensing as a means of data compaction. 
For a typical set of raster layers covering the same area, it is common to find that 
the first two or three components are able to explain virtually all of the original 
variability in the pixel values. Later components thus tend to be dominated by 
noise effects. By rejecting these later components, the volume of data is reduced 
with no appreciable loss of information. 
 
DIVA interpolation (after Troupin et al., 2010) 
Data-Interpolation Variational Analysis (DIVA) is an implementation of the 
Variational Inverse Method (VIM). It is a geostatistical approach to the 
interpolation of point data to gridded climatological fields, allowing the 
consideration of coastlines and bottom topography without additional 
parameterization, and has a numerical cost almost independent on the number of 
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observations. Moreover, only a few parameters need to be determined, which is 
done in an objective way. The algorithm is able to deal with a great number of 
individual data, without needing to work with averaged values or data bins. It also 
generates coherent error maps, while the computational time required for both 
climatological and error maps is kept to a reasonable level, allowing routine runs 
on several depth levels. For elaborate mathematical details, the reader is referred to 
Troupin et al. (2010). 
 

Pauly et al. (2009) applied preliminary ENM using Maxent (Phillips et 
al., 2006; see box 2) to gain insight in worldwide blooms of the siphonous 
green alga Trichosolen growing on physically damaged coral (figure 3). A 
correlation analysis was applied to identify the two least correlated 
biologically meaningful variables derived from SST and CHL (based on 
monthly datasets), adequately describing the position and extent of the 
distribution in environmental space. The model delineated the potential 
global distribution of Trichosolen occurring on coral based on a 95% training 
confidence threshold, including areas where the bloom had previously 
occurred. This allowed identifying areas with a high potential risk for future 
blooms based on environmental response curves. For instance, the response 
curve for the average of the three warmest months [included as a variable 
based on the conclusions of Schils & Wilson (2006)] shows that Trichosolen 
populations are only viable above 22°C, but only environments above 28°C 
are likely to sustain blooms. Chapter 2 of this thesis presents this approach 
more elaborately. 

 

FUTURE DIRECTIONS AND RESEARCH PRIORITIES 

THE QUEST FOR SPATIAL DATA IN SEAWEED BIOLOGY 
In its simplest form, “spatially explicit” seaweed data would refer to the 
availability of georeferenced species occurrences. While we discussed the 
practice of georeferencing and dissemination of spatially explicit seaweed 
data in depth in the second section of this chapter, we briefly show a couple 
of examples to demonstrate the dramatic state of the current availability of 
this information. For instance, looking at a random Nori species, Porphyra 
yezoensis Ueda, AlgaeBase (Guiry & Guiry, 2008) mentions 13 references to 
occurrence records throughout the northern hemisphere. 
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Figure 3. (a) A Pseudobryopsis/Trichosolen (PT) bloom on physically damaged coral. (b) 
Worldwide occurrence points of PT on coral. (c) Environmental grids used for model 
training in Maxent. (d) Relative importance of each variable in the model as identified by the 
algorithm. (e) Response curve of PT to the average of the three warmest months. (f) Binary 
habitat suitability map for PT. The grey (blue) shade represents suitable environment, while 
the dark (red) shade along the coast delineates bloom risk areas. 
 
By contrast, the Ocean Biogeographic Information System (OBIS, an on-
line integration of marine systematic and ecological information systems; 
Costello et al., 2007) contains no P. yezoensis records. Another random 
example, the siphonous (sub)tropical green alga Codium arabicum Kützing 
illustrates this further: out of 55 direct or indirect occurrence references in 
Algaebase, 17 are georeferenced in OBIS. However, two of the specimens 
wrongly have zero longitudes, hence locating the records some 400km 
inland from the coast of Ghana, instead of at the Indian coast. Five out of 
the 17 are recorded to no better than 0.1 degree in both longitude and 
latitude, making their position uncertain within up to 120km². Fifteen out of 
the 17 make no mention of the collector’s name or publication, preventing 
to check the integrity of the identification. Eleven lack sub-country level 
locality name information, and none mention sub-state locality names, 
making it impossible to verify geographical coordinates through the use of 
gazetteers. 
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If the amount of coastal or marine publications using GIS, mapping 
or remote sensing can be called minimal, averaging 8% of the total 
publications using these geographic techniques as previously shown, the 
proportion of these records mentioning seaweeds or macroalgae is 
statistically speaking barely existing, attaining 0.5-1% of the spatial marine 
studies. Studies investigating the other two best-known benthic marine 
communities, coral (reefs) and seagrasses, constitute up to 10%, while the 
remainder covers (in no particular order) mangroves and other supratidal 
coastal communities and structures, coastal or marine topography and 
geomorphology or nautical issues. Some of the reasons accounting for this 
disproportion are obvious: for a start, relatively few investigate seaweeds. 
However, out of 12074 studies mentioning seaweeds or macroalgae in ISI 
Web of Knowledge, a potential 7279 in the fields of ecology, biogeography, 
phylogeography or ecophysiology could benefit from some sort of spatial 
explicit information, while only 177 (2.5%) actually mention to do so in 
their title, abstract or keywords. Other problems concern the nature of 
seaweed communities: while coral reefs and seagrass meadows usually form 
large and relatively homogenous assemblages, seaweeds are spatially and 
spectrally very heterogeneous. This is particularly difficult to cope with in 
remote sensing studies, already challenged by the properties of the water 
column in comparison to terrestrial vegetation studies.  

 
GEOREFERENCING SPECIMENS 

Previous sections of this chapter demonstrate the need to prioritize the 
standardization of disseminating and linking geographical seaweed specimen 
information. Investigating the consequences of global change requires the 
availability of correct and complete global datasets. Therefore, we support 
the requirement of the dissemination of sample coordinates not only from 
geographically oriented studies, but from every study using in situ sampled 
seaweeds, to allow for informative and accurate meta-analyses. Coordinate 
pairs should be deposited in already existing global biodiversity databases 
such as OBIS, but minimal geographic accuracy and complete specimen 
information including collector’s name should be required in order to allow 
vigorous quality control. Additionally, the geodetic datum in which 
coordinates are shared should be part of this standardization effort. 
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Positional data recorded in a local datum by national institutions or 
organizations are hard to translate correctly to global projections. Hence, we 
recommend the use of WGS-84, the default global datum on consumer-
grade GPS devices. 

The use of global biodiversity databases as a main depositing centre 
for specimen coordinates rather than dedicated seaweed databases also 
opens perspectives to investigate potential correlations between seaweed 
and faunal distribution shifts in response to global change. However, it 
should also be investigated how general geographical biodiversity databases 
such as OBIS could be related to and synchronized with specific databases 
such as Algaebase and GenBank to optimize the dissemination of all kinds 
of specimen information. 
 
REMOTE SENSING 

No significant time gap exists between the development and 
deployment of airborne sensors; due to an optimal use of the most recent 
technologies, airborne sensors thus represent the best technical 
characteristics desirable for seaweed mapping to date. As time goes on, the 
most recent satellite sensors can benefit from the evolution in technologies 
to more closely resemble the properties of airborne sensors. Vahtmäe et al. 
(2006) used a simulation study to demonstrate that submerged seaweeds in 
turbid coastal waters could well be mapped using hyperspectral satellite 
sensors like CHRIS and Hyperion, featuring 10nm wide bands in the visual 
wavelengths. However, they also postulated a signal-to-noise ratio of 1000:1, 
an image quality not met by these existing sensors. It is thus vital that similar 
new hyperspectral, very high resolution satellite sensors should be 
developed for seaweed mapping and monitoring in the framework of global 
change research. Similarly, studies on seagrass meadows have shown that 
spectral separability on the species level becomes problematic on depths 
greater than 3 m due to lack of combined very high spatial and spectral 
resolutions, and best results to date were achieved using airborne 
hyperspectral sensors that do meet these requirements (Phinn et al., 2008). 
Ferwerda et al. (2007, also including a review of seagrass mapping studies) 
suggest a workaround to the lack of suitable sensors for seagrass mapping 
by using environmental information such as suspended sediment, water 
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constituents, nutrient concentration and temperature that can be retrieved 
from multiple current sensors to model seagrass productivity, rather than 
directly mapping it. However, this approach is not directly applicable to 
seaweed mapping because of the less clear relationships between those 
environmental factors and seaweed growth and survival. For direct 
mapping, Phinn et al. (2008) also recommend using imagery with both very 
high spatial (< 5 m) and spectral resolution. By contrast, figure 2 shows that 
planned sensors for the next years follow the historical trade-off towards 
multispectral very high resolution systems. Nowadays, this seems to be 
motivated by two elements: the huge thrust for coral reef research, in which 
macroalgae are often lumped into one or few functional classes and spatial 
resolution is considered more important than spectral resolution, and 
disaster event monitoring, focusing on a near-one day site revisiting time 
through the use of extensive off-nadir or off-track pointing capabilities 
(table 1b). 
The latter technique also generates huge amounts of data, adding a new 
dimension to the historical trade-off situation: current data storage 
capacities allow for two image characteristics out of three (spectral, spatial 
and temporal resolution) to be optimized, but not all three. Unfortunately, 
no significant thrust seems to exist in order to develop sensors ideally 
suitable for large-scale algal mapping and monitoring to date, explaining the 
characteristics of the missions in development. As a means to deal with the 
lack of very high resolution hyperspectral imagery, efforts have been made 
to combine the information from several sensors with different 
characteristics into one dataset. This is analogous to pan-sharpening 
techniques, which use the high spatial detail of a panchromatic band to 
spatially enhance the multispectral imagery from the same sensor (see also 
figure 2). Although useful in current conditions, we suspect these techniques 
to become less important as more advanced sensors would be developed, 
since processing information from one sensor evidently is less time- and 
resource-consuming and more accurate than using multi-sensor 
information. 

Light-based active remote sensing (known as LIDAR, Light 
Detection And Ranging) involves the emission of laser pulses with a known 
frequency and subsequently detecting fluorescence in certain wavelengths. 
Kieleck et al. (2001) proved this technique to be successful in discerning 
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submerged green, brown and red seaweeds in lab conditions. Mazel et al. 
(2003) used a similar prototype in-water laser multispectral fluorescence 
imaging system to map different coral reef bottom structures, including 
macroalgae, on a 1cm resolution. Airborne laser imaging has been used 
extensively to provide very high resolution imagery in terrestrial applications 
such as forestry. In the marine realm, its applications are mostly limited to 
in-water (boat-mounted) transect mapping strategies, although further 
research to develop aerial systems could prove useful to obtain very high 
resolution imagery of individual seaweed patches, e.g. to map the spreading 
of macroalgae on coral reefs. 
 
DISTRIBUTION AND NICHE MODELING 

Presence-only data are mostly inherent to seaweed niche distribution 
modeling due to sampling locality bias (caused by difficulty of coastal and 
submerged terrain access), small sizes or seasonally microscopic life stages 
of seaweed species, or cryptic species. Under the title of Species’ 
Distribution Modeling, Pearson (2007) published a general manual including 
(presence-only) niche modeling, mostly based on Maxent. However, the 
manual is based on terrestrial experiences, as niche modeling algorithms 
have rarely been applied to seaweed distribution to date, and some issues 
characteristic of marine benthic niche modeling are not elaborated. For 
instance, there are more global environmental GIS data available for the 
terrestrial realm compared to the marine environment. Table 2 lists marine 
environmental variables currently available from global satellite imagery, 
along with data that will become available in the near future. Especially 
globally gridded, remotely sensed salinity data have only recently become 
available. Other variable datasets (pH, nutrients, salinity, turbidity, etc.) may 
also be compiled from the interpolation of in situ data, e.g. from the 
Worldwide Ocean Optics Database (Freeman et al., 2006) or the World 
Ocean Database (NOAA, 2008). These data, consisting of vertical profiles, 
can be advantageous for 3D modeling, but the interpolation techniques 
necessary to obtain gridded maps may be challenging. An attempt to kick-
start this integration of satellite data and in situ data interpolated using DIVA 
is presented in Chapter 4 in this thesis (see box 2). Furthermore, global 
change climate extrapolations resulted in the production of low resolution 
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global gridded maps of environmental variables for future scenarios in the 
terrestrial realm as well as the marine realm, distributed by the 
Intergovernmental Panel on Climate Change (IPCC). The projection of 
calculated niches on future distributions can greatly enhance our 
understanding of global change consequences, and it is therefore crucial that 
future research is aimed at composing similar gridded maps of future 
scenarios for marine environmental variables. More research should also be 
aimed at setting model parameters to account for spatial autocorrelation and 
clustering of species occurrence data. Lastly, model validation and output 
comparison statistics are under scrutiny in recent literature (e.g. Peterson et 
al., 2008), and more research is needed to agree on the best statistics suitable 
for marine data. 

Modeling on a local scale allows for including high-resolution 
environmental variables that are not available for the entire globe. This is 
particularly the case where environmental variables not available from 
satellite data have been measured in situ and can be interpolated locally. In 
other cases, one or several (very) high resolution satellite scenes can be used 
to provide substrate data, not relevant on a global scale with 1km gridded 
environmental variables. For instance, De Oliveira et al. (2006) included 
substrate, flooding frequency and wave exposure to model the distribution 
of several intertidal and shallow subtidal brown seaweeds along a 20km 
coastal stretch in Brittany, France. Thus, it can be expected that multiscale 
modeling approaches will gain importance in the near future. A comparison 
between models based on equivalent coarse- and fine-resolution 
environmental data is presented in Chapter 5. 

While human-induced effects on habitats are thought to drive short-
term species dynamics, it is often stated that global climate change will 
influence the capacity of alien species to invade new areas on a medium to 
long term. Range shifts of individual species in an assemblage under climate 
change are based on largely the same processes driving the spread of alien 
species. Hence, the two can be addressed using the same approach (Thuiller 
et al., 2007). Although very complex processes are involved, the geographic 
component of species’ invasions can be very well predicted using niche 
modeling techniques (Peterson, 2003). Once a comprehensive marine 
environmental dataset is compiled, invaded areas and areas at risk of 
invasion can be successfully predicted based on the native niche of alien 
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species (Pauly et al., 2009; Peterson, 2005), although Brönnimann et al. 
(2007) warn that a niche shift may occur after invasion. Nevertheless, niche 
modeling approaches are promising in future research of seaweeds’ range 
shifts and invasions. Verbruggen et al. (2009) also applied niche modeling 
techniques to unravel the evolutionary niche dynamics in the green algal 
genus Halimeda, concluding that globally changing environments may allow 
certain macroalgae to invade neighboring niches and subsequently to form a 
divergent lineage. They also used Maxent to identify key areas to be targeted 
for future field work in search for new sister species – an application in 
biodiversity considered important in the light of global change. This 
approach is outlined in detail in Chapter 3 in this thesis. 

To date, seaweed assemblages have often been characterized using 
quantitative vegetation analyses and multivariate statistics in order to 
delineate different community types and to establish the link between 
environmental variables and communities. With quickly developing niche 
modeling algorithms now regarded as the most advanced way to accomplish 
the latter, community niche modeling will be of particular value in global 
change-related seaweed research in the coming years. Ferrier & Guisan 
(2006) defined three ways to predict the niche of communities as a whole, 
rather than the niches of individual species. The assemble-first, predict-later 
strategy seems the most promising for seaweed data, since existing floristic 
data have often been statistically assembled into communities. We suggest 
that prioritizing the development of community niche modeling algorithms 
can greatly speed up our insight in seaweed community response to future 
climate change. 
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AIMS AND OUTLINE 

The general aim of this thesis is to investigate the applicability of several 
spatially explicit data acquisition and processing techniques that have been 
developed and used to map and predict the distribution of mainly terrestrial 
species to the study of seaweeds. In order to identify hands-on problems 
related to applying these techniques in the marine realm in general and 
seaweeds in particular, we present case studies (see box 3 for an outline of 
the species discussed in this thesis), rather than theoretical, experimental or 
simulation approaches. We suggest workarounds, adaptations and 
extensions to the existing methods to optimise the performance of 
distribution or niche modeling (chapters 2-5) and mapping (chapters 6-7) of 
marine species. Our goal is to show how results from these spatially explicit 
analyses add new insights in the distribution and ecology of macroalgal 
species and communities, and how they can be used in future monitoring 
projects. 
 
In chapter 2 we investigate the use of Maxent niche modeling to predict the 
potential distribution of the green algal genus Trichosolen and to derive 
ecological triggers of global ephemeral blooms of the species on impacted 
coral reefs. The aim is to complete scarce knowledge on the distribution and 
ecology of this genus characterized by a partly microscopic life cycle and to 
delineate potential future bloom risk conditions and areas. 
 
In chapter 3 we present an application of macroecological niche modeling 
in a macroevolutionary context. We use GIS to retrieve environmental 
information for georeferenced records of extant species, and use these data 
as input in an ancestral state reconstruction to infer ancestral niches. Niche 
modeling using Maxent is applied to compare known distributions with 
potential distributions in order to evaluate speciation scenarios and to 
delineate areas for potential discoveries of sister species. 
 
Chapters 2 and 3 clearly demonstrate that a lot of effort in marine niche 
modeling is put in the compilation of (global) marine environmental data. 
Therefore, chapter 4 aims to boost marine distribution and niche modeling 
applications by presenting the first comprehensive standardized and 
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uniform global marine environmental dataset, readily downloadable and 
usable for predictive studies. We present the methods used to integrate 
global remote sensing products and oceanographic data obtained by 
interpolation of in situ measurements. Additionally, we demonstrate global 
applicability through a case study of the invasive green alga Codium fragile 
subsp. fragile, predicting its potential spread. 
 
While chapters 2 to 4 focus on the global scale, chapters 5 and 6 show the 
applicability and caveats of distribution modeling approaches on a regional 
and local scale. In chapters 6 and 7, local mapping techniques are presented. 
In chapter 5, we focus on regional processes by comparing Maxent 
distribution models for three key macroalgal species with previously 
characterized differing distribution patterns along the coast of Oman, where 
two seas with distinct environmental characteristics border each other with a 
sharp biogeographical turnover. Moderate resolution models are based on a 
cropped subset of the macroecological data presented in chapter 4. These 
are then compared to models based on genuine high-resolution 
macroecological and habitat layers derived from 10 mosaiced Landsat 7 
ETM+ scenes. First, we assess the potential of Landsat imagery as a novel 
environmental data source for regional marine distribution modeling. 
Second, we evaluate the influence of differences in spatial scale between 
both environmental datasets on model outcomes in different environments, 
and compare our results to outcomes from similar terrestrial studies. 
 
In chapter 6, we investigate the feasibility of satellite-based local shallow 
habitat mapping, with a focus on discerning macroalgal communities, to 
assess temporal turnover in a highly seasonal environment. To this end, we 
compare high-resolution multispectral Landsat 7 ETM+ imagery from the 
Arabian Sea with high-resolution superspectral PROBA/CHRIS imagery 
through supervised classification and vegetation indices. Next, in order to 
deal with mixed pixels characteristic of heterogeneous environments, we 
propose a novel sub-pixel approach by using the Maxent distribution 
modeling algorithm to calculate a habitat class probability surface in spectral 
space which is then analysed in its spatial context. We discuss the results 
from these approaches in the framework of seasonally changing dominances 
between coral and algae. 
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In chapter 7, we demonstrate a low-cost very high-resolution imaging tool 
to map and monitor intertidal communities, with a focus on seaweeds. We 
use a modified near-infrared sensitive consumer-grade digital compact 
camera mounted on a kite to obtain aerial photographs, which are then 
mosaiced using computer vision software and further processed similar to 
multispectral imagery. 
 
In a general discussion we review the particular techniques used in this 
thesis in light of conceptual frameworks and discuss the present-day 
achievements and limitations of the applied methodologies.  
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Box 3. Species 
 
The macroalgal species used in case studies throughout this thesis are collected from 
the intertidal or subtidal using SCUBA to a depth of maximum 40 m. Overall, these 
species represent a range of environmental conditions, habitats, growth forms, life 
cycles and taxonomic groups, detailed in the respective chapters. While 
demonstrating the wide applicability of the presented methods, the main reasons for 
inclusion of these species were availability of georeferenced data and confidence of 
identification. 
 
Taxon (following AlgaeBase)                   Chapter - Plate 
Chlorophyta 
  Bryopsidophyceae 
    Bryopsidales 
      Bryopsidaceae 
          Pseudobryopsis Berthold emend. Henne et Schnetter spp.     Ch. 2 - Pl. a 
          Trichosolen Montagne emend. Henne et Schnetter spp.        Ch. 2 
      Halimedaceae 
        Genus Halimeda J.V. Lamourou 
          Section Halimeda spp.      Ch. 3 
              Halimeda discoidea Decaisne                 Ch. 5 - Pl. b 
          Section Micronesicae spp.      Ch. 3 
          Section Opuntia spp.                    Ch. 3 - Pl. c 
          Section Pseudo-opuntia spp.      Ch. 3 
          Section Rhipsalis spp.                  Ch. 3 
      Codiaceae 
          Codium arabicum Kützing      Ch. 1 - Pl. d 
          Codium fragile subsp. fragile (Suringar) Hariot                        Ch. 4 - Pl. e 
  Ulvophyceae 
    Ulvales 
      Ulvaceae 
          Ulva Linnaeus spp.                  Ch. 7 - Pl. f 
Heterokontophyta 
  Phaeophyceae 
    Fucales 
      Sargassaceae 
          Nizamuddinia zanardinii (Schiffner) P.C. Silva               Ch. 5,6 - Pl. g 
      Fucaceae 
          Fucus Linnaeus spp.                  Ch. 7 - Pl. h 
Rhodophyta 
  Bangiophyceae 
    Bangiales 
      Bangiaceae 
          Porphyra yezoensis Ueda       Ch. 1 
          Porphyra C. Agardh spp.       Ch. 7 - Pl. i 
  Florideophyceae 
    Ceramiales 
      Rhodomelaceae 
          Tolypiocladia glomerulata (C. Agardh) F. Schmitz                Ch. 6 - Pl. j 
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ABSTRACT 

Worldwide blooms of the green alga Trichosolen have been reported on 
damaged coral reefs following catastrophic events. However, the global 
distribution of Trichosolen and the factors triggering such blooms remained 
elusive because of a paucity of occurrence records. This study presents a 
presence-only niche modeling approach to map the potential distribution 
and delineate bloom risk areas as well as to identify environmental response 
optima for non-blooming occurrences and blooms. The modeled suitability 
map revealed a pantropical to subtropical distribution, while high suitability 
values delineated bloom risk areas including important tropical reef systems 
where Trichosolen has not yet been reported from. While both blooms and 
non-bloom occurrences show a strong preference for high temperatures, 
blooms responded better to broader nutrient ranges than non-blooms.  
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INTRODUCTION 

Coral communities are subject to extensive mechanical damage from both 
natural and anthropogenic causes, including cyclonic wave action, 
earthquakes and tsunamis, Acanthaster outbreaks, construction, ship 
groundings and removals, dynamite fishing, boat anchoring, diving and coral 
removal. The resulting lesions and cleared substrates on coral reef systems 
are susceptible to quick overgrowth by rapid colonizers such as benthic 
diatoms, cyanobacteria and turf algae (Rogers et al., 1991; Russ & McCook, 
1999; Schroeder et al., 2008; Titlyanov et al., 2008). These rapid 
colorizations (sometimes involving only one taxonomic entity) either mark 
the start of a complete phase shift (e.g. Diaz-Pulido et al., 2007), or the 
opportunistic algae disappear over time, resulting in the restoration of 
healthy coral reefs. 

The present paper focuses on remarkable pantropical monotypic 
blooms on coral reefs following catastrophic events, involving species in the 
coenocytic green algal genus Trichosolen (Bryopsidales, Chlorophyta; figure 
1). This genus belongs to the Pseudobryopsis/Trichosolen (PT) complex. 

 

 

Figure 1. Mechanically damaged Pocillopora damicornis colonies at Fahal Island (Muscat, 
Oman) covered by a Trichosolen sp. bloom on 11 July 2007, five weeks after Cyclone Gonu in 
the Gulf of Oman. The picture depicts an area 1m across. 
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Species belonging to Trichosolen have often been attributed to Pseudobryopsis 
or vice versa, based on variable combinations of morphological and 
anatomical characters. The complex was revised by Henne & Schnetter 
(1999), who segregated the genera based on the presence or absence of a 
basal plug in the gametangia and pyrenoids in the chloroplast. Since PT 
species usually grow inconspicuously and are characterized by a partly 
microscopic life-cycle, worldwide distribution patterns of both Pseudobryopsis 
and Trichosolen remained largely elusive. Based on the revision of Henne and 
Schnetter (1999), distribution patterns emerged on a generic level, with 
Pseudobryopsis characterized by a subtropical and warm-temperate 
distribution accounting for the highest latitudes of the PT complex 
(including the Mediterranean Sea, Japan, eastern South Africa and southern 
Australia), while Trichosolen appears to have a more tropical worldwide 
distribution. Hence, most of the PT species reported to grow on coral reef 
systems are Trichosolen, some of which were exclusively found on coral. 
Moreover, within the complex, only Trichosolen has been documented to 
smother corals following physical damage. Woodley et al. (1981) were the 
first to report extensive blooms of T. duchassaingii one week after hurricane 
Allen hit Jamaican coral reefs in August 1980. Similarly, Littler et al. (1987) 
observed rapid colonisation by T. molassensis (a previously undescribed 
species) following the grounding of the freighter Wellwood on Molasses 
Reef in the Key Largo National Marine Sanctuary (Florida, US) in August 
1984. Later, Littler and Littler (1999) described an extensive bloom of 
Trichosolen sp. on impacted corals on the Great Astrolabe Reef (Fiji) within 
2-3 days after cyclone Gavin in March 1997. Lastly, a remarkably similar 
Trichosolen sp. bloom occurred on broken coral colonies and rubble 
immediately following cyclone Gonu in the Gulf of Oman in June 2007 
(Jupp 2007, internal report but see Foster et al. (2008) and Wang & Zhao 
(2008) for reports on the cyclone and its biological consequences). All the 
blooms persisted for at least several weeks, and are in agreement with Littler 
& Littler's (1999) observations on the Florida and Fiji blooms: they are (1) 
monotypic, (2) widespread in time and space, (3) following severe physical 
impact, (4) persisting for weeks regardless of herbivore abundance, and (5) 
previously unknown from the sites despite elaborate prior floristic work.  

Besides a sudden availability of suitable substrate, nutrient inputs 
originating from land-based run-off or sediment resuspension have been 
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suggested as possible factors in the development of rapid overgrowths 
(Steneck & Dethier, 1994; Condie, 2009). Overall however, little 
(quantitative) information is available about the factors triggering such 
blooms because of a paucity of observations with relevant environmental 
data. This paper provides insights in the macroecological niche and the 
potential distribution of both blooming and non-blooming Trichosolen 
species growing on (damaged) coral reef systems, using a maximum entropy 
ecological niche modeling (ENM) technique based on known occurrence 
records and environmental layers related nutrient availability, sea surface 
temperature (SST) and coral distribution. An attempt is made to delineate 
key bloom risk areas and to identify environmental response optima for 
both non-bloom occurrences and bloom cases.  
 
 
MATERIALS AND METHODS 

SPECIES OCCURRENCE DATA 

Literature and, where available, databases of publicly deposited specimens 
were searched for worldwide occurrence records of Trichosolen species sensu 
Henne & Schnetter (1999) reported to grow on coral reef systems, both in 
natural conditions and after disturbances. Subsequently, Google Earth was 
used to assign lat/long coordinates matching the locality descriptions as 
closely as possible in the case where no coordinates were mentioned. 
Occurrence records lacking sufficient geographical accuracy (e.g. only 
mentioning a country) were excluded for the ENM. The resulting 21 
worldwide occurrence records (17 non-blooming records and 4 bloom 
cases, table 1) were manually checked for georeferencing errors against an 
administrative maritime boundaries map in Esri ArcGIS 9.2 and manually 
relocated where necessary to fall within sea areas, given the resolution of 
environmental data. Other data points such as Trichosolen records found on 
substrates outside coral reef systems or Pseudobryopsis records on coral reefs 
(representing a minority of the PT records previously often misreported as 
Pseudobryopsis and Trichosolen respectively) were retained for display in figure 
2. A complete list of georeferenced PT records is shown in supplement S1. 
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Table 1. Records of Trichosolen occurring on coral reef systems used in the Maxent models. 
Bloom records are indicated in bold. The references are included in the general list at the end 
of this thesis. 

Species (H&S ’99) Reported as Source Year Country Lat Long

T. duchassaingii Bryopsis Taylor 1928 Florida 24.63 -82.93
T. duchassaingii Bryopsis Taylor 1960 Bahamas 24.5 -77.7
T. duchassaingii Bryopsis Taylor 1960 Barbados 13.2 -59.64
T. duchassaingii Trichosolen Richardson 1975 Trinidad 10.76 -61.44
T. duchassaingii Trichosolen Woodley et al. 1981 Jamaica 18.47 -77.41

T. duchassaingii Bryopsis Suárez 2005 Cuba 21.5 -79
T. gracilis Pseudobryopsis Womersley and Bailey 1970 Solomon -8.75 158.07
T. gracilis Pseudobryopsis Coppejans et al. 2001 Papua N. Guinea -4.77 145.7
T. molassensis Trichosolen Littler et al. 1987 Florida 25.01 -80.37

T. parva Pseudobryopsis Pham-Hoàng 1969 Vietnam 12.21 109.22
T. parva Pseudobryopsis Cribb 1984 Australia -23.5 151.28
T. solomonensis Pseudobryopsis Womersley and Bailey 1970 Solomon -8.45 158.13
T. solomonensis Pseudobryopsis Egerod 1975 Thailand 8.088 98.29
T. solomonensis Pseudobryopsis Egerod 1975 Thailand 7.803 98.41
T. solomonensis Pseudobryopsis Egerod 1975 Thailand 7.727 98.79
T. solomonensis Pseudobryopsis Egerod 1975 Thailand 7.745 98.74
T. solomonensis Pseudobryopsis Coppejans et al. 2001 Papua N. Guinea -4.18 144.87
T. solomonensis Pseudobryopsis Coppejans et al. 2001 Papua N. Guinea -5.13 145.82
T.  sp. Trichosolen De Clerck & Coppejans 1996 Jubail 27.32 49.53
T. sp. Trichosolen Littler & Littler 1999 Fiji -19.1 178.4

T. sp. Trichosolen Jupp 2007 Muscat 23.68 58.5

 
 

ENVIRONMENTAL DATA 
Global SST and chlorophyll-a data (CHL, as a proxy for nutrient 
concentrations) available from the Aqua-MODIS satellite were assumed to 
be the major relevant ecophysiological variables driving survival and growth 
of Trichosolen. Three-monthly averaged (seasonal) level-3 pre-processed 
gridded maps for SST and CHL were downloaded at 5 arcmin 
(approximately 9 km) spatial resolution from OceanColor Web 
(http://oceancolor.gsfc.nasa.gov) and were subsequently cropped to include 
the highest latitudes at which Trichosolen is found to grow on coral reef 
systems (33°N-33°S). Raw pixel values (16bit) were recalculated to °C and 
mg m-3 using the respectively linear and exponential scaling equations 
provided in the metadata of the downloaded files. A uniform landmask was 
applied to all maps, masking out all freshwater bodies. These temporally 
averaged maps were not used as environmental variables for the modeling 
process as such. Instead, the following biologically meaningful variables 
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were included, calculated using Clark Labs Idrisi Andes and Perl scripts: 
minimum, maximum, range and mean CHL (CHLmin, CHLmax, CHLrng 
and CHLavg) and SST (SSTmin, SSTmax, SSTrng and SSTavg). 
Additionally, as Schils & Wilson (2006) identified the average SST of the 
three warmest seasons as a powerful variable in explaining macroalgal 
biogeographical patterns, this variable was also included (SSTavg3warm). 
Two approaches were taken to reduce data redundancy using Idrisi Andes, 
as this can bias interpretation of the response curves in the niche modeling 
step. First, an unstandardized principal component analysis (PCA) was 
performed on the variables, and the first 3 PC grids (accounting for 99.58% 
of the overall variance) were used as environmental variable input in the 
ENM. This approach was adopted to produce the most accurate ENM 
maps while keeping the loss of information at a minimum (Verbruggen et 
al., 2009). Second, a subset of variables was selected based on a correlation 
analysis (Riordan & Rundel, 2009), and this subset was used to model 
environmental response curves. This approach may lead to a reduction of 
data but allows for easy interpretation of the resulting response curves, as 
opposed to using principal components. SStavg3warm and the two 
remaining least correlated variables per category (SSTmin, SSTrng, CHLmin 
and CHLrng; Pearson correlation, 0.48 < r < 0.8) were retained for analyses 
in order to estimate the position of the niche in environmental space. Other 
potentially relevant variables available from OceanColor Web such as 
photosynthetically available radiation (PAR) and diffuse attenuation (DA, a 
measure of turbidity) are strongly correlated (r > 0.8) with SST and CHL, 
respectively, and were therefore not included. 

Using ArcGIS 9.2, environmental data were extracted for all 
Trichosolen occurrences found on coral systems for subsequent multivariate 
analyses. Kruskal-Wallis tests were carried out in Statsoft Statistica 7 using 
the subset of five least-correlated variables as independent variables in order 
to evaluate different ecological characteristics of blooms and non-bloom 
records.  
 

ENM 
Because of the rarity, small size and semi-cryptic life-cycle of Trichosolen and 
the resulting lack of reliable absence data, a presence-only niche modeling 
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algorithm was required. Therefore, Maxent v3.3.2, a software 
implementation based on the maximum entropy principle (Phillips et al., 
2006; Phillips & Dudík, 2008) was used to model the potential distribution 
of Trichosolen on coral reefs and to assess the species’ response to the 
environmental variables. The maximum entropy algorithm is a general-
purpose method to infer a probability distribution from incomplete 
information. This probability distribution is most uniformly spread out 
(showing the highest degree of entropy) given the constraints represented by 
the environmental data observed at the given occurrence localities. Besides 
the raw environmental data input, Maxent also calculates transformations 
and interactions of these variables (so-called features) to constrain the 
distribution. Eventually, unlike other algorithms, Maxent converges to a 
unique, least-biased solution in estimating the unknown distribution. The 
resulting probability distribution is then translated from ecological space 
into geographical space. In the so-called logistic format, the output map 
shows pixel values ranging from 0 to 1, indicating niche suitability. Elith et 
al. (2006) have shown Maxent to perform well in comparison to other niche 
modeling algorithms, and Pearson et al. (2007) demonstrated that Maxent 
was able to model species’ potential distributions based on as few as 5 to 25 
occurrence records more accurately than other presence-only modeling 
algorithms such as GARP. 

Maxent uses a large random sample of background environmental 
data (potentially including occurrence pixels, as opposed to generating 
pseudo-absences) to model the potential niche relative to the available 
environment. Most studies let Maxent randomly take 10000 points from the 
entire study area (a default option in the software). However, Phillips et al. 
(2009) pointed out that presence-only occurrence data often show a spatial 
sampling bias. This is often translated in an environmental sampling bias 
which, when combined with an evenly distributed background sample, leads 
to inaccurate models. To account for spatial sampling bias, background 
points with the same kind of bias as the occurrence records were selected: 
using Hawth’s analysis tools for ArcGIS (Beyer, 2004), 10000 background 
points were randomly sampled only from the first two pixels adjacent to the 
landmask in the study area, so as to approximate a typical coastal sampling 
bias. Other model training parameters were left at their default settings 
(convergence threshold = 10-5, maximum iterations = 500, automatic 
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feature selection). Response curves of the modeled species to each of the 5 
selected variables were also modeled by the Maxent algorithm.  

The resulting continuous probability map based on the model using 
principal components as environmental variables was converted to a 
discrete map using two different thresholds to facilitate ecological 
interpretation. A 10th percentile training presence threshold was used to 
visualize the potential distribution of the macroecological niche of Trichosolen 
species growing on coral reef systems, while accounting for some potential 
uncertainty in occurrence data input. In order to delineate bloom risk areas, 
a more stringent fixed threshold of 0.8 was applied to the logistic suitability 
map. This threshold was chosen because VanDerWal et al. (2009) have 
shown that a suitability value at a given pixel is correlated with the 
maximum achievable biomass at that pixel, and as such a high suitability 
value represents a pixel where a bloom could potentially be sustained. In 
order to refine the macroecological niche distribution map to incorporate 
habitat suitability, the resulting discrete model output map was overlaid with 
16700 coral distribution data points down to 40 m depth downloaded from 
ReefBase (Tupper et al., online publication) for which a 3-pixel buffer was 
created prior to raster conversion.  

While a suitability map was modeled for all Trichosolen occurrence 
records on coral reefs, response curves were modeled both jointly and 
separately for blooms and non-blooms to gain insight in their ecology, i.e., 
blooms, non-blooms and all Trichosolen records on coral reef systems were 
treated as distinct “species” in the modeling process. The model based on all 
occurrences on coral systems was created to make full use of all possible 
data in examining the worldwide potential niche, as blooms necessarily 
develop from already present (although previously unnoticed) life stages. In 
contrast, the separate models for blooms and non-bloom cases were created 
to evaluate whether conditions specific for developing blooms could be 
distilled from the data. 
 

MODEL EVALUATION 

Models were run using approximately 75% of the occurrence records as 
training points and 25% as independent test points. Threshold-independent 
receiver operating characteristic (ROC) analysis allowed for model 



Chapter 2 

 56 

performance evaluation. The ROC curve plots the proportion of correctly 
predicted presences against the fractional area predicted present (in the case 
of presence-only models). The measure of predictive performance is the 
area under the ROC curve (AUC), varying between 0 and 1, where values 
above 0.5 (the area under the null expectations line) are indicative of models 
better than random. A four-fold cross-validation was implemented in order 
to obtain a standard deviation for the AUC values. 
 

RESULTS 

TRICHOSOLEN POTENTIAL DISTRIBUTION 

The AUC values of the resulting Maxent model based on all Trichosolen 
occurrences on coral reef systems and principal components as 
environmental variables (table 2) indicate adequate model performance 
without overfitting to training data. The map shows a worldwide tropical to 
subtropical distribution of the macroecological niche (figure 2, global map), 
excluding cool waters (e.g. the Arabian Sea). When applying the 10th 
percentile training presence threshold (suitability value = 0.296) to the 
cross-validation replicate with the highest test AUC (0.969), the model was 
found to predict significantly better than random (p = 0.00003), with no 
records used for modeling falling outside the predicted suitable area (figure 
2 selected regions: all open circles and stars fall within one of the four 
suitably colored areas). Although most of the macroecologically suitable 
areas are not located on coral reef systems with suitable substrate (dark 
green and yellow in figure 2), some other Trichosolen records have been 
found there (open triangles) as well as PT records of uncertain generic 
identity (filled circles). Narrowing down the distribution of the 
macroecological niche to areas where coral reef systems are present (orange 
and red in figure 2) results in the identification of several reef areas where 
Trichosolen has not yet been recorded, such as Costa Rica and Panama, the 
Red Sea and the Maldives, northeast Malaysia and the Philippines and 
Queensland (Australia). Areas with a suitability value exceeding 0.8 
combined with coral availability (red pixels) represent the true bloom risk 
areas and cover all the recorded blooms. 
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Table 2. Area under the ROC curve (AUC) values of all Maxent model runs.  

N(train) AUC train N(test) AUCtest

Model Variables per crossval run mean (± SD) per crossval run mean (± SD)
All Trichosolen  on coral PCA 16 0.958 (± 0.007) 5 0.945 (± 0.02)
All Trichosolen  on coral selected 16 0.942 (± 0.012) 5 0.922 (± 0.067)
Non-blooms selected 13 0.916 (± 0.013) 4 0.837 (± 0.16)
Blooms selected 3 0.845 (± 0.091) 1 0.804 (± 0.114)

 
 
ENVIRONMENTAL RESPONSE CURVES FOR TRICHOSOLEN ON CORAL 
Kruskal-Wallis tests failed to reveal a significant difference between 
environmental variables for bloom or non-bloom occurrences found on 
coral reef systems (table 3). The Maxent model based on all Trichosolen 
occurrences on coral reefs and the subset with the 5 least correlated 
environmental variables performed only slightly worse for the training and 
test records, hence indicating a marginally lower predictive performance 
compared to the model based on principal components (table 2). The 
separate models for blooms and non-blooms have progressively lower AUC 
values. Although still indicating a better performance than random 
predictions, this effect is probably due to the low number of occurrence 
records (only 4 in the case of blooms). Rather than producing accurate 
maps, this approach is used here to analyze environmental variable response 
curves, summarized in figure 3. Response curves for SSTavg3warm, SSTmin 
and SSTrng exhibit a similar pattern across the models for all Trichosolen on 
coral systems, non-blooming occurrences and blooms, in favor of the 
warmest temperatures but with a tolerance for high ranges. Models for all 
Trichosolen records on coral reef systems and non-blooms correspond in the 
response curves for CHLmin and CHLrng, suggesting high support for the 
most oligotrophic conditions, corresponding to Jerlov class I oceanic waters.  
However, the model for blooms shows no response to CHLmin, while 
indicating an elevated response for an elevated CHLrng.  
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Table 3. Results of Kruskal-Wallis tests showing the difference between the environmental 
characteristics of all Trichosolen on coral reef systems, blooms and non-blooming 
occurrences. 

All Trichosolen  on coral (N=21) Non-blooms (N=17) Blooms (N=4)

Variable mean (± SD) mean (± SD) mean (± SD) p

CHLmin (mg m-3) 0.51 (± 0.71) 0.53 (± 0.78) 0.37 (± 0.21) 0.98

CHLrng (mg m-3) 0.97 (± 1.43) 0.9 (± 1.41) 1.39 (± 1.68) 0.84
SSTmin (°C) 25.94 (± 3.07) 26.23 (± 3.29) 24.72 (± 1.57) 0.39
SSTrng (°C) 4.61 (± 2.93) 4.45 (± 3.08) 5.44 (± 2.17) 0.44
SSTavg3warm (°C) 29.11 (± 2.74) 28.56 (± 2.09) 32.01 (± 4.17) 0.36

 
 
DISCUSSION 

In recent years, ENM has been suggested as an effective, promising means 
to investigate species’ biogeographical patterns and potential distribution, 
especially when occurrence records are scarce and reliable absence data 
cannot be obtained (Soberón & Peterson, 2004; Bentlage et al., 2009). This 
makes ENM a suitable tool for the investigation of ephemeral aquatic 
blooms which, by nature, offer limited sampling possibilities. Ephemeral 
macroalgal blooms on coral reefs have been reported to occur throughout 
the tropics, but the conditions enabling the formation of blooms often 
remain unclear (Burgess, 2006; Vroom et al., 2009). The bloom-forming 
species are usually known to be present in low abundances prior to the 
actual bloom formation. By contrast, Trichosolen bloom records were the only 
data source for some regions despite earlier floristic work around the bloom 
sites, probably because the present populations were in the microscopic part 
of the life cycle.  

The failure of the Kruskal-Wallis tests to distinguish between blooms 
and non-blooming Trichosolen occurrences on coral reef systems based on 
the selected environmental variables illustrates the limitations of classical 
biogeographical approaches when few data are available. In contrast, 
different environmental responses are apparent for modeled blooms and 
non-blooming occurrences, while AUC values are acceptable for all these 
models. The apparent optima in the response curves are in agreement with 
the observed values (table 3), and support these data in a more reliable and 
quantitative way.  
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Figure 3. Response curves to the least-correlated environmental variables calculated by 
Maxent. Niche suitability ranges from 0 to 1 on the y-axis, while the range of environmental 
variables is shown on the x-axis. Response curves in the left column are based on all 
Trichosolen records on coral reef systems; the centre column shows response curves based on 
non-blooming records only; models based on bloom records only are shown in the right 
column. Environmental variable acronyms are listed in the materials & methods section. The 
light grey centre line represents the median value derived from the 4 crossvalidation runs, 
while the dark grey band delineates the standard deviation. 

 
A first condition for blooms to develop is a sudden availability of 

suitable substrate (dead or cleared surfaces on coral reef systems) through a 
mechanically damaging event. Second, the peak at low concentrations in the 
CHLmin response curve for the models based on all occurrences and non-
blooming Trichosolen on coral reefs, combined with the response optima for 
a low to intermediate CHLrng, demonstrates a preferred occurrence of 
Trichosolen in clear, oligotrophic waters. These are mostly tropical waters, 
since the response curve of all models to SSTmin favors the highest values. 
On the other hand, the lack of response for bloom cases to CHLmin and an 
increasing tolerance towards elevated CHLrng values indicate that blooms 



Modeling Trichosolen blooms 

 61 

are more likely to occur in areas where chlorophyll concentrations can peak 
to extreme values (beyond seasonal fluctuations, i.e. on rare events), whereas 
non-blooming Trichosolen occurrences are more likely to be restricted to 
areas with continuously low chlorophyll concentrations. Moreover, the 
oceanographic observations by Wang & Zhao (2008) suggest the 
importance of sudden nutrient inputs caused by cataclysmic events, e.g. by 
sediment resuspension. In fact, peak nutrient concentrations during and 
shortly after these events might be an important factor besides available 
substrate and a reduction in herbivore density for Trichosolen to develop into 
a bloom. Thirdly, since the response curves of all Trichosolen models to 
SSTavg3warm favor the highest temperatures, Trichosolen growth and 
blooms are most likely to occur in areas characterized by an average 
temperature during the three warmest seasons that exceeds 28 °C 
(characteristic of tropical floras, see Schils & Wilson (2006)). Moreover, the 
confidence intervals of SSTavg3warm are very small, indicating the 
explanatory power of this variable. Since all the blooms were exclusively 
observed in the hottest season, this also suggests that this is the risk season. 
However, since the response of Trichosolen blooms to SSTmin is less 
pronounced than that of normal occurrence events, it could be 
hypothesized that blooms may also develop following a catastrophic event 
with sudden nutrient input even when the SST is suboptimal, whereas 
otherwise the background population (present in the microscopic part of 
the life cycle) would not develop in macroscopic growth before optimal 
temperatures are reached when the water column is oligotrophic. 

The discrete maps in figure 2 show the geographical distribution of 
the macroecological niche of Trichosolen based on the thresholds discussed 
above, while isolating areas within its niche that also feature a suitable 
habitat (shallow coral substrate). Only areas with both a higher than 0.8 
niche suitability value and the presence of coral reef systems are delineated 
as bloom risk areas which could be prioritized for targeted bloom 
monitoring when damaging events occur on the reefs. Likewise, other 
macroecologically suitable areas coinciding with coral reef presence (orange) 
might be used to guide exploration of new populations to expand 
biogeographical knowledge of the genus Trichosolen. From these maps, it is 
also apparent that habitat suitability is often controlled at a fine spatial scale, 
for which the resolution of the present model may not always be sufficient 
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(illustrated by isolated suitable pixels around reef islands). For guidance of 
field work, it is important to note that biotic and abiotic microhabitat 
variables such as wave exposure and grazing pressure could evidently not be 
incorporated in a modeling effort at a global scale. To further refine similar 
modeling efforts, coral reef impact variable maps might be included at 
different scales (post-hoc); these could include meteorological variables such 
as cyclone frequency and intensity, shipping intensity as a proxy for ship 
grounding risk (Halpern et al., 2008), and Acanthaster distribution maps. 

Besides the selection of the modeling algorithm, some measures were 
taken in order to optimize the modeling process based on a low number of 
occurrence data. This study addresses the algorithm’s sensitivity to sample 
selection bias by adopting a target-group background selection which is 
likely to show the same environmental bias as in the species occurrence 
data. Table 4 shows that the spread of environmental data for the 
occurrence records reasonably matches the averaged spread of background 
environmental data in ecological space (although less for CHL extremes). 
Additionally, suitability maps were modeled using principal components as 
environmental variables to ensure model performance was not affected by 
data redundancy. Raw variables were used to calculate environmental 
response curves for pragmatic reasons in interpreting the results, but again 
data redundancy was avoided by selecting the least correlated variables. 
Burgess (2006) noted that ephemeral blooms on tropical reef systems might 
be far more widely spread in time and space than currently observed, and 
stressed that the paucity of distributional and water quality data hampered 
understanding of the factors related to these blooms. 

 
Table 4. Overview of the spread in ecological space of occurrence records compared to the 
target-group selected background data. 

Variable min max mean (± SD) min max mean (± SD)

CHLmin (mg m-3) 0.06 1.87 0.42 (± 0.48) 0.01 64 1.84 (± 3.01)

CHLrng (mg m-3) 0.04 8.8 1.05 (± 1.43) 0 64 3.03 (± 5.96)
SSTmin (°C) 18.68 29.12 25.94 (± 3.07) 5.92 30.59 24.61 (± 4.45)
SSTrng (°C) 1.68 14.59 4.66 (± 2.93) 0.48 23.19 5.25 (± 3.74)
SSTavg3warm (°C) 25.72 30.62 29.11 (± 2.74) 14.67 36 29.44 (± 3.35)

All Trichosolen  on coral 
(N=25)

Target-group background 
(N=10000)
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The approach outlined in this paper yielded quantitative ecological 
information based on few occurrence records and can potentially be used to 
shed new light on similar ephemeral blooms, which are known to be 
increasing in frequency and intensity with global change (Rabalais, 2009). 
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SUPPLEMENTARY MATERIAL  
 
S1. Complete list of georeferenced PT records. 
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S1. (continued) 
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ABSTRACT 

Aim Because of their broad distribution in geographic and ecological 
dimensions, seaweeds (marine macroalgae) offer great potential as models 
for marine biogeographic inquiry and exploration of the interface between 
macroecology and macroevolution. This study aims to characterize 
evolutionary niche dynamics in the common green seaweed genus Halimeda, 
use the observed insights to gain understanding of the biogeographic history 
of the genus, and predict habitats that can be targeted for discovery of 
species of special biogeographic interest. 

Location Tropical and subtropical coastal waters. 

Methods The evolutionary history of the genus is characterized using 
molecular phylogenetics and relaxed molecular clock analysis. Niche 
modeling is carried out with Maximum Entropy techniques and uses 
macroecological data derived from global satellite imagery. Evolutionary 
niche dynamics are inferred through application of ancestral character state 
estimation. 

Results A nearly comprehensive molecular phylogeny of the genus was 
inferred from a six-locus dataset. Macroecological niche models showed that 
species' distribution ranges are considerably smaller than their potential 
ranges. We show strong phylogenetic signal in various macroecological 
niche features. 

Main conclusions The evolution of Halimeda is characterized by 
conservatism for tropical, nutrient-depleted habitats, yet one section of the 
genus managed to invade colder habitats multiple times independently. 
Niche models indicate that the restricted geographic ranges of Halimeda 
species are not due to habitat unsuitability, strengthening the case for 
dispersal limitation. Niche models identified hotspots of habitat suitability 
of Caribbean species in the East Pacific Ocean. We propose that these 
hotspots be targeted for discovery of new species separated from their 
Caribbean siblings since the Pliocene rise of the Central American Isthmus.  
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INTRODUCTION 

Various interacting features influence the distribution of a species. The 
niche of a species is commonly defined as the set of biotic and abiotic 
conditions in which it is able to persist and maintain stable population sizes 
(Hutchinson, 1957). Further distinction is made between a species' 
fundamental niche, which consists of the set of all conditions that allow for 
its long-term survival and the realized niche, which is a subset of the 
fundamental niche that a species actually occupies. Species' tolerances are 
determined by their morphological, reproductive and physiological traits, 
which are in turn susceptible to evolutionary forces. Hence, niche 
characteristics can be interpreted as evolutionary phenomena. 
Understanding niche evolution yields valuable insights into biogeography, 
biodiversity patterns and conservation biology (Wiens & Graham, 2005; 
Rissler et al., 2006; Wiens et al., 2007). 

The niche concept provides a conceptual framework to predict 
geographical distributions of species. Niche models establish the 
macroecological preferences of a given species based on observed 
distribution records and a set of macroecological variables, and these 
preferences can subsequently be used to predict geographic areas with 
suitable habitat for the species (e.g., Guisan & Thuiller, 2005; Raxworthy et 
al., 2007; Rissler & Apodaca, 2007). The availability of macroecological data, 
either in the form of remote sensing or interpolated measurement data, is 
increasing and has already provided many biological studies with 
environmental information (Kozak et al., 2008). To date, most ecological 
niche modeling studies have focused on terrestrial organisms. A notable 
exception is the study by Graham et al. (2007), which used a synthetic 
oceanographic and ecophysiological model to identify known kelp 
populations and predict the existence of undiscovered kelp habitats in deep 
tropical waters. 

Integration of niche models, macroecological data and phylogenetic 
information yields information on niche shifts and insights in the evolution 
of environmental preferences across phylogenetic trees. So far, evolutionary 
niche dynamics have been studied almost exclusively in terrestrial organisms 
(e.g., Graham et al., 2004; Knouft et al., 2006; Yesson & Culham, 2006) and 
little information is available on niche evolution of the organisms inhabiting 
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the world's oceans. Seaweeds appear to be an excellent model system to 
study the evolutionary dynamics of the macroecological niche in coastal 
marine organisms. Individual seaweed specimens are fixed in one location, 
yielding a direct link to georeferenced macroecological data. As a whole, 
seaweeds occur in a wide range of coastal habitats and many seaweed genera 
or families have a worldwide distribution, resulting in sufficient variability in 
macroecological dimensions and biogeographic patterns. Evolutionary 
relationships between and within seaweed genera are being characterized in 
increasing detail as a result of molecular phylogenetic research during the 
past few decades. Finally, seaweeds are straightforward to collect and 
process, making them easy targets for this kind of research. 

The marine green algal genus Halimeda is among the better studied 
seaweeds from a phylogenetic perspective and is therefore an obvious 
candidate for studies of niche evolution and biogeography. Halimeda consists 
of segmented, calcified thalli and abounds on and around coral reefs and in 
lagoons throughout the tropics and subtropics up to depths in excess of 150 
m (Hillis-Colinvaux, 1980). Halimeda species are important primary 
producers and provide food and habitat for small animals and epiflora 
(Jensen et al., 1985; Naim, 1988). After the algae reproduce, they die and 
their calcified segments are shed. Halimeda segments account for up to 90% 
of tropical beach sand and carbonate rock of tropical reefs (e.g., Drew, 
1983; Freile et al., 1995). The biogeography of Halimeda has been described 
in some detail. All but one species are restricted to a single ocean basin 
(Indo-Pacific or Atlantic), and biogeography has a strong phylogenetic 
imprint: each of the five sections of the genus is separated into Atlantic and 
Indo-Pacific sublineages, suggestive of a strong vicariance event. Even 
though the species' distribution ranges and the historical biogeographic 
patterns have been identified, questions about what causes them remain 
(Kooistra et al., 2002; Verbruggen et al., 2005b). Are species restricted to one 
ocean basin because of habitat unsuitability in the other basin or should the 
limited distribution ranges be attributed to dispersal limitation? It is also not 
known with certainty which vicariance event may be responsible for the 
phylogenetic separation of Indo-Pacific and Atlantic lineages. So far, two 
geological events have been implied: the Miocene closure of the Tethys 
seaway in the Middle East and the Pliocene shoaling of the Central 
American Isthmus (Kooistra et al., 2002; Verbruggen et al., 2005b). 
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The first goal of the present study is to investigate evolutionary niche 
dynamics of the seaweed genus Halimeda, focusing on niche dimensions 
relevant to global geographic distributions rather than local distributional 
issues such as microhabitat preferences. The second goal is to investigate 
two aspects of the biogeography of the genus: why are species restricted to a 
single ocean basin and what caused the historical biogeographic splits. Our 
approach consists of a combination of molecular phylogenetics, niche 
modeling, optimization of models of macroecological trait evolution, and 
ancestral state estimation. 
 

MATERIALS AND METHODS 

SPECIES IDENTIFICATIONS 

Species delimitation was based on a combination of DNA sequence data 
and morphological knowledge, with molecular data serving as the primary 
source of information used to define species boundaries and morphological 
species boundaries being assessed secondarily, using the species groups 
determined with DNA data. We used this approach because traditional 
morphological species definitions are often inaccurate in seaweeds due to 
morphological plasticity, convergence and cryptic speciation (e.g., Saunders 
& Lehmkuhl, 2005). The proposed approach has previously been applied to 
define species boundaries more accurately (Verbruggen et al., 2005a). 

The DNA datasets initiated by Kooistra et al. (2002) and 
Verbruggen (2005) were extended for this study using previously described 
protocols (Verbruggen, 2005), resulting in 264 UCP7 sequences, 337 ITS 
sequences and 106 tufA sequences belonging to a total of 444 specimens. 
These three datasets were subjected to Neighbor Joining analysis to detect 
species-level clusters. Using this approach, the sequenced specimens were 
attributed to 52 Halimeda species. If easily recognizable combinations of 
morphological features could be identified for species by studying the 
sequenced specimens, these features were used for identification of 
additional collections from various herbaria (BISH, GENT, L, PC, UPF, 
US) that were not suitable for sequencing. See the Index Herbariorum web 
site (http://sweetgum.nybg.org/ih/) for definitions of herbarium acronyms. 
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PREPROCESSING OBSERVATION DATA 

Recent collections had accurate coordinates recorded with a global 
positioning device. Older collections with detailed locality information were 
geocoded (latitude and longitude) using Google Earth 
(http://earth.google.com). Points that fell ashore when plotted on coarse 
resolution environmental grids were manually moved to the adjacent coastal 
waters using IDRISI Andes (http://www.clarklabs.org/). Data were 
examined for georeferencing errors by checking for geographical outliers 
with visual and overlay methods in ArcGIS (http://www.esri.com). Errors 
were identified by creating an overlay between the point locality layer and a 
maritime boundaries layer (exclusive economic zones and coastlines) 
provided by the Flanders Marine Institute (http://www.vliz.be). Any 
mismatch between these layers were indicative for a potential georeferencing 
error and outlying points were removed if their origin could not be 
confirmed. 
 

SPECIES PHYLOGENY 

The evolutionary history underlying the 52 species of Halimeda included in 
the study was inferred from a multi-locus DNA dataset using Bayesian 
phylogenetic inference (Holder & Lewis, 2003). Bayesian phylogenetic 
inference techniques make explicit use of models of sequence evolution, an 
approach that has been shown to outperform methods that do not assume 
such models (Swofford et al., 2001). Sequence data from four chloroplast 
loci (rbcL, tufA, UCP3, UCP7) and two nuclear markers (SSU nrDNA, ITS 
region) were obtained following previously described protocols (Famà et al., 
2002; Kooistra et al., 2002; Provan et al., 2004; Lam & Zechman, 2006) or 
from previously published studies (Kooistra et al., 2002; Verbruggen et al., 
2005a; Verbruggen et al., 2005b). Individual loci were aligned by eye and 
ambiguous regions were removed. Data for a few loci were missing mainly 
for recently discovered species but the concatenated data matrix was 90% 
filled. The final alignment can be obtained from www.phycoweb.net and 
www.treebase.org. All new sequences generated in this study have been 
submitted to Genbank (accession numbers FJ624485-FJ624863). 

In order to identify a suitable model of sequence evolution for our 
dataset, we used model selection procedures based on the second order 
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Akaike Information Criterion (AICc) (Sullivan, 2005). The phylogenetic 
analysis was carried out with the model of sequence evolution that yielded 
the lowest AICc score. This model contained 14 partitions: SSU nrDNA, 
the ITS region and 3 codon positions per protein-coding gene. The 
GTR+Γ8 substitution models yielded the best fit to the data for all 
partitions. Bayesian phylogenetic inference was carried out with MrBayes 
v.3.1.2 (Ronquist & Huelsenbeck, 2003). Five runs of four incrementally 
heated chains were run for 10 million generations using default priors and 
chain temperature settings. Convergence of the MCMC runs was assessed 
with Tracer v.1.4 (Rambaut & Drummond, 2007). An appropriate burn-in 
was determined with the automated method proposed by Beiko et al. (2006) 
and a majority rule consensus tree was built from the post-burn-in trees. 
The tree was rooted at the point where root-to-tip path length variance was 
minimal. 

The branch lengths of the obtained consensus phylogram are 
proportional to the estimated amount of molecular evolution occurring on 
the branches. In order to model character evolution, in our case 
evolutionary niche dynamics, branch lengths should be proportional to 
evolutionary time rather than amounts of molecular evolution. To obtain a 
chronogram (i.e. a phylogram with branch lengths proportional to 
evolutionary time), penalized likelihood rate smoothing (Sanderson, 2002) 
was carried out on the consensus tree with r8s (Sanderson, 2003), using 
both the additive and the log-additive penalty settings. The root of the 
phylogeny was assigned an age of 147 my, following the molecular clock 
result from Verbruggen et al. (2009). We refer to the latter paper for details 
regarding the dating of the phylogeny. 
 
MACROECOLOGICAL DATA 

Macroecological variables were selected to represent the major 
environmental dimensions assumed to influence seaweed distribution at a 
global scale and subject to data availability (Lüning, 1990) (Table 1).  
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Table 1. Geophysical parameters included in the macroecological dataset.  

Macroecological 
parameter

Units Original spatial 
resolution

Date Source Derived 
parameters

Sea Surface 
Temperature (SST) 

°C 2.5 arcmin 2003-
2007

Aqua-MODIS 
(NASA)

max, min, average 
(day & night)

Diffuse 
Attenuation (DA)

m-1 2.5 arcmin 2003-
2007

Aqua-MODIS 
(NASA)

max, min, average 

Calcite 
concentration (Ca)

moles/m3 2.5 arcmin 2006 Aqua-MODIS 
(NASA)

average

Chlorophyll A 
(chlA)

mg/m3 5 arcmin 1998-
2007

SeaWiFS 
(NASA)

max, min, average

Photosynthetically 
Active Radiation 

Einstein/m²
day

5 arcmin 1998-
2007

SeaWiFS 
(NASA)

max, min, average

 
The base macroecological data included geophysical, biotic and climate 
variables derived from level-3 reprocessed satellite data (Aqua-MODIS and 
SeaWiFS) available at OceanColor Web (http://oceancolor.gsfc.nasa.gov).  
We downloaded grids representing monthly averages at a 5 arcmin (≈ 9.2 
km) spatial resolution. These geometrically corrected images are two-
dimensional arrays with an Equidistant Cylindrical (Platte Carre) projection 
of the globe. Yearly minimum, maximum and average values were calculated 
from the monthly averages with MATLAB (http://www.mathworks.com/). 
To achieve this, average monthly images were generated by averaging 
images of the same month across years (e.g. average SST of July from 2003–
2007). Subsequently, yearly minimum and maximum images were composed 
by selecting the minimum and maximum pixels from these monthly 
averages. Finally, yearly average images were created by taking the mean 
value for every grid cell of the monthly averages. All images were cropped 
to the latitudinal range 50°N–40°S, which includes the highest latitudes at 
which Halimeda can be found. 
 
EVOLUTIONARY ANALYSIS OF NICHE CHARACTERISTICS 

The evolutionary dynamics of niche features were studied by inferring their 
patterns of change along the chronogram in a maximum likelihood (ML) 
framework. The macroecological niche features included in our study are 
continuous variables and we inferred their evolution with common models 
of continuous trait evolution. Brownian motion models, also known as 
constant-variance random walk models, assume that traits vary naturally 
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along a continuous scale and that variation is accumulated proportionally to 
evolutionary time, as measured by the branch lengths in a chronogram 
(Martins & Hansen, 1997; Pagel, 1999). Two branch length scaling 
parameters (lambda and kappa) were used to extend this model and better 
describe the mode and tempo of trait evolution (Pagel, 1999). Lambda (λ) 
transformations measure the amount of phylogenetic signal present in a 
continuous character. The transformation consists of multiplying all internal 
branch lengths of the tree by lambda, leaving tip branches their original 
length. When the ML estimate of λ is close to one, the internal branches 
retain their original length, indicating strong phylogenetic signal in the trait. 
If λ approaches zero, the evolution of the trait is virtually independent of 
phylogeny. Kappa (κ) transformations measure the degree of punctuational 
versus gradual evolution of characters on a phylogeny, by raising all branch 
lengths to the power kappa. If the ML estimate of κ is close to zero, all 
branch lengths approach unity, and path lengths become proportional to the 
number of lineage splitting events, suggesting that the evolution of the trait 
approximates punctuated evolution associated with speciation events. If the 
ML estimate of κ is close to one, branch lengths remain unchanged, 
indicating that the amount of change in the character is proportional to 
evolutionary time. In other words, κ values close to one indicate gradual 
evolution. 

In order to fit the models above and infer changes of the 
macroecological niche along the species phylogeny, a species × variables 
matrix had to be constructed. To achieve this, the values of the 
macroecological data layers were extracted for each sample locality. For each 
species, the minimum, maximum and average of each macroecological 
parameter were stored in the species × variables matrix. To reduce the 
influence of geographical sampling bias on the average values, they were 
calculated by weighted averaging. The Euclidean distance from the sample 
location to the centre of gravity for the species in question was used as the 
sample weight. The centre of gravity for the species was determined by 
averaging the three-dimensional Cartesian coordinates of all sample 
locations for that species. 

The models of continuous trait evolution listed above were optimized 
along the phylogenetic tree for the minimum, average and maximum values 
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of a selection of niche variables using the ML optimization of the GEIGER 
package (Harmon et al., 2008). Ancestral character values for 
macroecological niche features were estimated by ML inference (Schluter et 
al., 1997) with the APE package (Paradis et al., 2004). Resulting ancestral 
state values were plotted on the phylogeny with TreeGradients v1.03 
(Verbruggen, 2008). 
 

NICHE MODELING PROCEDURE 
The macroecological niches of species were modeled with Maxent, a 
presence-only niche modeling technique based on the maximum entropy 
principle (Phillips et al., 2006). We used a presence-only technique because 
only specimen collection data are available and absence data cannot be 
reliably obtained for seaweed species on a global scale. Maxent has shown 
remarkably good performance in a comparative study of presence-only 
niche modeling techniques (Elith et al., 2006). It estimates the probability 
distribution of maximum entropy (i.e. that is most spread out, or closest to 
uniform) of each macroecological variable across the study area. This 
distribution is calculated with the constraint that the expected value of each 
macroecological variable under the estimated distribution matches the 
empirical average generated from macroecological values associated with 
species occurrence data. The model output consists of a spatially explicit 
probability surface that represents an ecological niche (habitat suitability) 
translated from macroecological space into geographical space. The output 
grid is in the logistic format, where each pixel value represents the estimated 
probability that the species can be present at that pixel (Phillips & Dudik, 
2008). 

To avoid using redundant and correlated macroecological layers for 
niche modeling, an unstandardized principal components analysis was 
performed on the original variables in IDRISI Andes. The first, second and 
third principle component grids, which together accounted for 98.82% of 
the overall variance in the original variables, were exported for subsequent 
use in Maxent. 

Global species' niches were modeled for all Halimeda species for 
which more than ten distribution records were available, while excluding 
species with distribution records suffering from high spatial autocorrelation. 
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Additionally, a single regional model was generated using pooled occurrence 
data of six Caribbean species (H. goreauii, H. simulans, H. incrassata, H. monile, 
H. discoidea.atl and H. tuna.car). 

The Maxent algorithm was run with default parameters (convergence 
threshold = 10-5, maximum iterations = 500, regularization multiplier = 1, 
maximum number of background points = 10000, and use of linear, 
quadratic, product and hinge features). Models were created using 80% of 
the localities for model training and 20% for model testing. 

Statistical evaluation of the models was based on threshold-
independent receiver operating characteristic (ROC) analysis (Phillips et al., 
2006). For presence-only modeling, the ROC curve is a plot of sensitivity 
(proportion of correctly predicted presences) against the fractional area 
predicted present. The area under the ROC curve (AUC) is subsequently 
compared to the area under the null expectations line connecting the origin 
and (1,1), thus providing a measure of predictive model performance. An 
AUC approximating 1 would mean optimal discrimination of suitable versus 
unsuitable sites, whereas an AUC between 0 and 0.5 is indicative of 
predictions no better than random. Additionally, we use a modified AUC 
based on partial ROC curves as proposed by Peterson et al. (2008). This 
approach accounts for a user-defined maximum acceptable omission error, 
which we set at 0.1, and takes only the range of acceptable models in terms 
of omission error into account. The partial AUC is then rationed to the 
partial area under the null expectations line. Hence, the AUC ratio equals 
one for models performing no better than random, and increases with 
improving model accuracy. All partial AUC calculations were performed in 
the R statistical computing environment (R Development Core Team, 
2008). 
 

RESULTS 

SPECIES DELIMITATION AND PHYLOGENY 
Neighbor Joining analysis of the UCP7, ITS and tufA sequence alignments 
pointed out 52 clusters with low sequence divergence within clusters and 
relatively high divergence between clusters, as is typically found at the 
species boundary (Hebert et al., 2004; Verbruggen et al., 2005a). Not all 
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clusters corresponded to described, named species. The undescribed clusters 
represent cryptic or pseudo-cryptic species (Kooistra et al., 2002; 
Verbruggen et al., 2005a; Verbruggen et al., 2005b). The clusters inferred 
from DNA data formed the basis of the species definitions used in the 
remainder of the paper. After addition of morphologically identified 
herbarium specimens, the database consisted of 1080 samples from 538 
unique localities. Analysis of the concatenated alignment of rbcL, tufA, 
UCP3, UCP7, 18S and ITS sequences (4965 characters) yielded a well-
resolved species phylogeny in which five lineages, corresponding to the 
genus' five sections, could be recognized (Fig. 1). 
 
EVOLUTION OF NICHE CHARACTERISTICS 
A few niche features contained considerable amounts of phylogenetic signal, 
as indicated by the high ML estimates of lambda values using Pagel's lambda 
branch length modifier (Table 2).  A general observation was that average 
trait values contained more phylogenetic signal than minimum and 
maximum trait values (e.g., average temperature, not minimum or maximum 
temperature). High kappa values for the average trait values indicate that 
change of these traits is proportional to evolutionary time; in other words, 
change is gradual (Table 2). Some traits that also contained phylogenetic 
signal were not included in the table because of significant correlation with 
the listed variables. This is the case for photosynthetically active radiation, 
which is correlated with sea surface temperatures, and diffuse attenuation, 
which is correlated with chlorophyll values (caused by phytoplankton). 

Figure 2 illustrates the estimated evolutionary patterns of average 
annual temperature and chlorophyll values. Estimated ancestral trait values 
are shown at the internal nodes and visualized using a color gradient. An 
average annual temperature of 27.4°C (95% confidence interval: 25.6–29.2) 
is inferred at the basal split (Figure 2A), indicating a tropical origin for the 
genus. The tree clearly shows that evolution along the SST niche dimension 
is not homogeneous throughout the tree. Whereas the sections Rhipsalis, 
Micronesicae, Pseudo-opuntia and Opuntia barely deviate from typical 
tropical temperatures, evolution along the temperature axis has been 
common in section Halimeda. 
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 H lacunalis
 H tuna med
 H discoidea atl

 H “friabilis”
 H cuneata brazil

 H hummii
 H scabra
 H tuna car

 H magnidisca
 H cuneata undulata

 H macrophysa
 H taenicola
 H cuneata africa 1

 H discoidea ip
 H gigas

 H cuneata australia
 H cuneata arabia

 H “magnicuneata”
 H cuneata africa 2

 H cylindracea
 H melanesica
 H borneensis
 H macroloba
 H kanaloana
 H heteromorpha

 H monile
 H incrassata
 H simulans

 H fragilis
 H micronesica

 H no ID 2

 H cryptica
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Figure 1. Phylogenetic tree of 52 Halimeda species inferred from six molecular loci using 
Bayesian techniques, rooted at the point where root-to-tip path length variance is minimal. 
Numbers at nodes indicate statistical support (Bayesian posterior probabilities, in 
percentages). 
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Table 2. Optimum values for the branch length scaling parameters λ and κ used to test the 
mode and tempo of evolution of niche features. The niche traits are sea surface temperature 
(SST) and chlorophyll A values. The high optimal λ values inferred for average trait values 
indicate strong phylogenetic signal in these traits whereas the low λ values obtained for the 
minimum and maximum traits suggest a lack of phylogenetic signal. The relatively high 
optimum values for κ for average SST values suggest that evolution of this niche feature was 
more or less gradual (proportional to time). The lower value for average chlorophyll A 
suggests that there is a non-negligible punctuated component to the evolution of nutrient 
preferences. The first two columns used the tree smoothed with the additive penalty; the last 
two columns used the tree smoothed with the log-additive penalty. The κ parameter was not 
optimized when there was poor phylogenetic signal in the data (low λ). 

Trait Optimal λ Optimal κ Optimal λ Optimal κ
max SST 0.07262 0.05448
average SST 0.90087 0.83616 0.15159 0.66764
min SST 0.09371 0.05308
min chlA 0.10672 0.06804
average chlA 0.78528 0.47084 0.80792 0.37894
max chlA 0.01364 0.00000

 
 
More specifically, the lineages leading to H. tuna.med, H. cuneata.africa.1, H. 
cuneata.africa.2 and H. cuneata.australia have evolved a preference for colder 
water. Chlorophyll values were mapped onto the phylogeny as a proxy for 
nutrient preferences (figure 2B). Deviations from the average (low) nutrient 
preference values are present in Halimeda section Halimeda (H. cuneata.brazil, 
H. cuneata.africa.1, H. cuneata.africa.2, H. cuneata.australia, H. cuneata.arabia & H. 
magnicuneata) and in Halimeda section Rhipsalis (H. incrassata). 
 
NICHE MODELS AT THE GLOBAL SCALE 
Niche models indicating the areas where macroecological conditions are 
suitable for species to occur were generated for all species (figure 3 and 
figure S1). The average AUC across all models with 20% test localities was 
0.917 (SD = 0.046) for the training data and 0.906 (SD = 0.054) for the test 
data. The corresponding average AUC ratios were 1.576 (SD = 0.209) for 
the training data and 1.615 (SD = 0.234) for the test data. 
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Figure 2. Inferred evolutionary history of niche features in Halimeda. Ancestral values for (A) 
mean sea surface temperature and (B) mean chlorophyll concentration are plotted along the 
phylogeny. Numbers plotted at nodes indicate the inferred ancestral values. These values 
were obtained using a maximum likelihood approach as described in the text. Values are also 
drawn along a color gradient to allow rapid visual assessment of evolutionary patterns. Green 
indicates low values, red stands for high values, and yellowish colors indicate intermediate 
values. The geographic origin of species is indicated with colored taxon names. 
 
The high AUC values and ratios indicate that the most essential 
macroecological variables determining species distributions were accounted 
for in the dataset. The high scores for the test data indicate adequate model 
performance rather than overfitting of the model on the training data. The 
predicted distributions are clearly broader than the species known 
distributions. For example, the distribution model of the exclusively 
Caribbean species H. simulans (figure 3B) predicts habitat suitability in parts 
of the Indo-Pacific basin. Similarly, the model of the Indo-Pacific species H. 
borneensis (figure 3A) predicts habitat suitability in parts of the Atlantic 
Ocean. In general, there was a stronger tendency of predicting Atlantic 
species into the Indo-Pacific than vice versa. 
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NICHE MODEL AT THE REGIONAL SCALE 

The model predicting suitable habitat for a suite of six Caribbean species is 
shown in figure 3C (AUC ratio = 1.783). Potentially suitable habitats of 
these Caribbean species in the East Pacific are mainly predicted along the 
southern coast of Panama, the western coast of Colombia and in the 
Galapagos Islands (figure 3C–E). 
 

 
Figure 3. Predictive ecological niche models of Halimeda species inferred from 
environmental data and species occurrence records. (A) Niche model of the exclusively Indo-
Pacific species H. borneensis indicating habitat suitability in some Atlantic regions. (B) Niche 
model of the exclusively Caribbean species H. simulans predicting habitat suitability in several 
Indo-Pacific regions. (C) Pooled niche model of six Caribbean Halimeda species predicting 
habitat suitability along parts of the Pacific coast of Central America. (D) Detailed view of 
the areas along the Pacific coastlines of Panama, Colombia and Ecuador predicted by the 
model from panel C. (E) Detailed view of the Galapagos archipelago as predicted by the 
model from panel C. Predicted habitat suitability is indicated with colors along a gradient, 
warmer colors indicating areas with better predicted conditions. White squares indicate 
specimen localities used for model training. All maps are equidistant cylindrical projections. 
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DISCUSSION 

The obtained results invite discussion about several issues related to the 
macroecological niche of seaweeds, how it evolves and how it relates to 
patterns of biogeography. 
 

MODELLING SEAWEED DISTRIBUTIONS 
Niche modeling vs. previous approaches 
Our niche models indicate areas where the macroecological conditions are 
likely to be suitable for various Halimeda species to establish populations. 
They reflect the marked tropical nature of most species and show that many 
species occupy only part of the potentially suitable habitat (see below). 
Previous knowledge about the macroecological niche of seaweeds mainly 
stemmed from comparing distribution ranges with isotherms (isotherm 
fitting), studying survival and growth under various culture conditions, or 
the combination of both (e.g., van den Hoek, 1982). These approaches and 
the niche modeling approach presented here differ from each other in a 
number of aspects. Whereas the fundamental niche is investigated with in 
vitro studies of survival and growth, the realized niche is central in modeling 
techniques and isotherm fitting. A fundamental difference between niche 
modeling and both other approaches is that the former yields probabilistic 
output whereas the latter usually propose hard thresholds. The ease with 
which a niche modeling study can be carried out has benefits as well as 
drawbacks. The advantage is obvious when targeting species that are 
difficult to grow in culture. A disadvantage of niche modeling is that the 
choice of a specific niche modeling algorithm and the parameter settings 
may influence niche predictions and predictive model performance (Elith et 
al., 2006; Peterson et al., 2008). The maximum entropy method with ROC 
modifications appeared to be the most suitable option for our goals. 
 
Taxonomic caveat 
An additional concern about the application of niche models in seaweed 
research is the ease with which heterogeneous distribution records can be 
used to generate models. As mentioned earlier, morphological species 
delimitation is troublesome in algae and, as a consequence, published 
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species occurrence records based on morphological identifications are not 
always meaningful. We have taken great caution to avoid identification 
errors through DNA-guided species delimitation. All methods share the 
drawback of being sensitive to specimen sampling. In this respect, the 
absolute number of samples is likely to be of inferior importance compared 
to the spread of samples across relevant macroecological dimensions 
(Pearson, 2007). 
 

MACROEVOLUTION OF THE MACROECOLOGICAL NICHE 
Historical perspective 
Evolutionary processes are influenced by environmental variation in space 
and time (Kozak et al., 2008). Many studies taking a niche modeling 
approach to study environmental variation in a phylogenetic framework 
have shown strong heritability of macroecological preferences (e.g., 
Martinez-Meyer & Peterson, 2006; Yesson & Culham, 2006). To our 
knowledge, these studies have all focused on terrestrial organisms. The 
evolutionary dynamics of the niche of seaweeds have hardly been studied in 
the past. Breeman et al. (2002) investigated the evolution of temperature 
responses in the seaweed genus Cladophora. Their approach consisted of 
measuring cold tolerance, heat tolerance, and growth of various culture 
strains at different temperature regimes. The response variables (tissue 
damage and growth rates) were interpreted along a phylogenetic tree, 
leading to the conclusion that the two main lineages of the Cladophora 
vagabunda complex had divergent cold tolerances. Although the experimental 
data of this study differs from ours as discussed above, the approach taken 
to infer niche dynamics in both studies is not fundamentally different. 
However, thanks to the advances in models describing the evolution of 
continuous characters that have taken place since the publication of 
Breeman et al. (2002) and their implementation in user-friendly packages for 
the R statistical computing environment (Paradis et al., 2004; Harmon et al., 
2008), much more detailed inferences can now be made. 
 
Niche conservatism 
Our study shows that the macroecological niche in the seaweed genus 
Halimeda has a strong phylogenetic imprint and that niches appear to change 
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gradually with time. The results clearly indicate the phylogenetic heritability 
of macroecological preferences: four out of five sections (Rhipsalis, 
Micronesica, Opuntia and Pseudo-opuntia) demonstrate conserved preference for 
high temperatures and low nutrient levels, confirming the association of 
these sections with tropical coral reefs and shallow lagoons (figure 2). 
Adaptation to colder and more nutrient-rich water only occurred in section 
Halimeda. Remarkably, the transition into colder water seems to have taken 
place four times independently (in H. tuna.med, H. cuneata.africa.1, H. 
cuneata.africa.2 and H. cuneata.australia). The species H. tuna.med is the only 
one inhabiting the Mediterranean Sea and can maintain populations at sites 
with yearly sea surface temperature minima around 10°C. The species H. 
cuneata.africa.1 and H. cuneata.africa.2 occur in SE Africa. H. cuneata.australia is 
found along the shores of SW Australia. Chlorophyll values, used as a proxy 
for the trophic status of the surface water (Duan et al., 2007), are above 
average for certain species in section Halimeda, often in the subtropical 
species. It is known that nutrient levels increase with latitude in the 
latitudinal range studied here (Sasai et al., 2007). Halimeda cuneata.brazil 
occurred in waters with high average chlorophyll values due to an overall 
high concentration along the Brazilian coast. The high average chlorophyll 
value of waters in which H. incrassata was recorded is largely due to an 
outlier observation in Florida. 
 
Sources of uncertainty 
Our study of evolutionary niche dynamics involves several subsequent 
analyses, hence a discussion of the potential sources of uncertainty affecting 
the final result is in place. The first source of uncertainty is in the species 
phylogeny. A lack of support of phylogenetic relationships will have direct 
repercussions on the accuracy of downstream analyses. In our study, the use 
of a multi-locus alignment yielded very high statistical support for the great 
majority of branches in the tree. Therefore we have used the tree resulting 
from the Bayesian analysis (figure 1) in subsequent analyses as if it were 
known without uncertainty. Second, inferences of trait evolution also 
depend on branch lengths, which are affected by two potential sources of 
uncertainty: branch length estimation error in the phylogenetic analysis and 
error from the rate smoothing process that transforms the phylogram into a 
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chronogram. Especially rate smoothing can lead to variation in branch 
lengths if different settings are used. We followed the recommendations in 
the manual of the r8s program. Third, the values used as character states of 
the terminal taxon influence the results. We used distance-weighted averages 
as fixed character states for the terminal taxa whereas in reality there is 
variation around the average. Taking this variation into account is expected 
to broaden confidence intervals on inferred ancestral states (Martins & 
Hansen, 1997). A fourth source of error could result from the inability of 
Brownian motion models to capture the complexity of historical forces 
affecting niche evolution, a source of error inherent to using simple models 
to describe a more complex reality. The last element of uncertainty lies in 
the ancestral character estimation, which infers values for ancestral taxa 
based on values of recent taxa. These analyses, however, report the 95% 
confidence intervals around the inferred value. If a character evolves fast, 
this will be reflected in broader confidence intervals on ancestral character 
states (Martins, 1999). We have not attempted to quantify the accumulation 
of uncertainty throughout our sequence of analyses due to practical 
limitations but the reader should be aware of the assumptions that were 
made. 
 
Paleobiological perspective 
Despite the relatively high levels of uncertainty usually associated with 
ancestral state estimation of continuous characters (Schluter et al., 1997), the 
observed conservatism for environmental preferences yields a relatively 
narrow 95% confidence interval for the average sea surface temperature 
characterizing the habitat of the most recent common ancestor of extant 
Halimeda species (25.6–29.2°C). The ML estimate of 27.4°C appears to be in 
agreement with the tropical Tethyan origin of Halimeda that was previously 
derived from the fossil record. The earliest known fossil that is considered 
to belong to the genus is Halimeda soltanensis from the Upper Permian 
(±250–270 my) of Djebel Tebaga in South Tunisia (Poncet, 1989), which 
was at that time located at a low latitude along the western shore of the 
Tethys Ocean (Smith et al., 1994). A more diverse assemblage of species 
with a markedly tropical distribution had evolved by the Upper Cretaceous 
(±100–65 my) (Dragastan & Herbig, 2007). The invasion of Halimeda into 
higher latitudes has not been documented in the fossil record. Our 
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chronogram suggests that the invasion occurred during late Paleogene and 
Neogene times, a period characterized by global cooling (Zachos et al., 
2001). This finding confirms earlier hypotheses that at least parts of the 
warm-temperate seaweed floras originated from tropical ancestry during this 
period of globally decreasing temperatures (van den Hoek, 1984; Lüning, 
1990). 
 

GLOBAL BIOGEOGRAPHY 

Dispersal limitation 
Halimeda species have previously been shown to be geographically restricted 
to either the Atlantic Ocean or the Indo-Pacific basin (Kooistra et al., 2002; 
Verbruggen et al., 2005a; Verbruggen et al., 2005b). One could ask whether 
the absence of Atlantic species in the Indo-Pacific (and vice versa) is a 
consequence of dispersal limitation or if habitat differences may be 
responsible for the limited distributions. The niche model of the Indo-
Pacific species H. borneensis clearly indicates that some parts of the 
Caribbean Sea would be suitable habitat (figure 3A) and the niche model of 
the Atlantic species H. simulans suggests that it could survive in large parts of 
the Indo-Pacific tropics (figure 3B). Similar patterns were observed for 
other species (figure S1). So, unless Halimeda species are limited by habitat 
differences between the Atlantic and Indo-Pacific basins that are not 
represented in our macroecological data, it can be concluded that dispersal 
limitation is the most likely explanation for the strong separation of Atlantic 
and Indo-Pacific species. Dispersal limitation of benthic tropical marine 
organisms between oceans is not uncommon (Lessios et al., 2001; Teske et 
al., 2007) and can be explained by the North–South orientation of the 
African and American continents, prohibiting marine dispersal between the 
Atlantic and Indo-Pacific basins through tropical waters. Halimeda opuntia is 
the only species that occurs in both ocean basins. It is part of a clade of 
Indo-Pacific species, indicating that it originated in the Indo-Pacific basin 
and subsequently dispersed to the Atlantic Ocean and spread throughout its 
tropical regions. It was previously suggested that H. opuntia was introduced 
in the Atlantic Ocean by early interoceanic shipping (Kooistra & 
Verbruggen, 2005). If this scenario is correct, our models' prediction that 
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parts of the tropical Atlantic Ocean form suitable habitat for Indo-Pacific 
species and the conclusion of dispersal limitation between ocean basins 
would be confirmed. 
 
Vicariance patterns 
Geographic distribution patterns show a clear phylogenetic signal: each 
section separates largely into an Atlantic and an Indo-Pacific lineage (figure. 
1), confirming previous observations (Kooistra et al., 2002; Verbruggen et al., 
2005b). This pattern indicates ancient lineage splitting through vicariance 
and subsequent diversification within the Atlantic and Indo-Pacific basins. 
A number of geological events are commonly invoked to explain sister 
relationships between strictly Atlantic and strictly Indo-Pacific lineages. The 
first is the spreading of the Atlantic Ocean, which started during the Jurassic 
(±170–160 my) (Smith et al., 1994). The second is the collision of the 
African and Eurasian plates in the Middle East during the Miocene (±15–12 
my) (Rögl & Steininger, 1984). The third event is the closure of the Central 
American Seaway in the Pliocene (±3 my) (Coates & Obando, 1996). 
Different events have been hypothesized to be at the basis of the 
geographic splits in Halimeda but results have remained inconclusive 
(Kooistra et al., 2002; Verbruggen et al., 2005b). Our chronogram suggests 
that the splits between Atlantic and Indo-Pacific lineages originated at 
various times during the Paleogene (65–25 my). In other words, the time 
frame of initial divergence does not correspond closely with either one of 
the geological events. During the Paleogene, however, an important 
oceanographic event that may have limited dispersal between the Atlantic 
and Indo-Pacific ocean basins took place: the circum-equatorial current that 
homogenized the tropical marine biome during the Cretaceous was 
deflected to south of Africa (Lawver & Gahagan, 2003). This result suggests 
that geological barriers may not be the initial cause of divergence between 
populations but instead act as barrier reinforcements after divergence has 
been initiated by oceanographic events. A similar conclusion was reached in 
molecular and paleontological studies of species across the Central 
American Isthmus (e.g., Collins et al., 1996; Knowlton & Weigt, 1998). The 
generality of this pattern requires additional study. At least for some 
organisms, divergence times between Atlantic and Indo-Pacific lineages 
obtained with a molecular clock match more closely with the timing of the 
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collision of the African and Eurasian plates in the Middle East (e.g., Teske et 
al., 2007). 
 

REGIONAL BIOGEOGRAPHY OF TROPICAL AMERICA 

As an alternative to the molecular clock, one would also be able to infer 
which geological events were involved in species partitioning between 
Atlantic and Indo-Pacific through a thorough study of eastern Pacific 
Halimeda species. The Caribbean and East Pacific formed a single tropical 
marine biota that was separated by the shoaling of the Central American 
Isthmus during the Pliocene, resulting in the formation of many trans-
isthmian sister species (Knowlton & Weigt, 1998). The emergence of a land 
bridge has been dated at approximately three million years (Coates & 
Obando, 1996). The presence of trans-isthmian species pairs with a 
distribution limited to the tropical Americas (i.e., not in the wider Indo-
Pacific) can be taken as evidence for vicariance across the Central American 
Isthmus. 

Only Halimeda discoidea has been reported from the East Pacific and, 
curiously, molecular analyses have shown these populations not to be 
related to the Caribbean species H. discoidea.atl as one may expect but to the 
Indo-Pacific species H. discoidea.ip (Verbruggen et al., 2005b). So either 
Halimeda does not have trans-isthmian species pairs in the tropical Americas 
or they have not been discovered yet. The seaweed flora of the tropical East 
Pacific Ocean has not been studied in great detail in the past and recent 
inventories have shown lots of new discoveries (Wysor, 2004). We aimed to 
facilitate the discovery of trans-isthmian sister pairs by identifying 
geographic regions in the East Pacific Ocean that are hotspots of habitat 
suitability for Caribbean species. The niche model of pooled distribution 
data of six Caribbean species predicted parts of the East Pacific Ocean as 
suitable habitat (figure 3C) and identified three hotspots of habitat 
suitability: the western Galapagos Islands (figure 3E), the West coast of 
Colombia and parts of the South coast of Panama (figure 3D). We suggest 
that these areas should be targeted in future research expeditions aiming to 
discover trans-isthmian species pairs. The utility of ecological niche models 
to guide discovery has already been documented. Unexplored deep-water 



Chapter 3 

 90 

kelp forests were recently found in the Galapagos archipelago based on 
predictions of a synthetic oceanographic and ecophysiological model 
(Graham et al., 2007). Similarly, expeditions directed by niche models of 
chameleons led to the discovery of additional populations of known species 
and several species new to science (Raxworthy et al., 2003). It should be 
noted that the niche model presented here predicts habitat suitability only as 
a function of the macroecological variables included in the dataset. It is 
beyond doubt that factors not included in our dataset (e.g., micro-habitat 
characteristics, tidal amplitudes, grazing pressure and other biotic 
interactions) affect the actual distribution of species. If such data were 
available, it could be used to create a more specific model and would likely 
result in smaller hotspots, allowing even more targeted expeditions. 
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ABSTRACT 

Aim   The oceans harbor a great diversity of organisms whose distribution and 
ecological preferences are often poorly understood. Species distribution 
modeling (SDM) could improve such knowledge and inform marine ecosystem 
management and conservation. Although marine environmental data are 
available from various sources, there are currently no user-friendly, high-
resolution, global datasets designed for SDM applications. This study aims to 
fill this gap by assembling a comprehensive, uniform, high-resolution and 
readily usable package of global environmental rasters.  

Location    Global, marine 

Methods   We compiled global coverage data, e.g. satellite based and in situ 
measured data, representing various aspects of the marine environment relevant 
for species distributions. Rasters were assembled at a resolution of 5 arcmin (ca. 
9.2 km) and a uniform landmask was applied. The utility of the dataset is 
evaluated by maximum entropy SDM of the invasive seaweed Codium fragile 
subsp. fragile. 

Results   We present Bio-ORACLE (Ocean Rasters for Analysis of CLimate 
and Environment), a global dataset consisting of 23 geophysical, biotic and 
climate rasters. This user-friendly data package for marine species distribution 
modeling is available for download at http://www.bio-oracle.ugent.be. The 
high predictive power of the distribution model of Codium fragile subsp. fragile 
clearly illustrates the potential of the data package for SDM of shallow-water 
marine organisms. 

Main conclusions   The availability of this global environmental data package 
has the potential to stimulate marine SDM. The high predictive success of the 
presence-only model of a notorious invasive seaweed shows that the 
information contained in Bio-ORACLE can be informative about marine 
distributions and permits building highly accurate species distribution models. 
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INTRODUCTION 

During the last two decades, interest in predicting species distributions has 
grown substantially. Species distribution modeling has become an important 
tool in ecology, evolution, biogeography and conservation biology (Peterson, 
2006; Graham et al., 2004). Common applications include predicting the spread 
of invasive species (Thuiller et al., 2005), forecasting impacts of climate change 
(Thomas et al., 2004), inferring spatial patterns of species diversity (Graham et 
al., 2006) and reconstructing ancestral niches (Martinez-Meyer et al., 2004). 

Considering the strong interest in species distribution models (SDM) and 
their wide application in terrestrial ecosystems, remarkably few studies infer 
SDM of marine species (Robinson et al., in press). Notable exceptions where 
robust predictions of geographic distributions of marine fauna and flora were 
made include studies on fish (Maravelias & Reid, 1997; Wiley et al., 2003; 
Guinotte et al., 2006), cold-water corals (Davies et al., 2008; Tittensor et al., 
2009), jellyfish (Bentlage et al., 2009), crabs (Compton et al., 2010) and seaweeds 
(Graham et al., 2007; Verbruggen et al., 2009). Although these examples 
illustrate the utility of SDM for marine studies, several issues have restricted the 
application of SDM in the marine realm compared to the terrestrial 
environment. One challenge is that the extensive spatiotemporal variability 
characterizing the oceans can hinder SDM (Valavanis et al., 2008; Franklin, 
2009). A second obstacle is the restricted availability of marine data (Kaschner 
et al., 2006). SDM algorithms require both high quality species occurrence 
records and environmental information to infer the macroecological 
preferences of species (Elith & Leathwick, 2009). Gathering reliable species 
occurrence records is not straightforward as collecting can be impeded for 
highly mobile, circumglobal or deep-sea organisms (Kaschner et al., 2006). 
Furthermore, global marine environmental data, although increasingly available 
on the internet, are often challenging to use with popular SDM applications. 
The available data often have coarse spatial resolution and suffer from missing 
data in coastal regions. Data are frequently provided in different file formats 
and spatial resolutions, making the assembly of a dataset one of the most time-
consuming aspects of marine SDM. WorldClim (Hijmans et al., 2005), a freely 
available set of global high-resolution climate layers, has served this purpose for 
the terrestrial SDM community for the past five years but marine species 
distribution modelers have not had access to a similar pre-packaged dataset 
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(Robinson et al., in press). Although some environmental datasets exist, such as 
Aquamaps (Kaschner et al., 2008a), the Hexacoral project environmental data 
(Fautin & Buddemeier, 2008) and a set of layers related to human impact on 
marine ecosystems (Halpern et al., 2008), they have not been widely applied in 
SDM studies.  

This study aims to facilitate marine species distribution modeling by 
assembling a comprehensive collection of global environmental rasters and 
supplying it ready for use in common species distribution modeling software. A 
broad set of macroecological variables representing environmental dimensions 
assumed to influence the distribution of marine shallow water organisms are 
packaged in the Bio-ORACLE database (Ocean Rasters for Analyses of 
CLimate and Environment). The utility of Bio-ORACLE for marine SDM is 
evaluated by modeling the distribution of Codium fragile subsp. fragile, a 
notorious invasive seaweed. 
 

MATERIALS AND METHODS 

We compiled preprocessed remotely sensed and in situ measured 
oceanographic data representing various quantitative environmental predictors 
of species distributions. In the first place, we looked for proximal variables, i.e. 
those with a recognized physiological or ecological relevance for marine 
organisms. Secondly, we included several other variables that may serve as 
proxies for species’ environmental requirements. 
 
REMOTELY SENSED DATA 

Remotely sensed data were taken from various ocean observing satellite sensors 
(figure 1). We acquired monthly level-3 preprocessed satellite data (Aqua-
MODIS and SeaWiFS; http://oceancolor.gsfc.nasa.gov/) at a 5 arcminute (ca. 
9.2 km) spatial resolution. These geometrically corrected images are two-
dimensional arrays with an equidistant cylindrical projection of the globe. 
Climatological composites, i.e. images summarizing information from the same 
month across several years, were used to generate three relevant metrics: annual 
maximum, minimum and mean. For sea surface temperature and chlorophyll A, 
the annual range (difference between maximum and minimum) was calculated 
as well. The latter metrics are biologically important as they represent proxies of 
seasonality and temporal variation in nutrient supply, respectively. 
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Figure 1. Dendrogram depicting agglomerative clustering of Bio-ORACLE data layers. Numbers 
at nodes indicate statistical support (bootstrap probabilities). Numbers range from 0 (no support) 
to 1 (maximal support). The table includes Bio-ORACLE variables, derived metrics, units, 
manipulation and source. Variables used to build the Codium fragile SDM are depicted in boldface. 
Grey shaded areas represent distinct clusters. Legend: † (Boyer et al., 2009); § (Feldman & 
Mcclain, 2010); * (Nasa, 2010). 
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We also included the Terra-MODIS-derived cloud fraction data 
(http://modis-atmos.gsfc.nasa.gov/) available in monthly composites at a 
resolution of 6 arcminutes. The monthly data over 10 years (2000-2009) were 
used to create average monthly composites and then further processed to 
produce the three standard metrics (annual mean, maximum and minimum). 
Eventually these layers were resampled to a resolution of 5 arcminutes using 
bilinear interpolation. 
 

IN SITU MEASURED OCEANOGRAPHIC DATA 

In addition to remotely sensed data, spatially interpolated data layers were 
developed from oceanographic in-situ surface measurements gathered from the 
World Ocean Database 2009 (WOD09) (Boyer et al., 2009). We rejected all data 
flagged as erroneous in the WOD09 (Johnson et al., 2009). 

Different statistical approaches have been used to generate interpolated 
environmental surfaces (Daly, 2006). We have used DIVA (Data Interpolating 
Variational Analysis), a method developed for gridding in situ data using the 
variational inverse method (Brasseur & Haus, 1991) that has previously been 
applied to temperature, salinity and phosphate records of the Mediterranean 
Sea and the North-East Atlantic (Brasseur et al., 1996; Karafistan et al., 2002; 
Troupin et al., 2010). Compared to other interpolation techniques, DIVA has a 
number of features that makes it very attractive for our application, including: 
(i) the ability to work with large amounts of data without intermediate 
averaging; (ii) the consideration of coastlines and topography; (iii) the 
generation of coherent error maps useful for identifying regions of uncertainty 
in the resulting environmental rasters; (iv) the use of a limited amount of 
parameters estimated in an objective way (Troupin et al., 2010). 

Coastlines were extracted from the global GEBCO one arcminute 
bathymetry (November 2009; http://www.gebco.net/). In order to perform 
DIVA analyses, two parameters have to be determined: the correlation length L 
and the signal to noise ratio λ. The software provides tools to estimate these 
parameters from the data. The correlation length (L) was estimated by fitting 
the correlation between the data and a theoretical kernel function. As suggested 
by Troupin et al. (2010) and based on sensitivity, the signal-to-noise ratio (λ) 
was assigned the constant value of one. The variance of the background field 
was also assigned a value of one to have DIVA generate relative error fields.  
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As a means of quality control, the outlier detection option was activated 
and error maps were calculated. Outlier detection is based on a comparison 
between the data-analysis residual and the expected standard deviation. The 
removal of data outside the realistic range was not necessary as this part of the 
quality control was carried out by the World Ocean Data center. The error 
estimates reflect the confidence in interpolated surfaces depending both on the 
data coverage and on their quality. Continuity across the 180° meridian was 
achieved by running two DIVA analyses, one ranging from -180° to 180° and a 
second starting and stopping at the 0° meridian (i.e. crossing the 180° 
meridian). The two resulting rasters were weight-smoothed into one final raster, 
with pixel weights decreasing linearly from the center of the input images to 
their sides. 
 

PREPROCESSING AND MULTIVARIATE ANALYSIS OF BIO-ORACLE 
RASTERS 
In order to arrive at a ready-for-use data package for SDM applications, a 
uniform landmask was applied to all data layers. This procedure consisted of 
correcting discrepancies between environmental data and the coastline, masking 
data pixels that were on land and calculating values for marine pixels without 
data by cubic extrapolation. Finally, the Polar Regions, which suffer from 
missing and imprecise data, were excluded by cropping the Bio-ORACLE 
rasters to latitudes between 70° N/S. 

To better grasp the major environmental dimensions present in Bio-
ORACLE, we explored the dataset with multivariate statistics. After the 
variables had been standardized, they were subjected to hierarchical clustering 
using 'hclust' of the 'stats' library in R (http://www.r-project.org/). This 
clustering technique was performed on a matrix of all pixel values in all rasters 
(7,257,600 pixels × 23 variables). We used the Euclidean distances and the 
average distance agglomeration method. Confidence in the hierarchical 
clustering was assessed by multiscale bootstrapping (Shimodaira, 2004) using 
the R package 'pvclust' (Suzuki & Shimodaira, 2006). We used 100 bootstrap 
replicates and the default relative sample sizes of bootstrap replications. 

Environmental maps for SDM are usually provided in equidistant 
projections (north-south distances neither stretched nor compressed), but such 
maps may bias distribution models of species that span a large latitudinal range 
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(Tittensor et al., 2009). For this reason and for applications like species richness 
analysis, equal-area cells may be preferred. To accommodate this, we remapped 
all Bio-ORACLE layers onto a Behrmann equal-area projection using ArcGIS 
9.2 (http://www.esri.com). Coordinate transformation formulas are provided 
in Appendix S3. Both these equal-area and the original equidistant projections 
are provided to the public. 
 

CASE STUDY: CODIUM FRAGILE SUBSP. FRAGILE 

The ability of Bio-ORACLE to predict the distribution of marine species was 
evaluated by inferring a presence-only species distribution model of the 
invasive species Codium fragile subsp. fragile (hereafter C. fragile). This green alga is 
considered to be native in the NW-Pacific (i.e. Japan and surrounding areas) 
and has been introduced to Europe, the west and east coasts of North America, 
Australasia, South Africa and South America (Trowbridge, 1998; Provan et al., 
2008). Being a shallow-water marine organism, this species is a suitable 
candidate to evaluate the utility of Bio-ORACLE. 

We collected occurrence records of the species in its native range and the 
invaded European range. Occurrences for Japan were acquired by 
georeferencing herbarium collections housed in the TNS (Tsukuba, Japan), 
SAP (Sapporo, Japan) and GENT (Ghent, Belgium) herbaria. For the 
European invaded range, occurrences were obtained from the primary literature 
and collecting activities. The resulting database consisted of 94 records for 
Japan and 284 for Europe. 

Species distribution models were inferred with Maxent version 3.3.2. 
(Phillips et al., 2006), a machine-learning algorithm for SDM with superior 
performance among presence-only algorithms (Elith et al., 2006). To avoid 
modeling issues relating to overparameterization and multicollinearity of 
environmental layers, we adopted a predictor selection procedure (Guisan & 
Zimmermann, 2000). Variable reduction was achieved with performance-based 
forward-stepwise selection. Model performance was measured in terms of the 
area under the curve (AUC) of the receiver operating characteristic for test data 
as implemented in Maxent (Phillips et al., 2006). All analyses were replicated five 
times with random training and test sets (both 50%). The test AUC can be 
expected to yield a good trade-off between underfitting and overfitting the 
model. Underfitting is avoided because this naturally leads to low AUC values, 
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and overfitting is countered by using the test AUC instead of the training AUC 
as the metric to be maximized. A recent study shows that this approach selects 
models of appropriate complexity (Warren & Seifert, in press). 

The best subset of predictors, producing the highest test AUC value, was 
used to carry out the final modeling step. Final models were inferred by 
running the same subsampling procedure (50% training, 50% test data) with ten 
replicate runs. All analyses used linear and quadratic features (leaving the other 
Maxent settings at their default values). 
 

RESULTS 

Twenty-three global rasters of marine environmental predictors were generated 
either from remotely sensed or in situ measured oceanographic data. The 
gridded fields of 5 arcmin spatial resolution (9.2 km) are available for download 
on the Bio-ORACLE website (http://www.bio-oracle.ugent.be). Elaborate 
descriptions of the layers, their data sources and quality maps for interpolated 
layers can be found on the Bio-ORACLE website and in the supplementary 
material (Appendix S1). 

Agglomerative clustering of the data layers resulted in a strongly 
structured dendrogram with high bootstrap values for nearly all clusters. Four 
clusters (CL1-4), representing major macroecological axes, were clearly 
discernable. They represent ocean color bio-optical parameters (CL4), nutrients 
and dissolved oxygen (CL3), clouds (CL2) and temperature and light resources 
denoting latitudinal patterns (CL1). Besides these four groups, four singletons 
were present in the dendrogram. These are the mean salinity, calcite 
concentration, water pH and the annual range of sea surface temperature, a 
measure of seasonality. 
 

CASE STUDY: CODIUM FRAGILE SUBSP. FRAGILE 

The variable selection procedure resulted in thirteen sets of environmental 
layers that obtained the maximum test AUC of 0.989. From these sets, we 
opted to use the one with the fewest predictor variables for the final SDM, in 
order to avoid data redundancy and model overparameterization. This set 
consisted of 12 variables representing all six environmental clusters (variable 
names in boldface in figure 1).  
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Figure 2. Inferred species distribution model of Codium fragile subsp. fragile based on occurrence 
records from the native (Japan) and invaded range (Europe). (a) Binary prediction map applying a 
minimum training presence threshold (0.019). (b, c) Habitat suitability maps of European and 
Asian ranges, respectively. Warmer colors represent areas with better predicted conditions. Black 
circles indicate occurrence records used to build models. 

 
The resulting presence-only model for C. fragile achieved high classification 
success (average AUC of ten replicate runs: 0.990). The predicted habitat 
suitability maps of the model are depicted in figure 2. 

The SDM predicted the realized distributions of the species in both the 
native and European invaded ranges very well. Other predicted areas include 
South Australia, New Zealand, North America and parts of South America, 
where the species has also been introduced and is spreading. The annual range 
of sea surface temperature, annual maximum of diffuse attenuation and mean 
of phosphate concentration were the most important variables explaining 
recorded observations (see Appendix S2 for more comprehensive SDM results, 
including a full list of the variable contributions). 
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DISCUSSION 
Species distribution models play a central role in many fundamental and applied 
aspects of ecology. Besides improving our understanding of biogeography and 
dispersal barriers, they allow us to narrow in on species' ecological 
requirements, predict the effects of species invasions, habitat loss and climate 
change and can even lead to the discovery of new species (Peterson, 2006). The 
world's oceans harbor a high biodiversity (Costello et al., 2010), and despite the 
importance of marine organisms for global biogeochemical cycles and human 
exploitation, their distribution and specific ecological needs are not nearly as 
well documented as their terrestrial counterparts. The application of SDM to 
marine species can also inform us about marine reserve design and 
conservation, and has the potential to predict how future climate and ocean 
acidification scenarios will affect the distribution and abundance of keystone 
species in the biogeochemical cycles. 

While these examples clearly illustrate the need of SDM in the marine 
realm, the number of studies applying these methods to marine taxa is nearly an 
order of magnitude lower than those applying them to terrestrial taxa 
(Robinson et al., in press). By introducing Bio-ORACLE, we hope to alleviate 
the need for user-friendly marine environmental data packages for global SDM 
applications. The development of a dataset of this type brings up several 
questions related to data quality, utility of the data for marine SDM, how the 
data should be used in practical applications, and how Bio-ORACLE compares 
to other marine environmental datasets. In what follows, we will touch on each 
of these topics. 
 

DATA QUALITY 
Several precautions were taken to produce a dataset of the highest possible 
quality. These included selection of input data with a high level of a priori 
quality check, the use of state of the art interpolation techniques and an 
assessment of uncertainty about the resulting data rasters. 

For the interpolated maps based on WOD09 data, quality is spatially 
variable and depends on local environmental variability, the quality and density 
of the observations and the interpolation method (Hijmans et al., 2005). The 
error maps computed by DIVA (see Appendix S1) result from an analysis on 
the covariance field of the data with respect to the true field. Pixel values in 
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these error maps represent relative error (ranging from 0 to 1) and give an idea 
about the level of confidence in the pixel values in the corresponding 
environmental raster. The overall error is small, and the highest uncertainty, i.e. 
the highest predicted error, occurred in regions with low data coverage such as 
high latitude areas(e.g. the northern polar seas, Hudson Bay, Antarctica) and 
some unsampled areas in the middle of the oceans. 

The rasters derived from remotely sensed data only included information 
with the highest possible quality pixels (resulting from Level-3 quality maps). 
However, an inevitable source of error results from the irregular temporal 
sampling of ocean color sensors (MODIS & SeaWiFS) (Gregg & Casey, 2007). 
Daily data gaps exist due to clouds, thick aerosols, inter-orbit gaps, sun glint 
and high solar zenith angles (Gregg & Casey, 2007). Binning these data into 
climatologies makes these gaps disappear but could lead to unpredictable 
biases. These biases (and resulting uncertainties) are most pronounced at high 
latitudes. For example, chlorophyll A, photosynthetically available radiation and 
diffuse attenuation, which are measured at relatively short wavelengths (in the 
visible spectrum), cannot be accurately measured during the winter season at 
high latitudes due to high solar zenith angles (Gregg & Casey, 2007). Sea 
surface temperature data do not suffer from this effect because they are 
measured in the thermal infrared part of the spectrum (longer wavelengths). A 
second source of bias affecting the quality of the remotely sensed data rasters 
follows from intra- and extrapolation of data for pixels with missing data. A 
simulation experiment (Appendix S1) indicates that extrapolations do lead to 
errors, but that these are small (generally < 1%) and that extrapolation into 
coastal pixels was somewhat more error-prone than interpolation of pixels in 
the open ocean. 

The majority of potential errors in the datasets are due to the absence of 
in situ measurements, bias in remotely sensed data and extrapolation towards 
coastal areas. All of these problems are more pronounced in high-latitude areas. 
Therefore, we advise against the use of Bio-ORACLE in latitudes above 70° 
latitude N/S. We provide data rasters cropped at 70°N – 70°S as well as rasters 
spanning the entire latitudinal range, the latter only to be used with great 
vigilance and judicious consideration of results. 
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UTILITY FOR MARINE SDM 

The distribution of marine organisms is controlled by the interplay of a 
multitude of physical, chemical and biological variables. Bio-ORACLE includes 
both variables deemed important physiological determinants as well as 
potentially useful proxies. Each of the clusters and singletons in the dataset 
(figure 1) represents a distinct aspect of the marine macroecological 
environment. Temperature is thought to be the most important physical 
oceanographic variable determining the abundance, the spatial distribution and 
diversity of marine ectotherms (Schmidt-Nielsen, 1990; Lüning, 1990). Sea 
surface temperature clusters with photosynthetically available radiation (CL1), 
an essential and potentially limiting variable for photosynthetic organisms as it 
provides in their energy needs. Chlorophyll A (CL4) was included because it is a 
useful proxy for the trophic status of the surface waters (Duan et al., 2007). 
However, the chlorophyll A metrics do not group with the actual nutrient layers 
(nitrate, phosphate and silicate) in the cluster analysis and consequently capture 
another dimension of the marine environment. We presume that this is due to 
an organic vs. inorganic nutrients dichotomy, chlorophyll A being a proxy of 
primary production and the WOD09 layers representing inorganic nutrients. 
Cloud cover variables (CL2) were included because of their potential to 
indirectly influence marine organisms. Clouds can block the transmission of 
light and harmful UV radiation and affect intertidal communities and organisms 
abounding in the ocean surface layer (Karentz & Bosch, 2001; Mangel et al., 
2010; Roleda et al., 2005; Dring et al., 1996). Four environmental entities did not 
cluster in one of the previously mentioned groups: salinity, calcite 
concentration, pH and sea surface temperature range. Besides temperature, 
salinity is known to be among the most important factors influencing marine 
life (Lüning, 1990; Gogina & Zettler, 2010). Ocean acidity (pH) plays a critical 
role in mediating physiological reactions (Wootton et al., 2008) and numerous 
important groups of marine organisms have calcium carbonate skeletons that 
dissolve when pH drops (Doney et al., 2009). The range in sea surface 
temperature is a measure of temperature seasonality. Our case study clearly 
shows that this variable can be an important determinant (or proxy) of marine 
species' distributions as it had the highest variable contribution to the SDM of 
Codium fragile (See Appendix S3). In contrast to the terrestrial environment 
where seasonal climatic variability increases with latitude (Chown et al., 2004), 
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the seasonal variability in sea surface temperature is highest at intermediate 
latitudes (Clarke, 2009). 

We aimed to illustrate the utility of Bio-ORACLE for marine SDM by 
generating a distribution model of Codium fragile. This highly invasive species is 
of economic interest and various aspects of its physiology and bioactive 
compounds, as well as the ecology and genetic signature of its invasion have 
been studied (Trowbridge, 1998; Provan et al., 2008). The extremely high AUC 
values obtained for both training and test data sets show that the Bio-ORACLE 
rasters capture the macroecological preferences of the species and that, when 
used correctly (see below), the dataset permits building highly accurate SDM of 
marine species. From an organismal perspective, the SDM of Codium fragile is of 
interest in that it predicts other areas where the species could thrive. In fact, the 
species is known to have been introduced and is spreading in some of the 
predicted regions (Northern America, Australia, New-Zealand and South 
America) (Provan et al., 2008). An in-depth analysis of the Codium fragile models 
is beyond the scope of this paper and will be presented elsewhere. 
 
USING BIO-ORACLE FOR MARINE SDM 
It is evident that ecological preferences differ between species and not all 
variables are useful in predicting a species' distribution. Choosing the right 
predictor variables for a particular species of interest is considered to be one of 
the most crucial steps in the SDM procedure (Guisan & Zimmermann, 2000). 
Variables could be chosen based on the knowledge that they are ecologically 
meaningful for the target species (Guisan & Zimmermann, 2000; Austin, 2002) 
and/or have good explanatory power (Araujo & Guisan, 2004). The latter 
aspect has been given much attention in regression techniques using presence-
absence data, where several methods for predictor selection are available (e.g. 
stepwise selection with cross-validation, ridge regression, lasso) (Guisan & 
Thuiller, 2005). Unfortunately, predictor selection has been getting much less 
attention in recent presence-only modeling approaches. 

For our case study, a performance-based forward stepwise variable 
selection procedure resulted in the selection of 12 out of the 23 variables in 
Bio-ORACLE. The importance of predictor selection is confirmed by the fact 
that a model built with all 23 layers resulted in considerably lower predictive 
power, most likely as a consequence of predictor collinearity and model 



Bio-ORACLE marine environmental data rasters 

  111 

overparameterization. This illustrates that datasets like Bio-ORACLE and 
WorldClim should not be used blindly but that SDM requires meticulous 
species-specific variable selection, preferably based on a combination of 
physiological knowledge and variable selection approaches. In this context, the 
development of information criterion-based model selection (e.g. Akaike and 
Bayesian information criteria) for use in presence-only SDM applications would 
be useful (Warren & Seifert, in press). 
 

COMPARISON TO OTHER MARINE ENVIRONMENTAL DATASETS 

Bio-ORACLE was developed to be a ready-to-use global environmental dataset 
for shallow-water marine species distribution modeling. Other marine datasets 
for SDM do exist but the uniformity and user-friendliness of Bio-ORACLE is 
unique. Table 1 lists strengths and weaknesses of Bio-ORACLE compared to 
other marine environmental datasets. Noteworthy examples of marine 
preprocessed datasets that contain environmental data potentially informative 
for SDM are AquaMaps (Kaschner et al., 2008a) and HexaCoral (Fautin & 
Buddemeier, 2008). AquaMaps is an approach to generate predictions of the 
natural occurrence of marine species based on their environmental tolerances 
(Kaschner et al., 2008b). The AquaMaps datasets represent long-term averages 
of temporally varying environmental variables (Ready et al., 2010). The 
HexaCoral datasets were developed to enable environmental classification 
(typology) and understand spatial and temporal patterns in biogeochemistry and 
biogeography. Both AquaMaps and HexaCoral can be downloaded at a spatial 
resolution of 30 arcminutes. 
Common SDM applications require a set of uniformly constructed 
environmental layers. Bio-ORACLE provides data with a consistent landmask 
across all layers. We also made the data available in the ascii raster grid format 
used by many popular SDM algorithms (e.g. GARP, Maxent). It has been 
common practice in marine environmental modeling to use data with a spatial 
resolution of 30 arcminutes (Guinotte et al., 2006). Bio-ORACLE has a 
considerably higher resolution of 5 arcminutes (ca. 9.2 km). Our choice for this 
resolution is a trade-off between the desire for sufficient resolution in near-
shore environments, manageability of the rasters on current desktop computers 
and avoiding unreasonable interpolations. 
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Furthermore, this resolution makes the dataset suitable for addressing questions 
about distributions at a global scale while still allowing model predictions at a 
resolution fine enough for most management purposes. In this context, it is 
important to note that the variables included in the Bio-ORACLE dataset are 
situated at the macroecological level, and when interpreting models at a fine 
spatial resolution, certain aspects of the organisms' microhabitat preferences 
(e.g. presence of suitable substrate for benthic species) become important to 
consider besides the macroecological niche dimensions. 

Even though the comparison in Table 1 shows that Bio-ORACLE is 
currently among the best datasets for marine SDM, we also want to emphasize 
the utility of the other datasets. Our evaluation was focused on SDM 
applications and Bio-ORACLE was specifically designed for this purpose 
whereas others were not. Nonetheless, these datasets can complement Bio-
ORACLE in various ways. For example, they contain some environmental 
dimensions that are not included in our database and variables at multiple depth 
levels. 

 
CONCLUSIONS AND PERSPECTIVES 
Species distribution models have gained importance in various biological 
disciplines in recent years. Remarkably, they are less commonly used in studies 
of marine species than of terrestrial taxa. The present study was carried out to 
develop a marine counterpart of the WorldClim database, which is widely used 
for terrestrial SDM. Bio-ORACLE is a dataset consisting of 23 environmental 
rasters for marine species distribution modeling at a global scale. We hope that 
the availability of this set of environmental rasters will bring marine SDM on 
par with terrestrial studies. Our species distribution model of the invasive 
seaweed Codium fragile clearly shows that the rasters contain information 
relevant to the distribution of marine species and permits developing very 
accurate species distribution models. 

We consider the present version of Bio-ORACLE an important first step 
in the development of a more complete set of environmental data rasters. 
Progress can obviously still be made, for example by including depth-related 
variables, various other physical parameters and layers representing important 
limiting nutrients in the marine environment. The present dataset will hopefully 
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provide our colleagues and us with the necessary groundwork to move this 
objective forward. 

 

ACKNOWLEDGEMENTS 

We are grateful to three anonymous referees and the associate editor for their 
constructive criticisms and suggestions. We thank Satoshi Shimada (SAP herbarium) 
and Taiju Kitayama (TNS herbarium) for providing C. fragile subsp. fragile records. LT is 
funded by the Institute for the Promotion of Innovation by Science and Technology in 
Flanders (IWT). HV is a postdoctoral fellow of the Research Foundation – Flanders. 
Part of this work was carried out using the Stevin Supercomputer Infrastructure at 
Ghent University. 



Bio-ORACLE marine environmental data rasters 

  115 

SUPPLEMENTARY MATERIAL 

 
 



Chapter 4 

 116 

 

 
 



Bio-ORACLE marine environmental data rasters 

  117 

 

 
 



Chapter 4 

 118 

 

 
 



Bio-ORACLE marine environmental data rasters 

  119 

 

 
 



Chapter 4 

 120 

 
Supporting figure S1. Error maps computed by DIVA. 
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ABSTRACT 

Spatial scale, defined as the spatial resolution and extent of environmental 
data, is known to influence species distribution models. With most studies 
investigating spatial scale effects in the context of predicting impacts of 
global change in the terrestrial realm, comparative species distribution 
modeling based on fine-scale versus coarse-scale environmental data in the 
marine realm remains to be investigated. We present a regional case study 
for three benthic seaweed species with different well-defined distribution 
patterns in two adjacent but contrasting seas: the spatially and temporally 
more homogeneous Gulf of Oman and the highly variable Arabian Sea. 
Rather than starting from a single environmental dataset with subsequent 
up- or downscaling, a genuine sub-100m resolution environmental dataset 
was compiled based on 10 mosaiced Landsat scenes for winter and summer. 
This resulted in habitat layers pertaining to sea surface temperature, nutrient 
content, turbidity and substrate availability. The coarse-scale dataset (9km 
resolution) is based on the global environmental dataset Bio-ORACLE, 
cropped to the same 2000-km long coastline. Models for the three species 
were generated with the Maxent algorithm using both environmental 
datasets. The Landsat-based models performed equally well in terms of 
AUC compared to the Bio-ORACLE models. However, important 
differences in output maps could be noted, capturing the difference between 
coarse-scale macroecological modeling and fine-scale habitat modeling. 
Overall, it appears that while both coarse and fine-scale models are in good 
agreement for all species in the less variable Gulf of Oman, coarse-scale 
models suffered from overprediction for all three species in the more 
heterogeneous Arabian Sea. This suggests that the choice of modeling scale 
is important for applied marine modeling studies such as the guiding of field 
work. 
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INTRODUCTION 

Ecological niche modeling (ENM), alternatively termed species distribution 
modeling (SDM), habitat suitability modeling (HSM) or bioclimate envelope 
modeling has recently been widely applied in spatially explicit studies on 
forecasting climate change impacts (Wiens et al., 2009),  forecasting the 
spread of invasive species (Thuiller et al., 2005), inferring spatial patterns of 
species diversity (Gillespie et al., 2008), guiding field work (Le Lay et al., 
2010) and discovering new species (Raxworthy et al., 2003) or new 
occurrences of rare species (Williams et al., 2009). To date, most of these 
studies have focused on the terrestrial realm, with marine studies lagging 
behind in assessing influences of different factors on the modeling process 
(Robinson et al., 2011). 

With environmental raster layers now widely available for global and 
regional research topics, several terrestrial studies have characterized the 
effects of modeling species' distributions at different spatial scales (Guisan 
et al., 2007). Spatial scale in SDM encompasses both spatial extent and 
spatial resolution (the latter often termed grain size) of the datasets used in 
SDM, and is most often used to refer to the environmental data. The 
limiting factors of data storage and computing power on the one hand and 
data sources such as satellite imagery on the other hand have caused a trade-
off towards moderate or low-resolution environmental data used for studies 
on a global or continental extent, and moderate to (very) high resolution 
data used for studies on a regional to local extent. In order to avoid this 
trade-off, some studies have adopted a nested (or hierarchical) approach in 
capturing both local and regional patterns (Elith & Leathwick, 2009), or 
combined both high- and low-resolution data through resampling (Kulkarni 
et al., 2010). In fact, the modeled ecological processes differ over scales: 
whereas models using coarse resolution data yield the potential distribution 
of the macroecological niche, fine resolution models are indicative of 
(micro-) habitat-level processes (Elith & Leathwick, 2009). Next to 
ecophysiological or climatic driving variables, fine resolution data can also 
include habitat variables such as land cover, soil type, canopy structure, 
topography or other factors determining true habitat suitability within a 
suitable climate or macroecological niche (Bradley & Fleishman, 2008; 
Lahoz-Monfort et al., 2010). Habitat variables generally vary on a finer scale 
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compared to climatic variables. Some terrestrial studies have examined these 
factors by modeling species’ distributions based on a set of moderate 
resolution environmental data, followed by scaling the same data up or 
down (Guisan et al., 2007). Others have made use of original data on both a 
moderate resolution and high resolution (Trivedi et al., 2008), the latter 
mainly facilitated by Landsat imagery processing (Kulkarni et al., 2010). 

While a few terrestrial studies have compared distribution models 
based on small- and large scale data, scale influences on modeling studies in 
the marine realm remain to be explored. We present a case study along the 
coast of the Sultanate of Oman, covering approximately 2000km from the 
Gulf of Oman in the north to the Arabian Sea in the south. This region was 
selected because of the contrasting environmental conditions governing the 
two adjacent seas. The eastern cape of Ra's al Hadd forms a sharp transition 
between the strongly seasonal climate of the Arabian Sea and the year-round 
warmer Gulf of Oman. The former is characterized by clear, warm waters 
during winter monsoon and agitated, nutrient-rich and cold upwelling 
waters during summer monsoon, while the latter doesn’t experience 
seasonal upwelling (Wilson, 2000). This difference in climatic regimes causes 
a sharp turnover in biotic communities, as demonstrated for seaweeds by 
Schils & Wilson (2006). This allows for coarse and fine-scale model 
comparisons on regions characterized by a differing environmental 
variability and on species occurring either (mostly) in one of the seas in the 
study area or in both. 

In this paper, we present (1) a first application of Landsat scene 
mosaicing to extract environmental and habitat layers for regional 
distribution modeling in the marine realm at a sub-100m resolution over 
approximately 2000km of coastline and (2) a comparison of these Landsat-
based habitat suitability models with niche models based on 9km resolution 
macroecological layers available in the Bio-ORACLE dataset (Tyberghein et 
al., 2011). The latter dataset was recently released in order to facilitate 
marine SDM studies by providing uniformly compiled global data from 
remote sensing products and in situ data interpolation and can be easily 
cropped for regional applications. The goal of this comparison is to 
investigate whether spatial resolution affects marine distribution modeling 
by revealing habitat patterns within macroecologically discerned niches for 
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regions with differing environmental variability, in a similar way as 
demonstrated in terrestrial niche modeling studies. 
 

MATERIALS & METHODS 

BIOTIC DATA 
Three macroalgal species were selected for niche modeling: the conspicuous 
brown kelp-like alga Nizamuddinia zanardinii (Schiffner) P.C. Silva, the red 
algal turf Tolypiocladia glomerulata (C. Agardh) F. Schmitz and the green 
calcareous alga Halimeda discoidea Decaisne. Georeferenced records were 
available from 7 sampling campaigns between 2003 and 2008, covering the 
entire coastline of Oman and both monsoon seasons. Voucher specimens 
are available in the GENT herbarium (Schils & Coppejans, 2003; Schils & 
Wilson, 2006). Because of cryptic diversity, specimens of H. discoidea were 
only included if their identity was confirmed by genetic analyses. The species 
were selected because of the availability of at least 10 occurrence records per 
species and their distinct ecologies. N. zanardinii (14 occurrence records) is 
known to be restricted to the Arabian Sea coast of Oman and grows on 
exposed rocky platforms in the shallow subtidal. T. glomerulata (18 records), 
although occasionally found in sheltered localities in the Arabian Sea, is far 
more common and abundant in the Gulf of Oman and occurs on rocks and 
sand-covered rocky platforms in the intertidal and shallow subtidal. H. 
discoidea (10 records) favors sheltered sandy stretches in the shallow and 
deeper subtidal in both the Arabian Sea and the Gulf of Oman, although the 
species is somewhat less common in the latter region. 
 

ENVIRONMENTAL DATA 

Landsat data 
Ten Landsat 7 ETM+ scenes from both the southeast (summer) and 
northwest (winter) monsoon season were selected to cover the entire 
coastline of Oman, with the exclusion of the Yemen-Oman border region 
west of Salalah due to its location in a different UTM zone (figure 1). Scene 
selection was restricted to the SLC-ON mode (from 2000-2003, prior to the 
failure of the scan line corrector or SLC) and sufficiently low cloud cover. 
The SLC failure after 2003 doesn't prevent single scenes from being used, 



Chapter 5 

 130 

but SLC-off images cannot be used for mosaicing since approximately one-
fourth of a scene is not imaged, resulting in wedge-shaped missing data 
chunks at the along-track edges. 
 

Figure 1. Location of the study area showing WRS-2 path/row tiles from which Landsat 
scenes were downloaded. For each tile, a winter (W) and a summer (S) scene were selected 
from the given dates. Some major coastal localities are given for reference: from north to 
south the Musandam peninsula, the Muscat Capital Area, the Ra’s al Hadd cape separating 
the Gulf of Oman and the Arabian Sea, Masirah Island and the southern province capital 
Salalah. 
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Due to the cloud cover criterion, suitable summer monsoon scenes were 
only available for September-October, when the intensity of monsoonal 
activity is decreasing. Winter monsoon scenes were available for November-
April. By and large, one suitable scene per combination of path/row tile and 
season was selected. For each scene, bands 1-4 (visible and near-infrared, 
VNIR), band 5 (short-wave infrared, SWIR) and band 6H (high-gain 
thermal infrared, TIR) were downloaded at Level 1T (terrain corrected, 
projected to UTM 40N) from the USGS archive, freely available at 
http://glovis.usgs.gov. The VNIR and SWIR bands were first corrected to 
at-sensor spectral radiance and then corrected for variations in solar output, 
haze and atmospheric absorption and scattering based on acquisition time 
and the cosine of the solar zenith angle, resulting in the conversion of digital 
numbers to planetary reflectance using standard image-based practices 
(Chander et al., 2009; NASA, 2011). TIR digital numbers (DN) were 
converted to surface temperature following atmospheric correction detailed 
in appendix 1. Subsequently, individual scenes were resampled (nearest 
neighbor) to 60m resolution (i.e., the native resolution at which Landsat 7 
ETM+ samples the thermal region) and linearly rescaled to reduce file size. 
Next, for each season individual scenes were mosaiced with an image grey 
level matching algorithm based on the average pixel values of adjacent 
scenes in order to account for between-scene variations due to different 
acquisition dates. Thus, for each of the 6 bands, both a winter and a 
summer monsoon mosaic were assembled, covering a coastline of about 
2000km. The winter mosaic was remapped onto the summer mosaic to 
eliminate marginal differences in pixel positioning and image extent. UTM 
projection was retained throughout this study because of its precise 
georeferencing characteristics necessary to relate biotic occurrence data to 
the environmental information from the corresponding 60m grid cells, while 
scale differences across the study area are negligible. Lastly, a general land 
and cloud mask was created based on SWIR thresholds of both mosaics. 
The mask image was manually edited to additionally mask false water pixels 
in mountainous areas (due low SWIR reflectance in hill-shaded valleys) and 
erroneous values along scene edges. 

Several macroecological and habitat variables thought to play an 
explanatory role in the distribution of macroalgae were derived from the 
band mosaics. Next to sea surface temperature (SST) which was directly 



Chapter 5 

 132 

inferred from the thermal band, the band 2 (green) mosaic was directly 
retained as a measure for suspended matter and, hence, turbidity (Ahn et al., 
2006). Additionally, a NIR/red ratio index correlated with chlorophyll-a 
concentration (CHL, from phytoplankton; Duan et al., 2007) was used as a 
proxy for primary production correlated with organic nutrient availability. 
Based on the winter and summer monsoon mosaics, the minimum, 
maximum, average and range metrics for each of these variables were 
calculated as biologically relevant input layers in the modeling step. 

Furthermore, a substrate map was obtained by supervised maximum 
likelihood classification of the VNIR winter mosaic bands (yielding better 
classification results due to less turbid waters compared to the summer 
monsoon) resulting in a categorical variable. Due to the influence of original 
between-scene variability in the resulting mosaic and the limited availability 
of training and testing samples compared to the total size of the study area, 
a distinction was made between soft (sand, mud and seagrass meadows) and 
hard substrates (bare and vegetated rock, coral) only. Pixels were sampled 
using flood polygons based on georeferenced transects along the entire 
coastline of Oman (with deep water pixels included as a separate class and 
randomly sampled from beyond 50m depth based on a digitized nautical 
chart). From these samples, 50% was used for training and testing each. The 
overall classification accuracy was 86%, with main confusions of hard 
substrate close to the coast being classified as deep water and some 
confusion of soft substrate classified as hard substrate, mainly in silted areas 
with seagrass meadows and isolated coral communities. 
 
Bio-ORACLE data 
Environmental grids at 5 arcmin resolution were downloaded from 
http://www.bio-oracle.ugent.be (Tyberghein et al., 2011), cropped to the 
area covered by the Landsat mosaics and projected to UTM 40N. The 
following grids were selected to represent the equivalent of Landsat 
environmental data: SST, CHL and diffuse attenuation (DA, equivalent with 
turbidity), for which minimum, maximum, average and range data were 
available. Additionally, photosynthetically available radiation (PAR), calcite 
concentration and salinity were included in the modeling effort because 
these were also derived from seasonal data. Only the average was available 
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for calcite and salinity, while the average and maximum were available for 
PAR. 
 

DISTRIBUTION MODELING 

Because of the relatively low number of occurrence records and inherent 
uncertainty on absences in algal sampling, a maximum entropy-based 
presence-only distribution modeling approach was adopted using Maxent 
v3.3.3. Maxent is a general purpose algorithm for inferring probability 
distributions based on incomplete information. In its species distribution 
modeling implementation, Maxent finds the most equally spread out 
probability distribution constrained by the environmental variables, their 
interactions and functions thereof at the known occurrence localities 
(Phillips et al., 2006; Phillips & Dudik, 2008). It has been shown to perform 
well in comparison with other modeling algorithms (Jane Elith et al., 2006), 
especially with low numbers of occurrence records (Pearson et al., 2007). 
For the Landsat-based models, selection of a background sample of 10,000 
random points was restricted to the coastal zone defined by the penetration 
depth of the visible light bands in the final mosaic (i.e. classified as either 
hard or soft substrate, excluding deep water in the substrate layer). This 
approach was adopted to cope with the high number of grid cells in the 
study area, by providing the algorithm with a background sample that is 
similarly biased compared to occurrence data (Phillips et al., 2009; Elith et 
al., 2010). Due to the low number of grid cells in models based on Bio-
ORACLE layers cropped to the region, all marine cells in the study area had 
to be included as background values. For each species-environmental 
dataset combination, preliminary Maxent model runs were performed to 
achieve forward stepwise variable selection based on the area under the 
receiver operating characteristic curve (AUC) of the test dataset as the 
selection criterion in order to reduce input data redundancy in the final 
model runs. Variable selection runs were executed with 50% of the 
occurrence records as test data in 10 replicate runs using subsampling, while 
final model runs were made with 5-fold cross-validation.  
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DATA EXPLORATION & MODEL ANALYSIS 

In order to assess environmental variability patterns in the input layers, 
environmental data values for the different input layers selected in the final 
models were sampled separately for the Gulf of Oman and the Arabian Sea 
from all cells within a 2-pixel wide coastal buffer for the Landsat-based 
models and a 1-pixel wide buffer for the Bio-ORACLE models. Standard 
deviations of these environmental values were compared between the Gulf 
of Oman and the Arabian Sea as a measure of variability and the 
significance of the relation was tested using an F-test. For the categorical 
variable substrate, variability was measured as the difference of the relative 
fraction of the substrate classes (excluding deep water) from 0.5. A smaller 
difference was considered to indicate a higher variability (less dominance of 
a single class). 

The same coastal buffer points were used to extract data values of the 
final models. Using the R statistical computing environment (R 
Development Core Team, 2010), habitat suitability was plotted against the 
distance along the coast (roughly a north-south transect). Next, the lowest 
significant threshold for converting the Maxent replicate model with the 
highest test AUC to a binary prediction was chosen to evaluate the relative 
amount of predicted suitable pixels in each of the regions. Thresholds are 
based on different rules such as balancing sensitivity and fractional predicted 
area, for which Maxent provides 1-sided p-values for the null hypothesis 
that test points are predicted no better than random with the same fractional 
predicted area. 
 

RESULTS 

Although some models performed slightly better than others, high test-AUC 
values for all models indicated adequate model performance based on the 
selected variable sets (table 1). Country-wide distribution patterns which 
were known from previous sampling campaigns were largely reflected in the 
Maxent models, although important differences between Bio-ORACLE and 
Landsat-based models emerged. Areas with high suitability values for N. 
zanardinii were predicted exclusively in the Arabian Sea based on Bio-
ORACLE variables as well as Landsat-based models. However, while Bio-
ORACLE models predicted almost the entire Arabian Sea as highly suitable, 
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only discrete stretches of coast along the Arabian Sea were characterized by 
high suitability values based on Landsat variables, mostly in the south and 
around Masirah Island (figure 2 and 3A). For T. glomerulata, the most 
important highly predicted areas were found in the Gulf of Oman by both 
the Landsat and Bio-ORACLE models, but larger areas with high suitability 
values were computed in the Arabian Sea by the Bio-ORACLE model 
(figure 3B and appendix 2). While Bio-ORACLE models predicted generally 
high suitability throughout the Arabian Sea and low values in the Gulf of 
Oman for H. discoidea, the inverse was true for Landsat-based models, with 
the exception of a few (largely sandy) embayments in the Arabian Sea (figure 
3C and appendix 3).  
 
Table 1. The variables selected for the final models, their contributions to the final model, 
the resulting average test AUC values for the 5-fold cross-validation and the lowest 
significant threshold values based on the replicate model with the highest test AUC for both 
environmental datasets. Selected variables are given in the order of variable contribution to 
the model. SST (sea surface temperature), CHL (chlorophyll a), PAR (photosynthetically 
available radiation), DA (diffuse attenuation), B2 (Landsat band 2), CAL (calcite) and 
SUBSTR (substrate). 

Species Selected variables test AUC (± SD) threshold

T. glomerulata SSTavg, CHLmin (28.8%), DAmin 
(24%), CAL (19.9%), PARmax (6.7%)

0.874 (0.179) 0.063

SSTavg (33.8%), CHLmin (24.7%), 
SSTmin (21.3%), SSTmax (14.2%), 
CAL (5.9%)

DAavg (81.9%), PARavg (9.1%), CAL 
(4.9%), CHLmin (4.2%), 
SSTavg (0.5%)

Species Selected variables test AUC (± SD) threshold

SSTmin (22%), SSTmax (47.5%), 
CHLrng (12.4%), SUBSTR (10.4%), 
CHLmin (6.4%), B2avg (1.4%)

N. zanardinii CHLmax (54.1%), SUBSTR (42.3%), 
SSTavg (3.6%)

0.867 (0.058) 0.534

H. discoidea SSTmin (74.4%), SUBSTR (25.6%), 
CHLmax (0.5%)

0.953 (0.031) 0.402

b. Landsat-based models

T. glomerulata 0.976 (0.024) 0.026

N. zanardinii 0.965 (0.010) 0.17

H. discoidea 0.917 (0.095) 0.302

a. Bio-ORACLE models
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Figure 2. Maxent logistic model output for Nizamuddinia zanardinii (occurrence records are 
indicated as pink dots in the upper maps, black circles in the lower magnified area) based on 
Bio-ORACLE (upper left) en Landsat-based environmental data (upper right). 
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Figure 3. Suitability values in the 1 pixel (Bio-ORACLE) or two pixels (Landsat) wide 
coastal buffer plotted against UTM northing. The approximate locations of coastal locality 
names as shown on figure 1 are plotted below the axis to aid orientation. Note that the 
number of data points from the Landsat models is too high to be plotted as separate points 
to the naked eye; hence, many points may be plotted on top of each other on discrete levels 
(depending on model input layers). Therefore, relative point densities are plotted as a colored 
background layer as a visual interpretation aid. Points plotted in white areas represent rare 
outliers (i.e., although there may seem many to the naked eye, they represent a very small 
fraction of the total number of points in the plot). Vertical lines represent the Arabian Sea 
(left side) / Gulf of Oman (right side) boundary at Ra’s al Hadd. Horizontal lines indicate the 
lowest significant threshold value calculated by Maxent from which the continuous 
probability distribution could be converted to a binary (suitable/unsuitable) prediction.  
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The Landsat model for N. zanardinii shown in figure 2 clearly illustrated that 
on a fine-scale, habitat suitability values vary greatly between adjacent bays 
and even within areas with high overall suitability, important patches of low 
habitat suitability values are discerned along the coast. Figure 3 shows the 
same pattern where for a given high or low value in the Bio-ORACLE plot 
the corresponding Landsat pixels cover the whole range of suitability values.  

When translated to binary predictions (figure 4, with indicated 
threshold values plotted as horizontal lines in figure 3), previously known 
distributional patterns emerged more clearly for both environmental 
datasets, with N. zanardinii occurring only in the Arabian Sea, T. glomerulata 
mostly predicted in the Gulf of Oman and H. discoidea found on both sides 
of Ra’s al Hadd. Although N. zanardinii is known to be absent from the Gulf 
of Oman, 0.64% of the Gulf of Oman coastal buffer pixels was erroneously 
predicted to be suitable for N. zanardinii. Furthermore, figure 3 clearly 
showed that while predictions based on both environmental datasets were in 
good agreement for the Gulf of Oman, a consistently higher portion of the 
pixels were predicted suitable in the Arabian Sea by the Bio-ORACLE 
models when compared to the Landsat-based models for the same species.  

For the selected environmental variables, standard deviations of the 
environmental values encountered in the coastal buffers consistently 
indicated a higher variability in the marine environment of the Arabian Sea 
compared to the Gulf of Oman. This pattern was apparent from both 
Landsat-based and Bio-ORACLE variables (table 2). In 3 out of 9 Bio-
ORACLE variables where the variability seemed higher in the Gulf of 
Oman, the difference was not significant. The higher environmental 
variability in the Arabian Sea corresponded well with the relatively higher 
predictions in the Arabian Sea by the coarser Bio-ORACLE models, while 
lower environmental variability yielded models more in mutual agreement 
based on environmental datasets of different spatial resolutions.  

 

DISCUSSION 

EVALUATION OF LANDSAT-BASED SDM 
Recent years have seen a rising number of successful marine species 

distribution modeling efforts, facilitated by the increasing availability and 
ease of integration of regional and global environmental datasets. 
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Figure 4. Relative portions of suitable (present) and unsuitable (absent) pixels in the coastal 
buffers for each species predicted by the Bio-ORACLE (BO) and Landsat-based (LS) 
Maxent models for the Gulf of Oman and Arabian Sea. 
 
Most marine studies have used remote sensing or interpolation-based 
datasets with a resolution of several hundred meters to kilometers 
(Robinson et al., 2011; Tyberghein et al., 2011), while side-scan sonar and  
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Table 2. Standard deviations (SD) of environmental variables in a 1 pixel (Bio-ORACLE) or 
2 pixels (Landsat) wide coastal buffer for the Gulf of Oman and Arabian Sea. Regions with 
the highest variability are indicated in bold. Equivalent variables for both datasets are aligned. 
Asterisks indicate significant difference at the p=0.05 level. 

SD(Gulf) SD(ArabSea) SD(Gulf) SD(ArabSea)

SSTmin 0.414908 0.930975* 6.496189 8.518251*

SSTmax 0.709888 0.602955 7.407164 9.360719*

SSTavg 0.278297 0.4153* 6.179518 7.534023*

CHLmin 0.495206 3.801434* 4.81162 7.901196*

Chlmax - - 2.758753 8.102843*

Chlavg - - 3.520513 6.410257*

PARmax 1.365203 1.217916 - -

PARavg 1.125351 0.948214 - -

DAmin 0.027374 0.085621* - -

DAavg 0.02766 0.074294* 12.73504 41.77098*

CAL 0.000403 0.009434* 0.38418 0.108657*

Bio-ORACLE Landsat 7 ETM+

 
 
interpolation of in situ measurements has enabled SDM on a sub-100m 
(Degraer et al., 2008) or sub-10m resolution (Monk et al., 2010; although in 
that case confined to less than 50 km²). 

This study represents the first modeling effort in which sub-100m 
resolution spaceborne remote sensing-based marine habitat variables are 
shown to perform well for regional distribution modeling, especially 
compared to cropped global datasets at 9km resolution in terms of AUC 
values. However, it is important to note that the equal performance of 
models based on different resolutions means that equally relevant but 
different processes are captured by the environmental data, rather than that 
similar maps and variable contributions might be expected from these 
models. This is due to the finer resolution of Landsat data, allowing small 
bays to be mapped in which very local differences in chlorophyll and SST 
may be caused by gradients in depth and exposure to waves (mixing) and 
upwelling, affecting habitat suitability within bays. These are often factors 
governing local patchiness of benthic habitats, as opposed to coarse-scale 
gradients in coastal temperature and chlorophyll determining the spread of 
communities along the entire coastline. Furthermore, the resolution of 
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Landsat also enables the meaningful inclusion of a substrate layer. Substrate 
is known to play a key role in structuring habitat patchiness but almost 
always acts on a sub-km level. In the Landsat models for N. zanardinii and 
H. discoidea, substrate is the second highest contributing variable (table 1), 
favoring hard and soft substrates, respectively, in agreement with field 
observations. While not dominating overall variable contributions, substrate 
patchiness is reflected in fluctuating suitability values in otherwise 
macroecologically suitable areas, as demonstrated in figure 2; see also the 
high-resolution mapping study of this area by Pauly et al. (2011; Chapter 6 
in this thesis). However, we also suspect that the categorical variable 
substrate was partly responsible for the erroneous suitable classification of 
the few coastal pixels in the Gulf coast of Oman for N. zanardinii (although 
a large portion of these erroneous suitability values are found in shallow and 
intertidal inland bays near Ra's al Hadd, where deviant environmental values 
might also have been recorded for the other variables). Additionally, very 
turbid waters such as encountered in eddies in the Arabian Sea also led to 
misclassifications in the substrate layer and hence erroneous suitability in 
models where substrate plays an important role. On the other hand, 
substrate contributed only 10% (4th out of 6 selected variables; table 1) to 
the Landsat model for T. glomerulata, a species known to occur on both 
substrates.  

The above outlined differences between coarse-scale macroecological 
models and fine-scale habitat models are best illustrated by the models for 
N. zanardinii, an indicator species of Arabian Sea upwelling communities. 
While the Bio-ORACLE-based suitability map shows the sharp transition 
between the Arabian Sea and Gulf of Oman, with SSTavg as the most 
contributing variable (generally in agreement with Schils & Wilson (2006)), 
the Landsat-based suitability map shows a refined distribution pinpointing 
the exact boundaries of species turnover, governed mostly by nutrient 
availability (CHL, or exposure to upwelling) and substrate. 
 

TECHNICAL ISSUES RELATING TO LANDSAT-BASED SDM 
In order to compile a regional set of Landsat-derived marine habitat 
variables, some issues relating to data availability and computing resources 
were identified. First, several scenes per combination of path/row tile and 
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season should ideally be combined to reduce the influence of daily 
variability between path/row tiles and to minimize the chance of capturing 
extreme events. The availability of only one scene per combination of 
path/row tile and season introduced some visible effects such as deviant 
environmental values and the resulting habitat suitability in eddies (see for 
instance figure 2), clouds (from edge pixels that were not included in the 
cloud mask) and abrupt between-scene variations (both mostly visible in 
appendix 2 and 3). Some steps were taken to mitigate these effects as much 
as possible: (1) instead of using raw seasonal environmental values such as 
SST or chlorophyll index, derived layers such as minimum, maximum, mean 
and range based on the combined winter and summer mosaics were used as 
input in the models and (2) mosaics were created using an averaging 
algorithm for overlapping scenes, enabling a smoother transition between 
scenes. Between-scene variations due to different acquisition dates are 
mostly expected to occur in the Arabian Sea, as this area experiences a 
generally more variable environment during the summer monsoon. 
However, although the intensity of patterns might fluctuate widely from 
scene to scene, their relative effects are still discernible; see for instance the 
resulting continuing patterns across scenes of increased suitability offshore, 
located west of Masirah Island and Salalah in appendices 2 and 3, 
respectively, albeit in different relative values.  

A second factor hampering easy integration of Landsat mosaics is the 
UTM projection in which scenes are delivered. The ten selected path/row 
tiles are located in the same UTM zone, which allows direct mosaicing. 
Inclusion of different zones would require the construction of a mosaic for 
each zone separately, followed by a reprojection of one mosaic to the other 
using tiepoints, greatly increasing processing time. Overall, the derivation of 
useful environmental layers for distribution modeling from Landsat imagery 
remains a time and resource-intensive process compared to the use of 
cropped global environmental datasets. Therefore, this paper represents a 
first step towards increasing the ease of integrating marine Landsat-based 
environmental information in regional modeling efforts. 

It should be noted that the use of sub-100 m resolution data in 
general and a substrate layer in particular for distribution modeling 
necessitates biotic data that are georeferenced accurately to within half a 
pixel (in this case, 30m); a level of accuracy which is usually only achievable 
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with a surface-mounted GPS during sampling, rather than through post-hoc 
georeferencing of biotic occurrence records from collections.  

 
INFLUENCE OF SCALE ON MARINE SDM 
Most studies investigating the influences of scale (usually by varying both 
resolution and extent) in the terrestrial realm have focused on the 
differences in model predictions for lowland versus mountainous habitats 
(Guisan et al., 2007). These studies generally reveal divergent results 
between fine-scale and coarse-scale models for the mountainous areas, 
characterized by a higher habitat variability, while showing similar results for 
lowland areas. More specifically, overpredictions of coarse-scale models 
applied mostly to mountainous species, while lowland species where 
similarly modeled (Trivedi et al., 2008). Especially the comparison of 
genuine high-resolution remote sensing datasets with coarse-scale climatic 
data has revealed significant differences between fine-scale and coarse-scale 
models. This opposes studies starting from one environmental dataset with 
subsequent up- or downscaling to investigate scale influences on 
distribution modeling (Trivedi et al., 2008). The present study, enabled by 
purpose-built sub-100m resolution habitat variables based on Landsat 
mosaics covering a 2000km coastal stretch, is the first marine application to 
demonstrate important effects of resolution on modeling efforts, caused by 
differences in habitat variability. Both Bio-ORACLE and Landsat data from 
the coastal buffer clearly confirmed that the Arabian Sea is characterized by 
a higher environmental variability, as described earlier by Wilson (2000). It 
emerged that, while predictions are similar for coarse and fine resolution in 
the less variable Gulf of Oman, the coarse resolution environmental data 
caused a general overprediction of all species in this study for the more 
variable Arabian Sea, regardless of the species' known preferred occurrence 
in the Gulf of Oman, the Arabian Sea or both. The effect of overprediction 
by coarse-scale macroecological niche models in highly variable 
environments appears to be similar to observations in terrestrial studies 
(Trivedi et al., 2008). In contrast, however, species characteristic to either 
less or more variable marine habitats (or both) seem to be affected in the 
same way by overprediction in variable habitats by coarse resolution 
modeling. The most likely cause for this difference is that environmental 
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data in marine coarse-scale models are not consistently biased towards 
higher or lower values. Data aggregation in coarse grid cells over 
mountainous terrain tends to exaggerate lowland environments due to 
projected surface areas, hence yielding better results for lowland species 
models. This is in contrast with environmental data of marine systems 
where data layers represent surface conditions or integrated water column 
data. With variability found only in one dimension, data aggregation into 
coarse pixels doesn't systematically favor certain values and all species are 
equally affected in modeling efforts. 

Partly due to a lack of similar regional marine modeling studies 
investigating scale effects, it is yet unknown if these effects are a ubiquitous 
trend. However, care should be taken to select appropriate modeling scales 
when using distribution modeling in the marine environment, especially 
with studies aimed at guiding fieldwork, where models trained on a certain 
environment and projected on a more variable environment may result in 
overprediction. With Landsat imagery now more widely and freely available, 
we encourage further multi-scale modeling research. 
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SUPPLEMENTARY MATERIAL 

APPENDIX 1. 
TIR digital numbers were converted to surface temperature in three steps (Chander, 
2009): first, at-satellite radiances (Lsat) were calculated using the standard NASA 
equation correcting for known calibration constants:  
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Second, surface-leaving radiances (LT) were inferred by correcting (1) for 
atmospheric interference: 
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where the emissivity (ε) for water was assumed to be constant at 0.98. The up- and 
downwelling radiance (Lu and Ld, respectively) and atmospheric transmission (τ) 
were calculated using NCEP atmospheric profiles and the MODTRAN radiative 
transfer code implemented in the online Atmospheric Correction Parametre 
Calculator freely available at http://atmcorr.gsfc.nasa.gov/. Next, sea surface 
temperature T (°C) was computed using the calibration coefficients and conversion 
formula given by NASA: 
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where K2 = 1282.71 and K1 = 666.09. 
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APPENDIX 2. 

 

 
Maxent logistic model output for Tolypiocladia glomerulata based on Bio-ORACLE 
(lower) en Landsat-based environmental data (upper). 
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APPENDIX 3. 

 

 
Maxent logistic model output for Halimeda discoidea based on Bio-ORACLE (upper) 
en Landsat-based environmental data (lower). 
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ABSTRACT 

PROBA/CHRIS is one of the first satellite sensors to offer both high 
spatial and spectral resolutions. We explored the potential of this sensor to 
map the dynamics of seaweed and coral cover in an area influenced by 
seasonal upwelling in the Arabian Sea. Quantitative field assessments 
coincided with image acquisitions. After removal of sensor noise and 
atmospheric effects, maximum likelihood supervised classification yielded a 
tau accuracy of 64.09 for the summer monsoon dataset. Clearer waters and a 
lower spatial heterogeneity in the winter monsoon dataset resulted in a tau 
accuracy of 71.45. Post-classification comparison and vegetation indices 
illustrated the conspicuous turnover from dense macroalgal stands covering 
nearly all coral communities during summer to bare rock or turf 
communities during winter, with coral becoming the predominant bottom 
type. These results were further analyzed using a novel maximum entropy 
sub-pixel approach and were shown to consistently outperform results from 
Landsat 7 ETM+ imagery. 
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INTRODUCTION 

Competition between hermatypic corals and benthic macroalgae is widely 
believed to be a key process determining the composition and structural 
changes of coral reefs (McCook et al., 2001). On tropical coral reefs, a suite 
of interaction mechanisms between coral and algae can lead to a sharp 
decline in healthy coral cover when algal production exceeds a critical level, 
induced by (human-caused) stress, starting a positive feedback loop (Mumby 
et al., 2007; Smith et al. 2006). Such interactions and eventually resulting 
phase shifts have mostly been studied in view of natural or human-induced 
disturbances, but ephemeral or seasonally recurring macroalgal dominances 
on corals have remained largely understudied until recent years (Vroom et 
al., 2006; Haas et al., 2009). However, the study of such naturally changing 
but healthy systems is vital to understand baseline processes affecting 
tropical and subtropical marine benthic communities and to assess the 
effectiveness of monitoring techniques to capture such processes.  

This study focuses on the seasonal dynamics of benthic communities 
along the Arabian Sea coast of the Dhofar region (southern Oman), in an 
area seasonally influenced by one of the world’s five strongest upwelling 
systems. Although very limited reef growth is found in this area, coral 
communities typically account for on average 20% of the benthic cover, 
locally up to 99% (Coles, 1996). During the southwest monsoon in July-
August, warm oligotrophic surface waters are displaced by cold nutrient-rich 
waters, leading to a boost in algal production and diversity with up to 100% 
coverage in the intertidal and shallow subtidal while coral communities 
become overshadowed or overgrown by seaweed canopies (Ormond & 
Banaimoon, 1994; Schils & Coppejans, 2003). One of the most productive 
seaweeds during summer monsoon is the regional endemic meadow-
forming brown alga Nizamuddinia zanardinii (Schiffner) P.C. Silva. With 
temperatures increasing and nutrient levels dropping sharply by the end of 
September, the algae die back and accumulate in shallow decomposing 
packs in sheltered bays. Together with Nizamuddinia standing stock, these 
decomposing algae serve as major shelter and food sources for the Green 
turtle (Chelonia mydas) population in the region (Ferreira et al., 2006). During 
the rest of the year, the intertidal and shallow subtidal are devoid of algal 
growth or support only turf and small macroalgal assemblages. 
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Seasonal monitoring efforts are traditionally carried out using in situ 
quantitative assessments of fixed transects, which are very time and resource 
consuming for larger and remote areas. By contrast, satellite remote sensing 
has proven a valuable tool in repeatedly mapping coastal communities on a 
larger scale and over a wider range of variables than feasible by field 
research only. Although spaceborne remote sensing has been successfully 
used for monitoring coral reefs and seagrass beds in the last decade, 
macroalgae have often been overlooked or lumped into a single benthic 
class in many of these studies. This is mostly due to a lack of the 
combination of high spatial and spectral discriminating power of current 
satellite sensors, needed to cope with typically heterogeneous algae-
dominated assemblages resulting in spectral mixing. For instance, according 
to Hochberg & Atkinson (2003), narrowband multispectral (hereafter called 
superspectral) spaceborne sensors are better suited to discern coral from 
algae than multispectral satellite sensors, even if the latter can have much 
finer spatial resolutions. 

Launched in 2001, the Compact High-Resolution Imaging 
Spectrometer (CHRIS) onboard the PRoject for On-Board Autonomy 
(PROBA) satellite offers up to 63 programmable bands of 6 to 33 nm width 
at about 17 or 34m spatial resolution (depending on the band 
configuration), with a 14 km swath. This sensor is therefore thought to be 
better suited for monitoring coral-algal dynamics than commonly used 
satellites. 

The aim of this study was to map seasonal coral-algal dynamics in the 
Arabian Sea, assessing the potential of the PROBA/CHRIS sensor to 
discern coral and several benthic macroalgal bottom types by means of 
supervised classification, and results were compared to those from the 
multispectral high resolution Landsat 7 ETM+ sensor. Additionally, several 
spectral indices were used to visualize seasonal differences in intertidal and 
surfacing algal growth. Lastly, a maximum entropy approach was introduced 
to investigate sub-pixel class probabilities in order to produce abundance 
maps based on limited input data. 
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MATERIALS AND METHODS 

STUDY AREA AND FIELD WORK 
The study area comprised a series of rocky bays stretching out 14 km east of 
Mirbat, a town about 64 km east of Salalah, Dhofar province, Sultanate of 
Oman (figure 1). Four of these bays have been extensively studied using 
GPS-located transects and quadrats on a near-seasonal basis from 2003 until 
2006. Field work for this study coincided with PROBA/CHRIS acquisitions 
in late September 2005 and late March 2006, representing summer and 
winter monsoon conditions, respectively. During each campaign, three 0.25 
m² quadrats spaced at least 30 m apart were exhaustively assessed for algal 
and coral cover percentages and fresh weights of macroalgae on the species 
level at three different depths (intertidal, ±5 m and ±10 m) in each of the 4 
bays. Additionally, coral and algal cover percentages were assessed on the 
genus level along three 15 m long transects perpendicular to the coast at ±5 
m depth, separated by at least 30 m, in each of the 4 bays. Finally, general 
community-level cover percentages for the four entire study bays were 
obtained using GPS-tracked video surveys of on average 2.5 km for which 
still frames were analyzed each 30 seconds (roughly 15-30 m). Ground 
control points (GCPs) for georeferencing were acquired by tracking rocky 
shorelines of the study bays. GPS locations were logged using a buoy-
mounted Garmin GPSMAP 76CSx, ensuring the continuous reception of at 
least 6 satellite signals to keep the accuracy below half a pixel on 
PROBA/CHRIS imagery. 
 
REMOTE SENSING DATASETS 

Two cloud-free PROBA/CHRIS datasets were acquired on 27 September 
2005 and 26 March 2006 at mid tide to low tide in mode 2 (water bands) 
configuration. These datasets consisted of 18 bands on average 11.3 nm 
wide in the VNIR spectrum with a ground sampling distance (GSD) of 17 
m at 556 km altitude. Only nadir imagery was used for analyses. 

Additionally, two cloud-free Landsat 7 ETM+ SLC-on scenes from 
19 October 2000 (summer monsoon) and 3 April 2003 (winter monsoon) 
were downloaded from the USGS EROS archive, consisting of 4 bands on 
average 82.2 nm wide in the VNIR and  two additional on average 250 nm 
wide bands in the SWIR spectrum with a GSD of 30 m.  
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Figure 1. Situation of the study area with indication of the 4 study bays and the 
PROBA/CHRIS region of interest (ROI; red box). 
 
The image acquisition time of the Landsat scenes coincided with mid to 
high tide. 
 
IMAGE PREPROCESSING 

PROBA/CHRIS 
Given the experimental character of the superspectral push-broom CHRIS 
sensor, raw imagery suffered heavily from noise in the form of drop-out 
pixels in some image rows and vertical striping across all bands. Because 
these effects are enhanced in latter processing stages, the imagery was 
corrected for these anomalies in a first step using an algorithm described in 
detail by Gomez-Chova et al. (2008). Second, top-of-atmosphere (TOA) 
radiance values expressed in 16-bit digital numbers (DN) were converted to 
surface reflectance images using an automated image-based algorithm 
described by Guanter et al. (2005) & Guanter (2006). Noise removal and 
atmospheric correction were carried out using the CHRIS/Proba tools at 
default settings implemented in BEAM VISAT 4.7.1 (Brockmann Consult). 
Due to the atmospheric correction, saturated pixels over extensive white 
desert sand areas were masked out, which had no effect on later processing 
steps in the marine environment. However, it appeared that over 95% of the 
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sea area had zero reflectance values in band 1 of both summer and winter 
datasets, which were therefore excluded from further processing. Imagery 
was subsequently cropped to the coastline along the entire swath and 
exported to ITC ILWIS 3.7 for further processing. Georeferencing was 
accomplished using 23 ground control points along the entire coastline and 
a first-order transformation, resulting in a RMS error of 0.29 pixels for the 
summer monsoon dataset and 0.38 pixels for the winter dataset at 17 m and 
19 m GSD, respectively (resulting from different acquisition altitudes). 
Finally, a landmask was applied based on NIR thresholding and manual 
editing. An image-based bathymetric correction of these superspectral 
datasets was attempted based on Lyzenga’s method (Tassan, 1996), but was 
abandoned because of erroneous results. 
 
Landsat 7 ETM+ 
Landsat scenes from the USGS EROS archive were downloaded at Level 
1T (terrain corrected), meaning systematic and radiometric accuracy is 
derived from ground control points and DEM incorporation. The imagery 
was first converted from 8-bit DN to radiance values following Chander et 
al. (2009). Next, atmospheric correction was done using the cos (t) model 
developed by Chavez (1996), accounting for haze removal by dark object 
subtraction while compensating for variations in solar output according to 
the acquisition time, and estimating atmospheric absorption and Rayleigh 
scattering based on the cosine of the solar zenith angle. This was 
accomplished using the ATMOSC module in Clark Labs IDRISI 15.0 
(Andes). Subsequently, surface reflectance images were cropped to the study 
area and exported to ITC ILWIS 3.7 for further processing. Attempts to 
pansharpen the multispectral bands using the 15 m resolution panspectral 
band were abandoned because the stochastic noise in water areas in the 
panchromatic band degraded the image quality of pansharpened bands. 
Since errors in the Level 1T georeferencing were often significant and 
scenes did not accurately match GCPs measured in the field, Landsat 
imagery was master-slave referenced to the respective PROBA/CHRIS 
datasets using the respective GCPs as tie-points, resulting in RMS errors of 
0.31 and 0.27 for summer and winter scenes. Lastly, a landmask was applied 
based on SWIR thresholding. 
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IMAGE PROCESSING 

Supervised bottom-type classification 
Based on the quantitative sampling results, a hierarchical classification 
scheme was adopted for supervised classification of PROBA/CHRIS and 
Landsat 7 ETM+ datasets (table 1), in which pixels were assigned the class 
of the predominant bottom type in terms of percent cover. GPS-located 
quadrats and transects for quantitative analyses and the GPS-tracked video 
transects were digitized to a point file from which contiguous training pixels 
were added in a flood polygon within an empirical spectral tolerance. Half 
of the resulting pixels were used for training, while the other half was used 
as a post-classification test set. A specific deep-water mask was not applied; 
instead, deep water was included as a bottom type in the classification based 
on arbitrary training sites located at least 1 km off-shore. Additionally, since 
breaking waves are spectrally characterized by high reflectance values but 
could not be removed in preprocessing, whitecaps were included as a 
bottom type in the classification. To account for water column effects, 
bottom types that were encountered across the entire field study depth 
range were assigned to three different classes to be merged post-
classification. Additionally, NIR band information was not included for 
classification of uniquely subtidal bottom types. 

 
Table 1. General bottom type classification scheme.  

Bare substrate Intertidal sand S1/W1
Subtidal sand S1/W2
Intertidal bare rock W3
Subtidal bare rock W3

Biotic communities
- algae-dominated Subtidal rocks with turf W4

Intertidal red algae S4
Shallow brown algae S5
Intertidal green algae S6
Subtidal mixed algal stands S7/W5
Accumulated dead algae S8

- coral-dominated Coral S9/W6
Whitecaps S2
Deep water S3/W7
(S) = only used in summer monsoon imagery; (W) = only used in winter monsoon imagery.
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Following Mumby & Edwards (2002), a maximum likelihood 
classifier was chosen as the most appropriate algorithm, which was 
implemented without assigning a threshold value. For an objective measure 
of classification accuracy incorporating the number of misclassifications, the 
tau coefficient was calculated besides the overall accuracy (Mumby & 
Edwards, 2002). The bottom type maps of different seasons based on 
CHRIS bands were cross-combined to produce a change map. 

To assess whether different classification results between Landsat 7 
ETM+ and PROBA/CHRIS datasets were mainly attributable to the 
difference in spectral or spatial resolution, the classification was also 
performed on simulated Landsat bands based on a weighted-averaging 
aggregation of CHRIS bands following Jarecke et al. (2001). 
 
Spectral indices 
Two kinds of spectral index maps were generated to explore intertidal and 
surfacing vegetation density based on both PROBA/CHRIS and Landsat 
datasets across seasons.  
 

 
Figure 2. Spectral signatures of the summer and winter bottom types based on 
PROBA/CHRIS data. Dotted lines represent abiotic bottom types; dashed lines represent 
algal bottom types and full lines represent coral. Spectra for exclusively subtidal bottom 
types exclude NIR bands. The approximate spectral coverage of Landsat 7 ETM+ bands is 
indicated by box outlines. 
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For the NDVI, the most widely applied index, CHRIS bands 11 and 16 
were chosen for red and NIR reflectance, respectively, based on the 
difference in the spectral response for intertidal vegetation (figure 2.). 
Second, the floating algae index (FAI), recently developed on MODIS 
datasets and applied to Landsat scenes by Hu (2009), was used to detect 
both surfacing and intertidal algae while eliminating anomalous values over 
open water caused by illumination effects as often seen in the NDVI. The 
FAI is defined by 
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where R stands for the Rayleigh-corrected reflectance images. To 
approximate the MODIS spectral response, Landsat band 5 and CHRIS 
band 18 (1019 nm) were designated for SWIR. Furthermore, CHRIS bands 
10 and 17 were used to represent R and NIR reflectances, respectively. 
Correlation analyses were performed for both FAI and NDVI with respect 
to total macroalgal fresh weight at the 9 intertidal quadrats during summer 
monsoon, tested for significance with a non-directional t-test. 
 
Maxent sub-pixel modeling 
To investigate the feasibility of modeling the extent of coral communities 
covered by algae, resulting in mixed pixel spectra often dominated by algal 
characteristics, a maximum entropy approach was taken to model separate 
pixel probabilities. The Maxent algorithm as implemented by Philips & 
Dudik (2008) was developed for species’ distribution modeling based on 
known occurrence records (presence-only) and environmental raster data, 
and although hitherto not reported as a sub-pixel classifier to model bottom 
type probabilities across an image, the underlying reasoning is identical. The 
maximum entropy algorithm is a general-purpose machine-learning method 
to infer a probability distribution from incomplete information. This 
probability distribution is most uniformly spread out (showing the highest 
degree of entropy) given the constraints represented by the spectral data 
observed at the given training pixels. The resulting probability distribution is 
then translated from spectral space into geographical space. 
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Figure 3. ML classification results based on PROBA/CHRIS data for the summer and 
winter monsoon. The area surrounded by the red boxes is shown magnified to the right. A 
change map is shown to the left. 
 
In the so-called logistic format, the output map shows pixel values ranging 
from 0 to 1, indicating bottom type probability. Five replicate Maxent runs 
with subsampling of a random 20% of the data for testing were carried out 
for the coral and shallow brown algae bottom types based on the 
PROBA/CHRIS summer monsoon dataset. Accuracy was assessed using 
the threshold-independent area under the receiver operating characteristics 
(ROC) curve (AUC). Ranging from 0 to 1, any value above 0.5 means better 
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prediction than random. Additionally, correlation analyses were performed 
for probability values with respect to fresh weight at the subtidal quadrats 
during summer monsoon, tested for significance with a non-directional t-
test. 
 

RESULTS AND DISCUSSION 

SUPERVISED BOTTOM-TYPE CLASSIFICATION 

Overall, the image classification based on PROBA/CHRIS datasets 
performed well (figure 3), especially for the winter monsoon where case I 
waters facilitated the distinction between the more homogenous bottom 
types (tau = 71.45; table 2a). The summer monsoon classification suffered 
more from turbid waters. Moreover, the bottom types coral, brown algae 
and diverse seaweeds were prone to misclassifications because of mixed 
assemblages and spectral resemblance. However, the overall classification 
accuracy was still reasonable (tau = 64.09; table 2b). The difference between 
the latter two classifications was very significant (Z = 3.24), and was mainly 
the result of 101 Ha of dense summer seaweed communities changing into 
bare substrates and another 101 Ha being reduced to turf communities, 
while an additional 79 Ha of coral communities became apparent due to the 
die-off from overshadowing seaweeds from summer to winter. Thus, 33% 
of the bottom types excluding deep water and whitecaps suffered either a 
complete loss of seaweeds, a reduction to turf communities or a dominance 
shift towards coral communities from summer to winter. Also, it was 
apparent that an extended part of the seafloor could be mapped in the 
winter monsoon dataset due to clearer waters (figure 3). 

By contrast, image classifications based on Landsat 7 ETM+ data 
(figure 4) performed poor for the given classification scheme for both 
summer (tau = 21.51) and winter (tau = 33.12) datasets. While not surprising 
for intertidal bottom types given the mid to high tidal conditions, this 
resulted foremost from an overestimation of coral where this spectrum was 
close to deep water, brown algae and diverse subtidal seaweed stands (figure 
2). This overestimation of coral and underestimation of algae by ETM+ was 
in line with the results reported by Hochberg & Atkinson (2003). 

The image classification based on simulated Landsat bands for the 
winter monsoon (tau = 47.58) differed remarkably less from the 
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PROBA/CHRIS winter classification than the original Landsat winter 
classification did (figure 4). The higher spatial resolution in the simulated 
Landsat bands likely allowed for a better classification result than the 
original Landsat bands could yield with the same multispectral resolution. 
This was in contrast with the summer monsoon classifications, where the 
simulated Landsat bands performed equally low (tau = 28.34) compared to 
the CHRIS bands as the original Landsat bands (figure 4). This was 
probably because the higher spatial resolution of simulated Landsat bands 
was not sufficient to cope with spectral information from mixed pixels 
consisting of coral and algal spectra in the broad multispectral bands.  

 
Table 2a. ML classification error matrix based on PROBA/CHRIS data for the winter 
monsoon. 
 

 
 
Table 2b. ML classification error matrix based on PROBA/CHRIS data for the summer 
monsoon. 
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Figure 4. ML classification results based on Landsat 7 ETM+ data (upper) and simulated 
ETM+ bands based on weighted-average aggregation of PROBA/CHRIS bands (lower). 
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These results supported the idea that a higher spatial resolution is mostly 
beneficial in clear waters, and illustrated the role of environmental 
conditions in the need of a high spectral resolution to discern several algal 
and coral bottom types when dealing with a high habitat complexity 
(Mumby & Edwards, 2002; Capolsini et al., 2003). 

 
SPECTRAL INDEX MAPS 

Although the NDVI map for the summer monsoon based on Landsat 
imagery showed some positive values offshore, there were only slightly 
positive values apparent for the intertidal pixels (figure 5a). This was 
probably caused by the mid to high tide in combination with the spatial 
resolution of 30 m, which greatly affected the NDVI signal of the few 
emerged algal communities. As a result, there was a very weak but non-
significant overall correlation with intertidal summer biomass (R² = 0.333, p 
= 0.10, N = 9; figure 5a). Elevated offshore values were either due to high 
surface water chlorophyll content or illumination effects caused by waves. 
The Landsat winter NDVI showed no positive values at all (figure 5c). 
While also showing strong offshore effects characterized by a clear wave 
pattern, the PROBA/CHRIS-based NDVI map for the summer clearly 
indicated the presence of intertidal seaweeds, strongly correlating with 
intertidal biomass (R² = 0.927, p < 0.01, N = 9; figure 5a). The winter 
monsoon NDVI based on CHRIS datasets showed only very slightly 
elevated values along the coast, while suffering heavily from offshore effects 
caused by deviating illuminations (figure 5c). 

In contrast with the summer monsoon NDVI based on Landsat 
imagery, the Landsat FAI clearly detected the presence of intertidal 
seaweeds resulting in a very good correlation with intertidal summer 
biomass (R² = 0.921, p < 0.01, N = 9; figure 5b), regardless of the mid to 
high tide. This could probably be attributed to the higher sensitivity of the 
SWIR band to vegetation, while the ability to eliminate illumination effects 
would enable the detection of very shallow and surfacing seaweeds in the 
intertidal zone. The Landsat winter FAI showed no indication of intertidal 
seaweeds (figure 5c). Since the FAI showed no elevated values offshore, it 
could be assumed that increased NDVI values in both CHRIS- and ETM+ 
based maps were caused by wave illumination effects rather than floating 
algae or blooms.  
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Figure 5a. NDVI maps based on Landsat 7 ETM+ data (upper) and PROBA/CHRIS data 
(lower) for the summer monsoon. The graph below shows the correlation between spectral 
index values and intertidal biomass. Squares represent ETM+; diamonds represent CHRIS 
data. 
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Figure 5b. FAI maps based on Landsat 7 ETM+ data (upper) and PROBA/CHRIS data 
(lower) for the summer monsoon. The graph below shows the correlation between spectral 
index values and intertidal biomass. Squares represent ETM+; diamonds represent CHRIS 
data. 
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Figure 5b. NDVI (left) and FAI (right) maps based on Landsat 7 ETM+ data (upper) and 
PROBA/CHRIS data (lower) for the winter monsoon. 
 
The correlation of the CHRIS-based FAI with intertidal biomass was 
extremely low and non-significant (R2 = 0.003, p = 0.89, N = 9; figure 5b), 
demonstrating the inability of CHRIS band 18 to substitute for SWIR 
wavelengths. The few elevated values along the coast were due to 
illumination effects caused by breaking waves. The winter FAI based on 
CHRIS bands lacked signal (figure 5c). 
 
MAXENT SUB-PIXEL MODELING 

The Maxent model for the brown algal bottom type showed high 
probabilities along the entire coastline of the study area, mainly situated in 
the shallow subtidal areas, with near-zero probabilities for sandy areas and 
intertidal pixels (figure 6). This closely matched the brown algal areas as 
delineated by the CHRIS-based maximum likelihood classification. 
Consequently, the model showed an AUC for the test data of 0.976 (SD ± 
0.023). Correlation analyses between predicted probability and fresh weight 
data generally supported the strong model performance (figure 6), with a 
linear relation (R² = 0.949, p < 0.01, N = 17) for all the data points except 
the four highest biomass values. This was probably because the biomass 
values also correlated with cover percent, except for the highest biomass 
values where cover is 100% but biomass can continue to increase by growth 
towards the surface. Brown algae in the area have been observed to reach 
the surface from 5 m depth. Based on the observed relation, a partly 
categorical biomass map could be calculated in the framework of resource 
conservation for the Green turtle. 
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Figure 6. Potential distribution map of the brown algal and coral bottom types produced by 
Maxent. Values between 0 and 1 represent probability of occurrence. Diamonds represent 
coral; squares represent brown seaweeds. Filled squares show values that have not been 
incorporated in correlation analyses. 
 
The Maxent model for coral communities also showed probabilities along 
the entire coastline of the study area except for sandy areas. Generally, the 
suitable pixels were located in the deeper subtidal and showed overall lower 
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probabilities, not exceeding 0.5 (figure 6). However, the model had strong 
support, with an AUC for the test data of 0.988 (SD ± 0.007) and a strong 
linear correlation (R² = 0.925, p < 0.01, N = 12) between predicted 
probabilities and coral cover (figure 6). This was a good indication that coral 
communities covered a far greater area than obvious from the maximum 
likelihood classification and were for the greater part overshadowed or 
overgrown by seaweeds during summer monsoon, which probably caused 
the lower predicted probabilities. Thus, when these probability maps would 
be combined in a post-modeling classification hardening operation, the 
outcome would mostly favor brown seaweeds, similar to the maximum 
likelihood classification outcome. 

 

CONCLUSION 

The recurring presence of two different benthic communities in different 
water column properties in one place over the course of a year offered a 
unique opportunity to pinpoint the difficulties of high resolution satellite 
monitoring of algae on coral reefs. It appeared that a broadband 
multispectral sensor such as Landsat 7 ETM+ was only able to perform well 
for clear waters and low habitat complexity situations. However, the 
availability of a SWIR band was beneficial to neutralize illumination effects 
in the detection of intertidal, surfacing and floating algae. A narrowband 
sensor such as PROBA/CHRIS outperformed ETM+ for benthic bottom 
type classifications across environmental conditions, showing an extensive 
seasonal turnover between coral and macroalgal dominance in the study 
area. This demonstrated the need for development of high resolution 
superspectral sensors to monitor algal dynamics on coral reefs. Additionally, 
a recently developed Maxent implementation was successfully used to 
calculate sub-pixel bottom type probabilities from the superspectral 
information. 
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ABSTRACT 

With ecosystem services of  intertidal habitats under rising pressure of  
human disturbance and climate change, monitoring habitat diversity is 
increasingly required. However, field-based surveys are time and resource-
intensive and often do not provide spatially explicit information. While 
airborne (multi-spectral) photography and LIDAR (Laser Imaging Detecting 
And Ranging) offer an efficient, very high resolution and high-quality 
solution, the costs for skilled crew and equipment often preclude their use 
in remote areas, for small reserves and in developing countries. We present a 
simple yet robust, low-cost, low-altitude aerial photography solution using a 
kite and off-the-shelf  camera equipment, resulting in photos covering the 
near-infrared part of  the spectrum for vegetation monitoring. Photos can be 
mosaiced to generate 3D models, orthophotomosaics, vegetation indices 
and supervised classifications using low-cost computer vision and remote 
sensing software. We demonstrate the utility of  kite aerial photography for 
intertidal monitoring in a case study in Northern France and discuss 
strengths and weaknesses of  kite aerial photography. 
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INTRODUCTION 

Rocky intertidal coasts offer important habitats supporting biodiversity by 
providing food and shelter. However, these habitats have been observed to 
decline globally over the past decades, affecting the ecosystem services that 
they provide (Ambrose & Smith, 2004). Links to human disturbances such 
as collecting, trampling and turning of  rocks have emerged, and these 
effects may be worsened by climate change in the coming decades. Many 
countries now require monitoring schemes for these vulnerable habitats 
(Chust et al., 2008). Changes to benthic communities have often been 
recorded qualitatively using field surveys in the past. However, inconsistent 
timing, detail and extent of  surveys have hampered establishment of  a 
baseline map and quantitative spatially explicit change detections (Alexander, 
2008).  

Advanced technologies such as remote sensing have been shown to 
lower the cost in monitoring schemes and increase mapping accuracy 
significantly (Lengyel et al., 2008). However, spatial resolution of  
spaceborne imagery precludes capturing the typically high intertidal rocky 
habitat variability. By contrast, aerial color or multispectral photography or 
airborne LIDAR have been shown to be effective in intertidal mapping 
efforts (Chust et al., 2008). Unfortunately, since many factors such as 
weather and remoteness are involved, the elevated costs for an aircraft 
together with highly trained staff  and special camera equipment often rule 
out regular monitoring campaigns. Recent years have seen the development 
of  low-cost alternatives, such as the use of  small unmanned aerial vehicles 
(UAV; see Laliberte et al. (2010), although the cost for a professional UAV 
system still amounts to approximately $60,000) or tethered low-altitude 
balloon (Planer-Friedrich et al., 2007), helikite (Verhoeven et al., 2009) or 
kite aerial photography using consumer-grade cameras. Additionally, recent 
advances in computing power and software availability have enabled low-
cost processing of  consumer-grade photos, including advanced 
classifications algorithms and image-based 3D reconstruction. 

From these systems, kites provide arguably the cheapest and most 
simple yet robust solution. Kite aerial photography (KAP) has been around 
since 1887 (Archibald, 1897), but was only much later used in mapping and 
monitoring studies in the coastal (Scoffin, 1982) and the terrestrial 
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environment. Since, applications have covered archaeology (Dvorak & 
Dvorak, 1998), geomorphology (Marzolff  & Poesen, 2009), agriculture 
(Oberthur et al., 2007) and vegetation monitoring (Wundram & Löffler, 
2008). As several of  these applications require patterns in vegetation health 
to be detected, imaging the near-infrared (NIR) part of  the spectrum 
became essential to discern different vegetation types and stress factors 
(Lebourgeois et al., 2008). CCD and CMOS sensors found in digital cameras 
are inherently sensitive to NIR light, and modified cameras (see Verhoeven, 
2008); obtained by removal of  the internal NIR-blocking filter in front of  
the sensor, used by manufacturers to simulate human eye color perception) 
mounted for KAP have been demonstrated to yield information otherwise 
not achievable with a digital compact camera (Gerard et al., 1997; Siebert et 
al., 2004). 

The aim of  the present paper is to explore the utility of  NIR-enabled 
KAP as a tool for monitoring intertidal rocky shore habitats in the 
Wimereux area (northern France), with a focus on seaweed communities. 
We assess best baseline mapping practices and show the potential for change 
detection using two imagery series acquired over 1 year. The rationale is to 
keep the design of  the kite, the camera suspension and operation as well as 
the subsequent image analysis as simple and low-cost as possible, while 
using the latest technologies.  
 

MATERIAL & METHODS 

STUDY AREA 

The study area comprises a rocky intertidal stretch running south-north 
between the coastal towns of  Boulogne-sur-Mer and Wimereux (Nord-Pas-
de-Calais, France), known as Pointe de la Crêche, located between N50.750 
and N50.756. The area is known to have supported extensive and dense 
intertidal brown algal communities dominated by Fucus spp. which collapsed 
between 1990 and 2000 (Coppejans, pers. comm.). Since 2000, wave-
exposed rocks are either bare (upper zones), dominated by limpet/barnacle 
communities (Patella/Balanus) or mussel communities (Mytilus; mid-tidal 
zones) or spionid worm reefs causing heavy siltation on rock platforms 
(lower zones). Intertidal seaweed communities dominated by dense Fucus, 
green algal Ulva spp. and red algal Porphyra stands (mid to upper zones) are 
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still found mostly on the edges of  rocky platforms and vertical surfaces. 
Scattered mixed assemblages with mainly red algae can be found in the 
lower zones. 
 

KITE AERIAL PHOTOGRAPHY 
Kite aerial photographs were acquired on 16 April 2010 and on 7 April 
2011. Depending on wind conditions, either a Rokkaku 7' or FlowForm 32' 
(figure 1a and 1b) were launched to a height between approximately 80m (in 
2011) to 160m (in 2010). The camera was mounted on Brooxes Basic 
Frames tethered to a Picavet suspension system attached to the kite line 
approximately 20m below the kite (figure 1b). The camera rig was set to 
look straight down and an intervalometer was programmed on the camera's 
SD card using Canon Hacker Development Kit (CHDK, freely available at 
http://chdk.wikia.com) which triggered the camera every 5 seconds. Hence, 
no external electronic parts or remote control were used on the camera rig 
and all settings were made prior to the KAP session, enabling the kite pilot 
to walk around freely for terrain acquisition. 

In 2010, photos were taken under overcast conditions with an 
unmodified (true-color) 12MP Canon Powershot SX200 IS set at ISO 200, 
5mm (28mm equivalent) focal length and variable shutter speed and 
aperture. A shutter speed of  at least 1/500th is needed to prevent motion 
blur. In 2011, both a true-color (RGB) and a false-color series were 
subsequently acquired. The former used the same SX200 camera, while the 
false-color camera was a full-spectrum modified 10MP Canon Ixus 870 IS 
with a red-blocking Lee 172 Lagoon Blue film filter fitted to the lens, hence 
capturing blue, green and NIR light (Hunt & Linden, 2009). Both cameras 
were set to 5mm focal length, ISO100 (because of  intense direct sunlight) 
and variable shutter speed and aperture in the latter session.  

Individual image extent and inherent resolution were calculated 
before the KAP sessions as a guideline. Photo coverage can be calculated 
based on the relation between focal length (f), acquisition height (H) and 
sensor width (d), from which the image width (D) can be calculated as  

 

f
HdD ⋅

=       (1) 
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A 

 
 
 
Figure 1: Equipment for kite aerial 
photography: a Rokkaku 7' framed (A) or 
FlowForm 32' frameless kite (B), used 
depending on wind speed and variability. The 
camera is suspended from the kite line using 
a Picavet suspension (1), a Picavet cross (2) 
and two pivoting Brooxes Basic KAP frames 
(3) 

B 

 
 

The spatial resolution or ground sampling distance (GSD) can be calculated 
based on pixel size, acquisition height and focal length as  
 

f
dP
DH

GSD )(
⋅

=       (2) 

 
where P(d) is the number of  pixels at the long side of  the sensor. For a 
12MP camera at 140m flying height and a 10MP camera at 60m flying 
height at minimal focal length of  5mm, this results in expected coverage and 
resolution of  173m by 130m at 4cm GSD and 74m by 66m at 2cm GSD per 
photo for a 1/2.3” camera sensor, respectively. 
 

GROUND TRUTHING 
Two days after the first acquisition date and coinciding with the second date, 
two separate transects measuring 50m by 2m were delineated including all 
major habitat types covered by the KAP, for which the outlines were drawn 
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together with field identity codes. The drawings were subsequently digitized 
an overlaid on the image mosaics to provide classification training and test 
data, as well as to visualize the difference between aerial photography-based 
and traditional intertidal habitat monitoring. Using a handheld Garmin 
eTrex GPS, coordinates of  transect as well as of  other conspicuous 
landmarks were logged. Where insufficient landmarks could be found, 
georeferencing was aided by laminated A3-format high-contrast target cards 
which were spread out across the terrain prior to image acquisition.  
 
IMAGE MOSAICING AND PROCESSING 
From about 700 pictures acquired in a one-hour KAP session, only the 
sharpest pictures approaching nadir view and with reasonable overlap are 
retained for further analysis. 

Image mosaicing can then be done in two ways. Images could either 
be master-slave rectified to each other in a relative coordinate system using 
at least 12 manually located tiepoints for every image added. After tiepoint 
editing, a 1st order transformation can be applied (avoiding excessive errors 
at the edges). However, the preferred method is to reconstruct a dense 
surface model of  the scene with computer vision software using structure 
from motion (SFM) and dense stereo-reconstruction algorithms 
(Verhoeven, 2011). Based on the 3D model, an orthophotomosaic can then 
be generated. The latter approach has the advantage of  automation which 
greatly reduces processing time and allows better handling of  low-oblique 
imagery while also accounting for internal camera calibration parameters. 
Additionally, when parts of  images cannot be matched due to a dynamic 
environment such as water and waves, these parts are automatically masked 
out from the resulting mosaic. However, since SFM algorithms need to 
retrieve thousands of  feature points over the scene, each one recognized in 
at least 2 images, this approach may fail on low-contrast and dynamic 
environments such as a wet beach. In this study, the 14 selected images from 
the KAP session in 2010 were manually rectified and mosaiced using 
ClarkLabs IDRISI Taiga, while the roughly 140 selected images for the 2011 
sessions (separately for the RGB and false-color acquisitions) were 
processed using AgiSoft PhotoScan Pro (Verhoeven, 2011); figure 2). To 
avoid memory issues in PhotoScan, the study area was subdivided in four 
blocks which were subsequently aligned. 
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Figure 2. Oblique view on 3D terrain reconstruction and image mosaicing of  63 RGB 
photos in PhotoScan; the southernmost of  2 blocks to be aligned. The approximate 
viewpoint (*) and viewing directions are shown in figure 3B. Besides terrain reconstruction, 
the camera acquisition points and camera orientation for each photo are calculated, clearly 
showing the walking lines. 
 

Upon importing in Idrisi Taiga, the RGB mosaic resulting from the 
first date and the RGB orthophoto mosaic from the second date were 
master-slave referenced to the false-color orthophoto mosaic to allow for 
easy classification signature extraction, overlay analysis and change 
detection. The false-color mosaic was originally georeferenced using the 
handheld GPS-measured waypoints, which resulted in a total Root Mean 
Square error (RMS) of  49.2 pixels. All mosaics were resampled to a GSD of  
4cm. Resulting mosaics were subsequently color-separated to obtain blue 
(B), green (G), red (R) and NIR bands for classification and vegetation 
index retrieval. For the RGB mosaic obtained in 2010, no vegetation indices 
could be calculated. For 2011, two options were available to obtain a 
vegetation index: while the R band from the RGB mosaic could be used in 
combination with the NIR band from the separate acquisition to calculate 
the NDVI (3), preference is given to retrieve a modified NDVI based on the 
single false-color acquisition for pragmatic reasons, substituting the red 
band by the green or blue band (4; Lebourgeois et al., 2008). 
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NDVI= NIR−R
NIR+R       (3) 

GNDVI= NIR−G
NIR+G  or BNDVI= NIR−B

NIR+B    (4) 

 
Since pixels are much smaller than benthic cover class patches in sub-

decimeter resolution imagery, pixel variability within classes is as high, or 
even higher than between classes, hampering traditional pixel-based 
maximum likelihood classification approaches. Therefore, image 
segmentation was undertaken in Idrisi Taiga, grouping pixels based on their 
spectral variance and local scene structure into polygons using a 3 by 3 pixel 
moving window (Laliberte et al., 2010). Half  of  the polygons within the 
ground truthing transects were then assigned to the different classes found 
in the transects for spectral signature training, while the polygons from the 
other transect were kept aside for testing and error matrix construction. In 
order to enhance spectral separability, different band combinations of  RGB, 
NIR and NDVI were tested for classification. Based on the generated 
spectral signatures, a maximum-likelihood classification was run and post-
processed using a 5 by 5 pixel majority filter. Preliminary classifications were 
run on image mosaics from 2011 to assess end user accuracies for each class 
and merge the most erroneous classes (commission error > 0.5). Besides 
omission errors (producer accuracy) and commission errors (user accuracy), 
accuracy was assessed using the kappa index of  agreement (KIA) between 
ground truth data different from training data and the classified image. KIA 
values generally range between 0 and 1, but can take negative values in case 
of  no agreement. Values between 0.4 and 0.8 can be viewed as fair to good 
while values below 0.4 generally indicate poor agreement, although the 
results depend on the number of  classes and other factors.  

Change detection was demonstrated by reclassing the bottom types 
of  the second date RGB-based classification to the fewer classes of  the first 
date. The mosaics were then cropped to the best overlapping area and a 
cross-tabulation was carried out. 
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RESULTS 

GROUND TRUTHING 
Although the image acquisitions on both dates covered a certain overlap 
area, the session centers were some distance apart. Hence, ground truthing 
transects were chosen on different locations for the acquisition dates. In 
2010, six bottom types were noted in the transects (table 1). Additionally, a 
microphytobenthos (MPB) bloom that was seen on the beach on the 
acquisition day had disappeared by the time the transect work was carried 
out. Therefore, an additional training site was delineated on the bloom 
visible in the image mosaic outside of  the transect. In 2011, seventeen 
classes were discerned in the transects (table 1). As a result of  the 
preliminary classification runs, classes defined by mixed assemblages like 
Fucus/Ulva, Ulva/Porphyra or Balanus together with Fucus or Ulva were 
considered as spectrally dominated by 1 species (Ulva or Fucus), thus 
reducing the habitat classes to 12 (table 1). Since deep crevices, large 
boulders and certain man-made structures cast dark shadow patches on a 
sunny day, shadow was also added as a separate class for the second date. 
 

RGB IMAGE CLASSIFICATION 
The RGB mosaic from 2010 suffered from exposure differences between 
individual images and from low contrasts within images due to hazy and 
drizzling weather (figure 3A). As a result, accuracies for this KAP session 
were the lowest, with an overall KIA of  0.15 (table 2a). The low KIA was 
also influenced by the absence of  the MFB class in the ground truthing 
data. Classification based on RGB mosaics from 2011 achieved a KIA of  
0.43, where misclassification resulted mainly from the fact that intertidal 
pools could hardly be discerned on RGB imagery, and mixed algal/animal 
or substrate patches were often not recognized as containing algae (table 
2b). Change detection on the best overlapping area showed an important 
turnover from rock to sand, and seaweed to rock classes in the mid-tidal 
zones, although increased algal cover was mapped in the upper tidal zone 
for the second date (figure 3C). 
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NDVI 

Visual inspection of  the NDVI images revealed adequate indication of  
intertidal seaweeds by using either blue or green as a substitute for the red 
band. However, the blue-substituted NDVI images (BNDVI) yielded more 
contrast and proved more sensitive to shadow patches and water or wet 
surfaces; therefore, only the BNDVI was retained for further display and 
analysis (figure 3D). The BNDVI provides good contrast between vegetated 
and bare or wet surfaces, and is able to discern submerged vegetation in 
tidal pools. Algae in tide pools are also seen to reflect NIR on false-color 
imagery down to about 0.5m. A single threshold could not be applied to the 
entire mosaic to make a hard distinction between seaweeds and substrate, 
since the mosaic covers a wide tidal zone acquired at spring low tide, where 
the difference in exposure time varies up to 6 hours over the entire scene. 
This causes stress-related responses in the NDVI. 
 
Table 1: Overview of  corresponding bottom types recognized in transects and used for 
image classification. Codes between brackets refer to the error matrices in Table 2. 

2010 2011 aggregated classes 2011 transect classes

Wet sand (WS) Wet sand (WS) Wet sand
Spionid Silt (SS) Spionid silt

Rock (R) Bare rock (BR) Bare rock
Bare concrete

Patella/Balanus  (PB) Patella/Balanus
Mytilus (M) Mytilus

Sand pool (SP) Sand pool (SP) Sand pool
Pool + algae (PA) Sand pool + algae (SPA) Sand pool + algae

Bare rock pool (RP) Bare rock pool
Rock pool + algae (RPA) Rock pool + algae

Ulva  (U) Ulva  (U) Ulva
Ulva + Porphyra
Ulva + Balanus

Fucus  (F) Fucus (F) Fucus
Fucus + Ulva
Fucus + Balanus

Microphythobenthos (MFB; *) 
Shadow (SH) Shadow

(*) Ephemeral bloom, not present at the time of transect monitoring and therefore only 
visually sampled for classification training.  
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Figure 3. 
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Figure 3 (continued). (A) shows the RGB mosaic obtained by manually rectifying 14 
photos from the 2010 acquisition. The digitized ground truthing transect is shown in overlay. 
The red box in (A) and the corresponding upper red box in (B) indicate the position of  (C), 
where RGB classification results of  the overlapping area from 2010 and 2011 allow for 
change detection. Note that the bottom type “microphytobenthos” is only present in the 
2010 classification. (B) shows the false color mosaic (B, G and NIR) resulting from 142 
photos acquired in 2011. The lower red box indicates the position of  (D) and (E). The 
former shows the BNDVI and the overlaying ground truthing transect while the latter shows 
the classification based on B, G, NIR and BNDVI. 
 



Chapter 7 

 182 

FALSE-COLOR AND NIR-ENHANCED CLASSIFICATIONS (2011 ONLY) 

Expanding the RGB data with the NIR band from the false-color mosaic 
(figure 3B) and the BNDVI progressively improved classification KIA from 
0.43 to 0.58. However, best classification results were obtained from the 
single sensor- based combination of  B, G, NIR and BNDVI bands with a 
resulting KIA of  0.65 (table 2c). Although much more accurate in 
discerning different seaweed assemblages and (vegetated) intertidal pools, 
the lack of  the red band decreased classification accuracies of  benthic 
animal assemblages on rock platforms such as the heavily silted spionid 
worm banks, confused with sand, and Mytilus communities, confused with 
Patella/Balanus communities. 
 
Table 2. Classification error matrices. (A) based on the 2010 RGB mosaic, (B) based on the 
2011 RGB mosaic and (C) based on the 2011 B, G, NIR and BNDVI mosaics. UserAcc = 
user accuracy or (1 – commission error); ProdAcc = producer accuracy or (1 – omission 
error). Full class names of  the codes are found in Table 1. The value in bold in the lower 
right cell is the kappa index of  agreement (KIA). 
 

(A) WS R PA F U SP Total UserAcc
WS 4074 1692 374 0 0 250 6390 0.64
R 458 2870 381 8 2 233 3952 0.73
PA 0 407 223 43 36 956 1665 0.13
F 0 1905 297 66 2 1032 3302 0.02
U 23 1499 183 24 0 1160 2889 0
SP 48 408 73 48 11 582 1170 0.5
MFB 1169 46 0 0 0 0 1215 0
Total 5772 8827 1531 189 51 4213 20583
ProdAcc 0.08 0.96 0.05 0.04 0 0.14 0.15 

(B) WS U F SH SP PB RPA BR M RP SS SPA Total UserAcc
WS 3704 79 170 10 20 869 12 7174 77 188 275 18 12596 0.29
U 4 5430 797 56 768 577 501 60 128 83 3 307 8714 0.62
F 0 904 3055 2008 71 390 471 108 2245 67 0 944 10263 0.3
SH 1 100 987 18842 0 108 62 18 246 7 0 468 20839 0.9
SP 0 1282 220 15 401 1054 358 540 531 365 32 1552 6350 0.06
PB 1 212 21 12 175 11338 52 2014 617 881 3279 60 18662 0.61
RPA 0 672 734 91 193 318 707 51 90 92 4 1333 4285 0.18
BR 893 123 45 4 4 2723 13 6230 1347 307 542 36 12267 0.51
M 11 653 786 336 41 1043 193 1984 12227 413 339 871 18897 0.65
RP 2 466 84 25 620 4773 420 1757 2438 2171 793 751 14300 0.15
SS 17 104 1 6 17 13615 5 1494 80 130 10467 9 25945 0.4
SPA 0 373 597 242 90 615 345 192 1039 138 31 2711 6373 0.43
Total 4633 10398 7497 21647 2400 37423 3139 21622 21065 4842 15765 9060 159491
ProdAcc 0.8 0.52 0.41 0.87 0.17 0.3 0.23 0.29 0.58 0.45 0.66 0.3 0.43 
(C) WS U F SH SP PB RPA BR M RP SS SPA Total UserAcc
WS 7377 0 30 15 7 80 55 1433 0 18 179 0 9194 0.8
U 3 10138 1719 160 6 1305 409 157 76 8 0 17 13998 0.72
F 0 2199 7331 170 0 56 0 20 0 0 52 0 9828 0.75
SH 0 2 0 30851 51 0 254 16 107 32 0 68 31381 0.98
SP 9 0 2 432 1644 0 396 26 0 86 7 158 2760 0.6
PB 30 1670 279 35 11 21937 864 2654 651 3 3473 40 31647 0.69
RPA 0 114 33 328 7 107 1126 69 27 64 0 80 1955 0.58
BR 328 191 117 192 41 369 214 2381 145 42 482 43 4545 0.52
M 0 333 52 643 29 328 521 1711 5099 64 109 220 9109 0.56
RP 2 55 7 513 245 9 533 192 254 2149 225 632 4816 0.45
SS 41 181 55 19 27 3940 694 3550 285 8 5195 4 13999 0.37
SPA 0 90 82 2599 118 97 294 23 356 180 0 2286 6125 0.37
Total 7790 14973 9707 35957 2186 28228 5360 12232 7000 2654 9722 3548 139357
ProdAcc 0.95 0.68 0.76 0.86 0.75 0.78 0.21 0.19 0.73 0.81 0.53 0.64 0.65 
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Common for all classifications using the NIR band was misclassification of  
bottom types in large shaded areas such as at the basis of  cliffs. Over these 
areas, the camera adjusted its shutter speed, making the area too bright to be 
recognized as shadow, while darkening the known spectra. This tricked the 
classification algorithm in classifying these patches as underwater, although 
correctly recognizing presence or absence of  vegetation and rock or sand 
substrate. 
 

DISCUSSION 

QUALITY OF THE PRESENTED DATA 
From a monitoring point of  view, user accuracies for the target groups (i.e. 
1 – commission error) are most important, besides a good overall mapping 
performance indicated by KIA. In that perspective, the choice for true-color 
or false-color aerial photography can be based on varying classification 
accuracies for the project target species. The present case study clearly 
shows that a combination of  blue, green and NIR bands is outperforming 
true-color imagery for seaweed (and potentially other intertidal vegetation 
and microphytobenthos) monitoring. To compensate for the loss of  
information on the red part of  the spectrum, the BNDVI was successfully 
added as an extra spectral band. Since pixels on camera sensors are covered 
by either blue, green or red filters (Verhoeven et al., 2009) and only red 
filters pass a significant amount of  NIR, red light should be blocked when 
photographing NIR and a full VNIR image cannot be acquired at once with 
a single camera (Hunt & Linden, 2009). Although the red band can be 
added from a coinciding or subsequent KAP session with another camera or 
filter, this study shows that while the red band is useful to discern certain 
invertebrate communities, it doesn't increase overall KIA. Additionally, 
resampling an RGB mosaic to match the false-color mosaic is a time-
consuming step that may be avoided. 

For the purpose of  demonstrating change detection, the 2011 RGB 
mosaic was used to compare to the 2010 RGB mosaic, in order to avoid 
much more detailed NIR-based vegetation information from 2011 to bias 
the change detection. Due to the large commission error of  classifying sand 
as rock in the 2010 classification, most of  the turnover from rock to sand is 
indicative of  improved classification accuracy in 2011. However, the 
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increased number of  scattered sand pixels in the southern part of  the area 
may indicate ongoing siltation, an increasing phenomenon in the study area 
during recent years. The silt is accumulated on rock platforms by reefs of  
spionid worms, and prevents algal communities from developing. This is in 
agreement with a decrease in mapped algal cover in the south of  the change 
detection area. In the more dynamic upper intertidal zones, located to the 
west in the area, algal cover on the boulders seems to have increased from 
2010 to 2011.  
 

UTILITY OF KAP IN MONITORING AND BEST PRACTICE 

Although (tethered) low-altitude aerial photography with a consumer-grade 
camera has been used successfully for vegetation monitoring in the 
terrestrial environment, and airborne aerial photography has been applied 
for seaweed monitoring, this is the first successful application of  low-cost, 
low-altitude NIR aerial photography of  intertidal habitats.  

This case study raised some important practical points for KAP. A 
flying height between 100 and 200m greatly reduces the time and effort for 
acquisition (allowing walking quicker or trailing the car by 4WD or boat) 
and mosaicing, hence also reducing potential errors in the mosaics. The 
relative loss in GSD is mostly not relevant for monitoring. Further, a single 
NIR-enabled camera combined with a red-blocking external filter yields a 
good accuracy for general intertidal monitoring. The added gain in accuracy 
from the red band will often not compare to the extra acquisition (unless 
both cameras are suspended from the same kite) and processing time to 
include this information. Additionally, preference should always be given to 
computer vision-based 3D reconstruction and orthophoto mosaicing, rather 
than rectifying images relative to each other. However, the inherent 
characteristics of  the intertidal environment may sometimes hamper the 
latter approach. 

Like other monitoring methods, KAP has its specific drawbacks that 
need to be considered when designing and implementing a monitoring 
scheme. First, a KAP session cannot be planned with certainty more than a 
couple of  days in advance, especially in areas with variable winds and 
weather patterns. This issue is worsened when acquisitions need to coincide 
with (spring) low tide and sufficient daylight (of  concern at high latitudes). 
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However, some kites can be adjusted to a range of  wind conditions and 
with a choice of  kites, a wind force range from 2 to 6 Bft allows for KAP, 
which is wider than acceptable for certain types of  UAV. Although we 
intentionally didn't use external electronics on the KAP rig, gyro-servos can 
be added to the three axes on the rig to keep the camera pointing down 
when the rig starts swinging in heavy winds, or to trigger the shutter each 
time the camera passes nadir. Second, preferably coinciding ground truthing 
data are vital to successful KAP monitoring studies, with a recommended 
two transects per mosaic for classification training and testing. The very 
high resolution in relation to habitat variability requires a far larger training 
and test sample than usually required for VNIR remote sensing. That said, 
KAP is especially useful in addition to field-based surveys, with recorded 
data acquisition and processing times for this study amounting to 200m²/h 
for the transects and up to 1 Ha/h by KAP. Lastly, while KAP is a good 
solution for certain monitoring needs, the image quality and resulting 
analyses will mostly not meet standards achieved in airborne surveying or 
professional UAV systems. However, the simple design and robustness of  
KAP is specifically meant to meet certain goals, such as remote and 
developing areas where budgets and access to spare parts and maintenance 
are not available. A frameless kite is virtually unbreakable and the lack of  
external electronics on the camera rig is beneficial for work in a sandy and 
salty environment, while the potential use of  a consumer-grade shockproof  
and waterproof  camera with internal timer further eliminates any risk. With 
the advent of  low-cost computer vision and remote sensing software such 
as the packages used in this study and open source or free alternatives (such 
as ITC Ilwis, Agisoft PhotoScan Standard, MeshLab), valuable information 
can be gathered based on consumer-grade photography. A basic KAP set 
including NIR-enabled camera for monitoring can thus be assembled from 
$750 onwards, with higher budgets allowing for professional software 
editions and better cameras. This figure is a one-time investment with 
virtually no subsequent costs for use. Since using a kite for aerial 
photography doesn't require a piloting license (only maximum flying heights 
and minimum distance from air traffic apply in many countries) and can be 
learnt within a week, this opens up aerial photography-based monitoring to 
many local conservation practitioners and managers. 
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SPATIAL INFORMATION IN GIS-BASED MACROALGAL 
STUDIES 
Spatially explicit information on biotic samples and environmental data is 
now relatively easy to download from various sources. However, while 
environmental data coverage has increased significantly in recent years with 
now many terabytes of  environmental information ready to be incorporated 
in GIS-based and distribution modeling studies, reliable spatial information 
on biotic data remains scarce. Georeferencing specimens from herbarium 
collections is very time-consuming and can often not be carried out with 
sufficient resolution or certainty to match the spatial scale and data 
resolution for the desired study. As a good rule of  thumb in order to obtain 
valid species-environment relations, we recommend that each sample should 
be georeferenced to within half  a pixel error of  the environmental dataset 
resolution. While this may seem easy to attain for coarse resolution studies, 
this may not be an evident task when adding coordinates to herbarium 
specimens with unclear locality names. It is also worth noting that the error 
is the crucial factor here, and not the accuracy. While a consumer-grade 
hand-held GPS may for instance indicate ones position with approximately 
1m accuracy (showing five decimal places in decimal degrees), the error on 
the positioning is typically 5-15m and hence, biotic data georeferenced in 
this way should not be used in relation to environmental variables with a 
spatial resolution of  less than 30m. For records georeferenced from 
herbarium collections, the error is less evident and can vary greatly.  

In Chapter 2, specimens lacking any locality information and 
coordinates on a decimal degree were a priori excluded for the modeling 
effort. For specimens with locality information but no coordinates, Google 
Earth was used to assign coordinates. These records were only used for 
modeling if  this could be done to within a decimal degree based on textual 
descriptions or collectors’ indications. Overall these prerequisites greatly 
reduced the availability of  occurrence records for modeling, but all 
modeling records except one were georeferenced to at least 1 km resolution, 
well below the half-pixel rule to allow for some uncertainty, which cannot be 
calculated exactly for herbarium data. . One record that was referenced to 11 
km resolution was still considered for modeling because neighboring pixels 
did not differ substantially, again allowing a certain degree of  uncertainty 



General Discussion, Conclusion & Perspectives 

 189 

without jeopardizing the model. In Chapter 3 and 4, a similarly stringent 
selection procedure for occurrence records was adopted, and all records 
were georeferenced to at least 1 km. In Chapter 5 and 6, all occurrence 
records were georeferenced using a hand-held GPS. In practice, the 
observational error indicated on the GPS device was rarely more than 15 m, 
i.e. half  the size of  a Landsat pixel and 1/4th of  the pixel size in Landsat-
based environmental variables in Chapter 5. For use in image georeferencing 
and classifications based on CHRIS imagery (18 m resolution), a GPS 
reading was only logged when the error was below 9m. Similarly, ground 
truth points retrieved from video transects were only retained when the log 
file indicated an error of  less than 9 m. In Chapter 7, pixel training was 
carried out without the use of  GPS because of  the very small pixel sizes. 
Instead, a 50 x 2 m transect delineated by measuring tapes visible on the 
color and NIR photographs were used to draw the habitat classes. Pixels 
within each image segmentation polygon in the transects were then assigned 
to their respective class. The segmentation approach was adopted to cope 
with the situation in which pixels are smaller than the objects targeted for 
classification, to which the rule of  thumb outlined above cannot be applied. 

Particularly of  concern to seaweeds is the role of  taxonomy in spatial 
information errors. This is especially true for information from public 
biodiversity databases such as OBIS, where not only coordinates are often 
erroneous and hard to check as far as seaweed entries concern, but also 
identifications are often impossible to check. Mixing occurrence records of  
different species may significantly affect model performance, depending on 
the study goals. Moreover, many macroalgal taxa are characterized by a high 
cryptic diversity, further increasing the difficulty of  obtaining valid models 
(Lozier et al., 2009). In Chapter 3 and 5, we have made use of  phylogenetic 
analysis to confirm species identity or delineate evolutionary significant units 
for species known to feature high degrees of  cryptic diversity. 

 

GENERAL ASPECTS OF MODELING MACROALGAL 
DISTRIBUTIONS  

The use of  macroalgae as a marine test case in assessing niche modeling 
techniques throughout this thesis has some specific advantages and 
drawbacks, which we discuss here in the conceptual framework of  niches 
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and their modeled distributions. 
Any form of  species distribution modeling or ecological niche 

modeling relies fundamentally on the duality between multidimensional 
environmental space, in which a species' niche is defined, and (in the case of  
the chapters presented here) two-dimensional geographical space (Colwell & 
Rangel, 2009). This means that, theoretically, there is a partially reciprocal 
relationship in which each point in geographic space translates to exactly 
one point in environmental space at a given time, but a point in 
environmental space may correspond to one or multiple geographic points, 
or none. Niche modeling algorithms use this relationship by reading the 
environmental values from n raster layers at known occurrence localities, 
delineating the niche using more or less complex algorithms in n-
dimensional space, and subsequently projecting its potential distribution 
back to physically located pixels which are environmentally similar. 
However, in practice this relationship depends on the spatial resolution and 
community structure under consideration. As environmental data are 
composed of  pixels rather than infinitely small points, one pixel can contain 
several microhabitats with associated differing environmental conditions. 
Also, conditions experienced by canopy and understory species may differ 
for a given locality. Hence, values in environmental space attributed to a 
pixel should in fact be associated with a confidence interval.  

One of  the most important assumptions to obtain solid relationships 
and valid niche models is the (pseudo-)equilibrium state of  species in their 
sampled environment (although ways have been proposed to compensate 
for lack of  equilibrium in an additional data layer; (Elith et al., 2010a). This 
is because biotic and non climatologies-based environmental samples 
represent a snapshot in time (and place in the case of  regional modeling), 
and occurrence records of  species not in equilibrium with their 
environment would result in underestimation of  the potential distribution 
(Guisan & Thuiller, 2005). Seaweeds, by their benthic nature, are forced to 
adapt to local conditions, to move or to perish. Combined with their 
generally short life cycle allowing them do so quickly, this means that 
macroalgal communities which are known to be established at a locality for 
some decades can be assumed to have reached a near-equilibrium with their 
environment. This assumption was made for all niche modeling case studies 
in this thesis. However, predictive performance of  invasive species models 
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can be increased by training the model on both invaded range occurrence 
records as well as native records (Capinha et al., 2011; de Rivera et al., 2011). 
Although the former might not yet be in equilibrium with their 
environment, the constraints are typically considered to be greatest in native 
ranges (Keane & Crawley, 2002; Torchin et al., 2006); causing native-range-
only models to underestimate a species’ Grinnellian niche in new areas. This 
illustrates a known limitation of  ecological niche modeling caused by 
species’ interactions that are not included in the model. 

Within the above outlined assumptions, fundamental decisions need 
to be made to define a niche modeling strategy. Most importantly, two data 
types may be used to delineate the niche in environmental space, restricting 
the choice for modeling algorithms: environmental data from both known 
occurrences and confirmed absences (presence/absence modeling) or 
information based on occurrence records only (presence-only modeling). It 
has been suggested that whenever reliable absence data are available, the use 
of  presence/absence techniques should be preferred (Brotons et al., 2004). 
However, although seaweeds can be more easily sampled than many animal 
groups in terms of  localization, capture and legal issues, there is often a 
paucity of  occurrence data for (subtidal) species because many algae are 
small and inconspicuous and exhaustive samplings are rather hard to achieve 
by SCUBA diving. Additionally, since many species are characterized by 
partly microscopic life stages, reliable absence data cannot be obtained for 
most macroalgal species. For these reasons, the choice for Maxent as the 
best suited modeling technique throughout this thesis was warranted, based 
on its demonstrated high performance as a presence-only modeling 
technique (Elith et al., 2006), even with low sample sizes (Pearson et al., 
2007). 

A second set of  strategic modeling choices relate to the number of  
raster layers describing the environmental space (i.e., variable selection) and 
the functions describing the relations between species and these variables 
and their interactions (feature selection). Including too large a number of  
variables may have detrimental effects on the models due to multicollinearity 
in the datasets, which may hamper ecological inferences. Including too 
complex features may lead to overfitting of  the models, which means that 
models are matched too closely to input data in environmental space, 
reducing predictive performance of  the models (Phillips & Dudik, 2008). 
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While sample numbers were generally too low to allow complex feature 
fitting for the case studies presented in Chapter 2 and 3, features selection 
was set to allow only the two least complex relations for the model 
presented in Chapter 4 (whereas Maxent automatically allows the most 
complex features to be fitted based on the number of  occurrence records by 
default). Variable selection was carried out in Chapter 2 using a similar 
approach as described by Pearson et al. (2007), Rissler & Apodaca (2007) 
and Saatchi et al. (2008) to obtain modeled variable contributions and 
response curves. A correlation analysis was performed and the least 
correlated variables were selected, retaining at least one variable per 
macroecological dimension in the environmental dataset to adequately 
explain ecological patterns. This approach reduces data redundancy 
effectively (although not completely) and ensures that input variables, and 
hence output variable contributions and response curves, are still 
straightforward to interpret. An alternative approach was proposed in 
Chapter 2 and 3 by performing PCA and using the principal component 
maps as input in the modeling step.  This was done because the use of  
principal components virtually eliminates data redundancy, needed to obtain 
the most accurate macroecological suitability maps to compare to known 
distribution patterns, without referring to variable contributions and 
response curves. Chapters 4 and 5 present a novel approach in Maxent 
model selection by running preliminary models in a forward stepwise 
variable selection procedure until predictive performance stops increasing. 
Performance was in this case measured by the area under the curve (AUC) 
of  receiver operating characteristics (ROC) for the test data. 

Thirdly, measures need to be taken to deal with small sample sizes, 
preferential sampling and spatial autocorrelation. The latter often occurs for 
instance where remote coastlines are hardly accessible and many samples 
hence tend to be aggregated around few physical locations. Preferential 
sampling (or sample selection bias) arises when consistently only parts of  
the environment are represented in the biotic samples by sampling for 
instance along roads, or, in the case of  this thesis, only along coastlines. 
Both issues are exacerbated when using small sample sizes, and are caused 
by insufficient sampling of  the data in environmental space as opposed to 
sampling along a line or gradient in geographical space or by an over-
representation of  parts of  the environmental space by the sample set. 
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Different solutions have been proposed to cope with small sample sizes and 
spatial autocorrelation. While we minimized the risk of  erratic models 
caused by small or spatially autocorrelated samples in Chapter 3 by rejecting 
biotic datasets containing less than 10 records or obviously suffering from 
autocorrelation, we took several precautionary measures for the small 
sample set available in Chapter 2. Similar to Raxworthy et al. (2007), we 
manually divided the sample set in training and test data to prevent the 
formation of  data clusters in one part of  the world. Furthermore, we 
constructed several replicate runs by cross-validation in order to evaluate 
statistical properties of  the resulting models and AUC values (Pearson et al., 
2007). Recently, several authors have identified the issue of  sampling bias or 
preferential sampling for niche modeling studies in the terrestrial and marine 
environment (Phillips et al., 2009; Elith et al., 2010b; Dambach & Rödder, 
2011). In Chapter 1 and 5, we proposed a first step towards remedying 
preferential sampling bias in the marine environment by biasing the 
background sample in a similar way as the biotic input data, i.e. restricting 
the random sample of  10000 background points to the narrow coastal 
zones in which the macroalgal species under scrutiny may occur and might 
be sampled. Hence, we provided the modeling algorithm with a relevant 
background sample against which to compare the observed environmental 
data. This approach seems to lower the AUC value slightly, but in our 
opinion this reflects more realistic model outcomes suffering from less 
overfitting, rather than worse model performance. 

Lastly, model evaluation is an important consideration in the design 
of  modeling studies. To date, while AUC-ROC analysis is by far the most 
widely used in terrestrial and marine niche modeling, some drawbacks exist 
to this approach. There are no fixed thresholds from which to determine 
that a given AUC value represents poor, acceptable or very good model 
performance, other than that values lower than 0.5 are indicative of  no 
better than random prediction. There is also no fixed highest possible value 
due to the presence-only nature of  Maxent models (though maximum 
values will be very close to 1 in practice). Additionally, AUC values for 
similar models will be calculated differently for various modeling algorithms 
and cannot be compared for different approaches (Lobo et al., 2008). There 
is as of  yet no consensus on the best alternative for AUC analysis and it 
continues to be the most widespread, although alternatives have been 
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suggested. In Chapter 3, we applied the partial AUC suggested by Peterson 
et al. (2008) to enable comparison with replicated model runs using other 
algorithms. Overall, we evaluated model performance internally based on 
replicate runs using, with or without some sort of  resampling. These allow 
to calculate an average and standard deviation of  the test AUC, which offers 
a good estimate of  overfitting and general predictive performance when 
compared to the training AUC (where a test AUC exceeding the training 
AUC would mean excellent predictive performance and a training AUC 
exceeding the test AUC would indicate overfitting).  

In Chapter 6 we suggested a new subpixel classification method by 
translating bottom type fractions per pixel to a multi-species distribution 
modeling framework, in which training localities for bottom types are 
defined as input species occurrence localities and spectral bands were 
considered as environmental layers. Since spectral characteristics change 
immediately with changing bottom types, the assumption of  equilibrium was 
valid, as is the semi-reciprocal relationship between geographical and 
spectral space. In that sense, each bottom type is defined by its own 
Grinnellian niche in spectral space. The equivalency still holds for 
fundamental versus realized niches, where a bottom type could be covered 
from its usual spectral signature by a “competitor”. The choice for the 
presence-only Maxent modeling algorithm was warranted based on its high 
predictive performance in comparison with other algorithms including 
presence/absence techniques (Elith et al., 2006) and based on its tendency 
to extrapolate better to unsampled regions (Bentlage et al., 2009). Next to 
modeling the different bottom types (and subsequently hardening the 
different models to a single classification map), this approach is ideally 
suited to map the distribution probability of  certain bottom types of  
interest since there is no need to train the model on all bottom types, which 
is usually necessary for other supervised classification algorithms. The 
proposed approach has now also been tested on a heterogeneous (urban) 
environment in aerial photography (Li & Guo, 2010). 
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INVESTIGATING ENVIRONMENTAL DATA 
INTEGRATION AND EFFECTS ON MODELING 

Rather than constituting a goal in itself, ecological niche modeling or species 
distribution modeling is mostly used as a means in the framework of  other 
goals (Franklin, 2009). Because both species occurrence data and 
environmental data are generally more easily available for the terrestrial 
realm, both the number of  studies and the range of  applications for which 
niche modeling has been used exceeds that of  marine studies to date. In 
Chapter 2 and 3, we adopted a niche modeling approach in applications for 
which terrestrial equivalents were already published, for the first time in a 
marine environment. For example, niche modeling in an evolutionary 
context has been investigated by, among others, Rissler & Apodaca (2007) 
and Raxworthy et al. (2007). Niche modeling based on few occurrence 
records as a means to delineate other probable areas of  occurrence has been 
proposed by Pearson et al. (2007), and Saatchi et al. (2008) inferred 
ecological information on species based on response curves generated by 
niche modeling. Although standardized global environmental datasets such 
as WorldClim (Hijmans et al., 2005) were already available for the terrestrial 
modeling studies mentioned above, only Raxworthy et al. (2007) limited 
their variable choice to this particular dataset. Rissler & Apodaca (2007) and 
Pearson et al. (2007) both included climatic and geophysical layers from 
other sources, while Saatchi et al. (2008) compiled custom remote sensing-
based climatic and land cover data. Chapter 2 and 3 took a similar approach 
to the latter study, by downloading global MODIS climatology data and 
deriving biologically meaningful variables. Hence, assembling a global 
marine environmental dataset proved time-consuming in these chapters, and 
the need for a pre-packaged, uniform environmental dataset was clearly 
indicated. Dambach & Rödder (2011) and Robinson et al. (2011) later also 
suggested the need for such a dataset to facilitate niche modeling in many 
applied studies.  

Chapter 4 described the compilation of  Bio-ORACLE, a set of  
biologically relevant raster layers indicative of  climate averages, extremes 
and seasonality for variables thought to play a role in the distribution of  
many marine organisms. Raster layers were compiled from various sources, 
both remote sensing-based and resulting from interpolation of  in situ 
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measurements. Remote sensing-based variables suffering from cloud cover 
or low coastal resolution were also interpolated using advanced algorithms, 
with the availability of  uncertainty maps. Most importantly, variables were 
packaged uniformly with an equal landmask applied to all variables and data 
are disseminated in an equidistant and an equal area projection to meet 
different needs depending on the study concept. However, the Codium fragile 
case study presented in Chapter 4 as well as terrestrial studies using pre-
packaged datasets (Rissler & Apodaca, 2007; Pearson et al., 2007) clearly 
indicated that careful selection of  the available variables and, depending on 
the studied species, expanding the variable set with data from other sources, 
should still be considered in order to reduce data redundancy and to capture 
the relevant ecophysiologically driving variables. 

The resolution of  approximately 9 km of  the Bio-ORACLE dataset 
reflects both the native resolution at which most of  the global level-3 
mapped remote sensing data products are made available and the best 
meaningful resolution to which in situ measurements and masked pixels can 
be interpolated without artificial data inflation through internal resampling. 
At the same time, it adequately captures macroecological gradients in 
nutrients, sea surface temperature etc. While designed at the global scale, 
this dataset can easily be cropped to accommodate regional studies. On the 
other hand, this resolution does not allow for a meaningful inclusion of  a 
substrate layer, a variable which often determines distribution at the regional 
level. Additionally, in Chapter 5 we demonstrated that 9 km coastal pixels 
can hide fine-scale patterns in variables other than substrate, for instance in 
chlorophyll and sea surface temperature which are generally assumed to vary 
over coarse scales, indicating among others sheltered versus exposed bays. 
While it is true that coarse resolution coastal pixels are biased towards open-
sea average values, this seems to be of  major concern only in highly variable 
environments. Therefore, we presented a methodology to incorporate high 
resolution Landsat 7 ETM+ imagery to derive environmental layers suitable 
for distribution modeling. While as of  yet time-consuming, this approach 
allows capturing local processes for an entire region. The use of  Landsat-
based environmental layers representing Grinnellian factors similar to the 
Bio-ORACLE dataset including substrate showed that these factors also 
vary greatly on a very fine resolution in the marine environment due to 
differences in, among others, exposure to waves and upwelling in small bays. 
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The fine scale at which these factors can work is somewhat overlooked in 
literature, where Grinnellian variables are mostly explained to vary at coarser 
scales while Eltonian factors are thought to work at very fine scales (Colwell 
& Rangel, 2009; Soberón & Nakamura, 2009). 
 

MULTI-SENSOR MAPPING 

Satellite imagery-based mapping has as of  yet rarely been applied to 
monitoring specific macroalgal communities, except for algal cover on 
tropical coral reefs. Since the water column on tropical coral reefs is typically 
clear, these studies may benefit from very high-resolution multispectral 
imagery. However, most abundant and diverse seaweed communities are 
found in heterogeneous patches on solitary coral communities or rock 
outcrops in subtropical to (cold-)temperate environments, where imagery 
would benefit from both very high spectral and very high spatial resolution. 
With current satellite sensors such as the ones used in Chapter 6, mixed 
pixels are of  major concern. We proposed a multi-sensor approach in which 
a multispectral resolution sensor with a similar spatial resolution contributes 
to data analyses from a superspectral sensor by providing SWIR data, useful 
in an index to detect surfacing and floating algae. However, both sensors 
discussed in Chapter 6 still yield mixed pixels. Besides adopting a sub-pixel 
modeling algorithm such as the one presented, it is also useful to consider 
incorporating imagery from a sensor with sub-meter resolution. With 
spaceborne sensors limited to a panchromatic band in sub-meter imagery, 
aerial acquisition techniques can yield sub-meter multispectral or 
hyperspectral. The tools demonstrated in Chapter 7 provide a promising 
addition to the current set of  airplane-based technologies, although it is 
foremost intended for low-budget or remote studies and its use is confined 
to limited areas and intertidal communities (and shallow waters in case of  
calm, sheltered conditions). In this type of  imagery, pixels are no longer 
mixed but instead are many times smaller than the objects of  interest, 
necessitating an image segmentation or object-oriented classification 
approach. Although Chapter 7 presents a separate study, the main strength 
of  this type of  imagery would arguably be its use in combination with other 
remote sensing products on coarser resolution of  the same area for which 
the data characteristics would be complementary. 
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CONCLUSION AND PERSPECTIVES 

A growing body of  spatially explicit information and processing algorithms 
has become available to the biological community in recent years. Many 
applications involving these data and techniques have been designed and 
tested in the terrestrial environment, but marine and especially phycological 
applications remained scattered. While benthic marine algae make a good 
pragmatic choice to test and expand spatially explicit data processing 
techniques for the marine environment, they are also of  key importance in 
marine food webs and patterns in space and time, and hence need to be 
mapped and monitored. The case studies presented in this thesis offer 
insights in real-life issues with macroalgal mapping and monitoring and are 
used to demonstrate the feasibility and motivated practices of  these 
techniques in answering biological questions. 

In agreement with a growing number of  published case studies on 
distribution modeling, the results from this thesis indicate the need to 
consider model concept, settings and choices carefully for each species, 
environment and application. We assert that there is no “one way fits all” in 
modeling distributions and niches, not even when the modeling efforts use 
the same algorithm and when applications are similar. Preliminary models 
should be run to test for various effects, and the results from this thesis may 
be used to adjust models accordingly to achieve higher predictive 
performance. The biggest challenges remain in model evaluation metrics 
other than AUC and their applied use in variable and feature selection 
through the use of  preliminary model runs in stepwise selection procedures. 
In this way, several model parameter settings should be investigated using 
simulation studies to open the “black box” of  certain complex modeling 
algorithms, including Maxent. For instance, the setting of  the regularization 
multiplier was until recently poorly understood, while having an important 
function in preventing overfitting. Warren & Seifert (2011) demonstrated an 
important first step towards this by using AIC-based model selection to 
obtain the best degree of  model complexity (regularization). 

With continually increasing availability of  environmental data, it is 
important to note that Bio-ORACLE, although useful in its present form, is 
a work in progress which can be updated with future availability of  new 
global climate data, mainly from remote sensing. For instance, salinity is 
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currently provided as an interpolated map, but can be expected to be 
updated by monthly averaged global level 3 or 4 remotely sensed data 
products from the SMOS or Aquarius missions. Other new data sources 
may include the derivation of  variables which cannot be directly measured 
using remote sensing but which can be modeled based on remote sensing 
information. For example, global raster layers of  nitrate, now only available 
through interpolation of  in situ measurements in Bio-ORACLE, could be 
calculated based on the correlation with SST and chlorophyll-a. Hence, the 
database may be updated with such derived layers in cases where error maps 
indicate that these models would outperform spatial interpolation using the 
DIVA algorithm. We also foresee bathymetrical information to be integrated 
for the derivation of  environmental data layers in 3 dimensions on a short 
term. Coupling models based on these environmental data with mechanistic 
models will be an important field of  research. 

Landsat-derived environmental variables could be further explored 
for regional niche modeling studies. Our approach suffered from drawbacks 
in the assembling methods, but nevertheless offered promising results on a 
combination of  extent and resolution that is new to our knowledge. Since 
contrasting processes can be captured by these variables compared to Bio-
ORACLE, we could see this spatial scale as a useful basis to add spatially 
explicit Eltonian data layers, if  feasible at all, since this type of  factors act 
rather at fine scales. 

Lastly, multi-scale approaches are increasingly important to capture 
the full range of  processes and patterns at different spatial and temporal 
scales in the study of  macroalgal communities. Very high resolution aerial 
photography could be used as a tool to validate and refine seasonal mapping 
efforts based on spaceborne sensors, which in turn could yield useful 
environmental data for distribution modeling efforts. 
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North Sea. As a teaching assistant, I organized practical courses and field 
training courses in general botany, phycology and marine ecology. 

 

EDUCATION 

SELECTED GRADUATE AND POSTGRADUATE COURSES AND TRAINING WORKSHOPS 

12/2010, 
1 day 

Demo-day: UAV mission planning, 
execution and automatic triangulation of 
aerial photos 

Gatewing NV, Ghent 
(Belgium) 

07/2010,  
1 day 

Training workshop BEAM: processing 
tools for Level-0 SMOS and MERIS 
satellite data 

Brockmann Consult, ESA 
Living Planet Symposium 
(Norway) 

2009 - 2010, 
1st semester 

(Stereo)photogrammetry, DEM 
extraction and 3D visualization 

Ghent University 
(Belgium) 

10/2007, 
1 week 

Training workshop Species Distribution 
Modeling 

American Museum of 
Natural History, Portal 
branch, AZ (USA) 

2005 - 2006, 
2nd semester 

Remote sensing: image interpretation Ghent University 
(Belgium) 
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2005 - 2006, 
1st semester 

Geographic Information Systems Ghent University 
(Belgium) 

2004 - 2005, 
1st semester 

Remote sensing: image registration and 
processing 

Ghent University 
(Belgium) 

2004 - 2005, 
1st semester 

Applied biostatistics Ghent University 
(Belgium) 

09/2004, 
2 weeks 

Field training course Posidonia: marine 
ecology and spatial analysis of seagrass 
meadows 

Observatoire 
Océanologique, UPMC 
(Paris VI), Villefranche-
sur-Mer (France) 

08/2003, 
1 month 

Field training course Biodiversity of 
Megatidal Coastal Systems: marine 
zoology and ecology 

Observatoire 
Océanologique, UPMC 
(Paris VI), Roscoff (France 

2007 Basic teaching assistance training course 
and research practical course education 

Ghent University 

 
UNIVERSITY CURRICULUM 

2002 -  2004 Licentiate (MSc) Biology, option Zoology 
 Optional subjects: Introduction to GIS; 
Coastal Ecosystems; Oceanography; 
Ecophysiology 

 Dissertation: “Biogeography and 
seasonality of macroalgal communities 
in the Gulf of Oman” (in Dutch): 
baseline study for EIA at the coastal 
construction site of the OMIFCO 
fertilizer plant  

Ghent University 
(Belgium), graduated with 
Great Distinction  
 
 

1999 - 2002 Candidate (BSc) Biology Ghent University 
(Belgium), with Distinction 

PROFESSIONAL EXPERIENCE AND TEACHING 

ORGANISATION OF FIELD CAMPAIGNS 

2003 - 2009, 9 one-month expeditions in Oman, Tanzania and Japan for 
quantitative and qualitative sampling of intertidal and subtidal seaweeds along 
several geographical and ecological gradients for population genetics, 
phylogeographic analyses and ground-truthing of remote sensing studies; grazer 
exclusion and nutrient enrichment field experiments; deployment and retrieval 
of long-term temperature loggers and measurement of water column nutrient 
concentrations 

SUPERVISION OF DISSERTATIONS 

2004 - 2010, 8 MSc and 5 BSc dissertations concerning ecology and 
biogeography of (invasive) seaweeds and corals (using vegetation relevés and 
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multivariate analyses, culture and field experiments, PAM and growth 
measurements, near-infrared and kite aerial photography, remote sensing and 
niche modeling) 

TEACHING 

2004 - 2010, organization and supervision of weekly practical courses 
(Phycology, Evolution, Microscopic techniques, Botany) and annual 1-week 
field training courses (coastal biodiversity and ecosystems) organized in 
Wimereux (France) for BSc Bioscience Engineering, BSc and MSc Biology, MSc 
Marine & Lacustrine Sciences 

CONSULTANCY SERVICES 

• 2010, cooperation on the checklist for seaweeds along the Belgian coast, 
commissioned by Koninklijk Belgisch Instituut voor Natuurwetenschappen 
(KBIN) and Vlaams Instituut voor de Zee (VLIZ, project BeRMS, 
http://www.marinespecies.org/berms) 

• 10/2005, 08/2009 and 01/2011, baseline surveying and assembling checklists of 
marine algae and seagrasses for environmental impact assessment in Oman and 
Abu Dhabi, commissioned by Five Oceans Environmental Services LLC 
(Oman, http://www.5oes.com) 

• 2007, 2008 and 2010, cooperation on the seaweed monitoring of the Spuikom 
(Ostend, Belgium) commissioned by the Vlaamse Milieumaatschappij (VMM) 
and the North Sea, commissioned by the Management Unit of the North Sea 
Mathematical Models (MUMM) 

 

PUBLICATIONS (full text copies are available on http://www.phycology.ugent.be) 

A1 (INTERNATIONAL PEER-REVIEWED JOURNAL ARTICLES, ISI-LISTED) 

• Pauly K., Jupp B.P. & De Clerck O. (2011) Modeling the distribution and 
ecology of Trichosolen blooms on coral reefs worldwide. Marine Biology, DOI: 
10.1007/s00227-011-1729-0. IF: 1.999 

• Tyberghein L., Verbruggen H., Pauly K., Troupin C., Mineur F. & De Clerck O. 
(accepted) Bio-ORACLE: a global environmental dataset for marine species 
distribution modelling. Global Ecology and Biogeography. IF: 5.304 

• Verbruggen H., Tyberghein L., Pauly K., Van Nieuwenhuyze K., Vlaeminck C., 
Kooistra W.H.C.F., Leliaert F. & De Clerck O. (2009) Macroecology meets 
macroevolution: evolutionary niche dynamics in the marine green alga Halimeda. 
Global Ecology and Biogeography 18: 393-405. (First three authors have equal 
contributions). IF: 5.304. 

A1 PAPERS IN PREPARATION 

• Pauly K., Tyberghein L. & De Clerck O. Spatial scale-dependent prediction in 
marine niche modeling: a case study. 

• Pauly K. & De Clerck O. Low-cost very high resolution intertidal vegetation 
monitoring enabled by near-infrared kite aerial photography. 
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B2 (BOOK CHAPTERS) 

Pauly K. & De Clerck O. (2010) GIS-based environmental analysis, remote 
sensing and niche modeling of seaweed communities. In: Israel A., Einav R. & 
Seckbach J. (eds.) Seaweeds and their role in globally changing environments. Kluwer 
Academic Publishers, Dordrecht, The Netherlands, p93-114. 

P1 (INTERNATIONAL CONFERENCE PROCEEDINGS, ISI-LISTED) 

• Pauly K., Goossens R. & De Clerck O. (in press) Mapping coral-algal dynamics 
in a seasonal upwelling area using spaceborne high resolution sensors. The 
Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen 
(Norway), ESA Special Publication SP-686, 8pp. Orally presented in the Coastal 
Zones section on 1 July, 2010. 

• Pauly K., Verbruggen H., Tyberghein L., Mineur F., Maggs C.A., Shimada S. & 
De Clerck. O. (2009) Predicting spread and bloom risk areas of introduced and 
invasive seaweeds. Phycologia 48 (S4), 103, meeting abstract from the 
International Phycological Congress 9, 2-8 August, Tokyo (Japan). Orally 
presented in the Invasive Seaweeds symposium on 3 August, 2010. 
 

ORAL CONFERENCE PRESENTATIONS, NOT ISI-LISTED 

Pauly K. (2009) Kite Aerial Photography for monitoring remote nature reserves: a test case 
in a Green turtle breeding area on Masirah Island (Oman). 10th VLIZ Young Scientist’s 
Day, November 27, Oostende (Belgium). Accompagnied by a similarly-titled 
poster presentation. Both received honorable mentions by the public and jury. 
http://www.vliz.be/EN/INTRO/&p=show&id=838  

 
COMPUTING EXPERIENCE 

• GIS, remote sensing and photogrammetry: ESRI ArcGIS 9.2, Clark Labs Idrisi Taiga, 
ITC ILWIS 3.7, SupreSoft Virtuozo, AgiSoft PhotoScan 

• ENM: Maxent 3.3.3, ENMTools 1.2, ModEco 1.0, Biomapper 4.0 
• Statistics: Statistica 6, Primer 6, PC-ORD 4, limited knowledge of the R 
• Image processing: Adobe Photoshop and Illustrator CS3, ImageJ 
• External device control software for GPS, temperature loggers and PAM 
 

LANGUAGES 

Dutch (native), English (fluent), French (fluent), Swedish (limited), German (reading), 
Arabic (basic) 
 
OTHER QUALIFICATIONS 

• European standard driving licence B (2000) and 4WD desert driving (Oman, 2 day 
training, 2004) 

• Superior Life-guard, Coastal life-guard and life-guard Navigation Instructor (1999 - 2005) 
• 1* SCUBA diver, CMAS (2003), over 100 logged dives, 2* in course 
• VHF maritime communication and International Certificate for Pleasure Craft (2006) 
• Indoor maritime rescue training, Falck Nutec (Netherlands, 1 day training, 2009) 




