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Abstract

During the last decade, several offshore wind-farms were built and offshore wind energy promises to be a suitable alternative to provide green
energy. However, there are still some engineering challenges in placing the foundations of offshore wind turbines. For example, wave run-up and
wave impacts cause unexpected damage to boat landing facilities and platforms. To assess the forces due to wave run-up, the distribution of run-up
around the pile and the maximum run-up height need to be known. This article describes a physical model study of the run-up heights and run-up
distribution on two shapes of foundations for offshore wind turbines, including both regular and irregular waves. The influence of wave steepness,
wave height and water depth on run-up is investigated. The measured run-up values are compared with applicable theories and previous
experimental studies predicting run-up on a circular pile.

The results show that the shape of the foundation substantially affects the maximum run-up level, increasing the expected run-up value. A new
relationship between the wave climate (regular and irregular waves) and the run-up is suggested. For this, the velocity stagnation head theory is
adjusted and second order Stokes equations are used to calculate the wave kinematics in the crest. The variation of the run-up around the pile is
measured and it is found that the position with the lowest run-up level is located under 135°, while the run-up at that position amounts to
approximately 40% to 50% of the maximum run-up.
Keywords: Wave run-up; Cylindrical monopile; Conical monopile; Offshore wind turbine; Foundation physical model; Spatial distribution
1. Introduction

During the last decade, several offshore wind-farms were
built. Construction of offshore wind turbines encompasses the
building of large structures like foundation, pile and turbine.
However, there are some smaller installations (boat landing
facility, J-Tube, ladder, platform and door) which have to be
taken into consideration. Recently, run-up and wave impacts
caused damage to existing platform and boat landing facilities.
Fig. 1 shows two pictures of wave run-up on one of the wind
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turbine foundations of the Horns Rev wind mill farm. The
conditions at which the pictures were taken are Hs=2.5 m,
while the platform level is 9.0 m above SWL. Actual run-up
values are much higher than expected or accounted for in the
design.

A logical countermeasure against run-up could be to build the
platforms on a higher level, where they cannot be reached.
However, this brings along other problems. As the wind turbines
have to be accessible under all conditions, safety requirements
dictate that the distance between boat and platform has to be
limited. If these requirements are not met, additional safety
measures have to be taken. For example, intermediate platforms
are needed when the main platform is placed on too high a level,
leading to the initial design problem. Consequently, it is
important to have an insight in run-up levels and forces caused
by the run-up. Maximum run-up levels determine the design of
the platform. Moreover, the run-up distribution around the pile
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Fig. 1. Wave run-up on one of the towers of the Horns Rev wind mill farm;
Hs=2.5 m, platform level=9 m above SWL, Elsam.

Table 1
Comparison of experimental studies on wave run-up

Reference Scatter
parameter
ka [–]

Deep water
wave steepness

H
gT2=2k

[–]

Relative
water
depth d /L
[–]

Research focus

Niedzwecki
and Duggal
(1992)

0.11 0.010 0.28 Full length and
truncated monopiles;
regular and irregular
waves

– – –
1.30 0.126 3.32

Martin
et al.
(2001)

0.12 0.040 0.28 Monopile;
regular waves– – –

0.32 0.126 3.32
Mase et al.
(2001)

0.08 0.007 0.09 Monopile; regular and
irregular waves– – –

0.24 0.065 0.27
Current
study

0.064 0.016 0.085 Monopile/cone; regular
and irregular waves– – –

1.50 0.10 1.99
for the dominant wave direction determines the optimal
locations for of boat landing, ladder and door.

This paper presents the results of a small-scale experimental
study that examines wave run-up on two different types of pile
foundations subject to both regular and random waves. As
offshore platforms are placed under diverse conditions, different
foundation types are used. It is reasonable to assume that the
run-up is influenced by the shape of the foundation. The scale
and parameters selected for this study reflect a range useful for
understanding the run-up phenomenon on a wind turbine
foundation, placed in relatively deep water conditions (17 m to
25 m). A review of applicable theories and previous
experimental studies is presented to provide the reader with a
clear perspective on how the new test results add to this
knowledge base. The main perspective of the paper is to present
a clear and easy to use formula to predict wave run-up on wind
turbine foundations and to give an estimate of the run-up
distribution around the pile.

2. Analytical models for wave run-up

2.1. Velocity stagnation head calculations

Hallermeier (1976) suggests an estimate for run-up by
considering the stagnation head at the wave crest as it strikes
the cylinder. The assumption is that the water particles at the
wave crest are forced to convert their kinetic energy into
potential energy by rising a distance equal to u2 /2 g up the
cylinder above the elevation of the crest. Thus, the run-up is
predicted to be

Ru ¼ gmax þ
u2

2g
ð1Þ

where u=the water particle velocity at the wave crest ηmax, both
evaluated using some appropriate wave theory.

2.2. Diffraction theory

Linear diffraction theory allows calculation of the wave field
around a body of arbitrary shape. This theory is valid for
sufficiently small wave heights so linear wave theory is
applicable. The result for the elevation around a circular cylinder
surface is (Sarpkaya and Isaacson, 1981)

g
H

¼ Re
Xl
m¼0

ibmcosðmhÞ
kkaH ð1ÞV

m ðkaÞ

" #
d e−ixt

" #
ð2Þ

Where Hm
(1)' is a Hankel function of the first kind and

bm ¼ 1; m ¼ 0
bm ¼ 2ð−1Þmim; mN0
k ¼ 2k=L; wave number

The run-up Ru(θ) around the cylinder is the maximum value
of η. Extension of diffraction theory to the second order has
been carried out by several other authors (Kriebel, 1990; Martin
et al., 2001), using different approaches. These authors have
shown that there is a large influence in using a second order
theory to calculate run-up and it is not sufficient to attempt an
extrapolation based on linear diffraction theory.

As no analytical solution for the maximum value of the
expression for η exists, an approximation is used further on in the
article. The approximate result for run-up on the up-wave side of a
circular cylinder is

Ru

gmax
¼ 1þ 2kD

L

� �2
" #1=2

ð3Þ

for a cylinder with diameter D.
The threshold of linear diffraction is widely regarded as

D /LN0.2. In this range, linear diffraction theory suggests that
scattered wave energy is negligibly small. However, this is not
the case for steep waves. Experience shows that there are
significant nonlinear contributions in the case of steep waves,
leading to a considerable amplification of the surface elevation.
Stansberg et al. (2005) found that second-order diffraction
analysis compare reasonably well in many cases, although there



Fig. 2. Test set-up, all values in meters.

Fig. 3. Monopile foundation, cone foundation.
are still some discrepancies for steep waves. Fully non-linear
modelling is advised in the case of steep waves.

3. Previous experimental studies and semi-empirical run-up
formulae

Some previous experimental studies related to the same
subject of run-up on piles are shortly described below. If possible,
the results of the present experiments are compared with these
findings. In Table 1 a comparative view of the dimensionless
parameters used in these earlier studies on wave run-up are
compared with the parameter range of the current tests.

3.1. Wave run-up and forces on a cylinder in regular and
random waves

Niedzwecki and Duggal (1992) performed a small-scale
experimental study to investigate wave run-up on rigid full-
length and truncated circular cylinders under regular and random
sea conditions.

They found that linear diffraction theory underestimates the
wave run-up for all but very low wave steepness. When applying
the velocity stagnation head theory, Niedzwecki and Duggal used
linear theory to calculate wave kinematics and found that run-up
heights were under predicted. They employed a semi-empirical
variation of the formula, using a coefficient m to be found by
fitting a straight line to the data, given by

Ru ¼ H
2
þ m

u2

2g
ð4Þ

with H the wave height.
They found that on average, m=6.83 for a full-length

cylinder, while using the maximum horizontal velocity at the
still water level.

They found no significant differences for the wave run-up on
the truncated and full-length cylinders and conclude that for the
considered draft (d≅2D) the wave run-up is not significantly
influenced by the wave kinematics below a certain elevation.

Their experiments were conducted in a flume with dimen-
sions l×w×h=37 m×0.91 m×1.22 m, with a pile diameter of
0.114 m.
They measured the wave elevation over one-half of the
cylinder's circumference by five equally spaced resistance type
wave gauges, placed directly on the cylinder surface.

In another paper, Niedzwecki and Huston (1992) allow a
second coefficient to vary the linear fit, and arrive at

Ru ¼ 0:56H þ 6:52
u2

2g
ð5Þ

for a single cylinder.

3.2. Wave run-up on columns due to regular waves

Martin et al. (2001) investigated run-up on columns caused
by steep, deep water regular waves. They compared their
experimental results with different theories, including the
theories described above (see Section 2) and conclude that
most theories underestimate the run-up values. They found
that linear diffraction theory is inadequate and used the
superposition method of Kriebel (1992), which was still
found inadequate for their regime of interest (Table 1),
although it did give an improvement of linear diffraction
theory. They concluded that the semi-empirical method,
suggested by Niedzwecki and Huston overestimates the run-
up in nearly all cases.

Their experiments were conducted in a very narrow flume
with dimensions l×w×h=20 m×0.4 m×1 m, with a pile
diameter of 0.11 m. With a pile diameter to flume width ratio of
0.275, the influence of the side walls on the measurements
might be significant. To avoid artificially high blockage in the
laboratory model, the value of pile diameter to flume width ratio
should be smaller than 0.167 (Whitehouse, 1998). They



Fig. 4. Position of wave gauges: 10 wave gauges installed 2 mm from the pile
surface.

Fig. 5. Mounted capacitance wave gauges on monopile and cone foundation.
estimated the run-up with visual examination of video
recordings.

3.3. Wave run-up of random waves on a small circular pier

Mase et al. (2001) investigated run-up heights of random
waves on a small circular pier, installed on a uniform bottom
slope, tanθ, varying between 1:40 to 1:10. They derived a
prediction formula for the 2% excess run-up height, as well as
the maximum and the one-third maximum run-up heights on a
small diameter circular pier as a function of bottom slope tanθ,
deep water wave height H0, deep water wave length L0 and
water depth at the pile d. They arrive at the following formula
for the 2% run-up (with a correlation coefficient r=0.98):

Ru2%

d
¼ 0:24−

0:004
tanh

� �
þ 11:43−

0:20
tanh

� �

d exp½−ð1:55−0:77exp −69:46
H0

L0

� �� �Þ
d 1:02−

0:015
tanh

� �
d

d
H0

� ��
ð6Þ

They found a linear relationship between the maximum run-up
Rumax, the significant run-up Rus and the 2% excess run-up
Ru2%:

Rumax ¼ 1:22dRu2% ð7Þ
Both formulae are valid for the following conditions:

1
40

VtanhV
1
10

0:004b
H0

L0

b0:05
d
H0

b6

Their experiments were conducted in a flume with dimensions
l×w×h=40 m×0.7 m×0.75 m, with a pile diameter of 0.114 m.
Theymeasured the run-up variation bymeans of a capacitance-type
wave gauge, placed 3 mm in front of the structure.

Because the bottom slope at an offshore location of a wind
turbine park is often very flat, the present study uses an offshore
bottom slope of 1:100, which is much flatter than the bottom
slope in the experiments of Mase et al. (2001). Although there is
an overlap in most parameters, the comparison of the present
test results with the Eq. (6) does not give good results, due to the
difference in offshore bottom slope (tanθ=1:40 to 1:10 as
compared to tanθ=1:100 in this study). This shows that it is
recommended to only use the formula of Mase et al. within the
specified range.

4. Experimental set-up

4.1. Description of set-up and model

The new experiments are conducted in a wave flume which
has a length of 30 m, a width of 1.5 m and a depth of 1 m at
Aalborg University, Denmark.

Fig. 2 shows the test set-up. A piston-type wave paddle
generateswaves at one end of thewave flume,where an absorbing
beach is installed at the other end. Twomodels (Fig. 3) are built in
front of the absorbing beach. One model is a monopile
foundation, whereas the second model is a cone shaped gravity
type foundation. Both models have a pile diameter of 0.12m. The
water depth varies between 0.35 and 0.5 m at the location of the
foundation. The offshore slope is fixed at 1:100.

Ten resistance-type wave gauges are mounted on the model to
measure the wave run-up and to determine the variation of the run-
up around the pile. Fig. 4 shows the position of the wave gauges
whereas Fig. 5 shows a picture of the mounted wave gauges.

The wave gauges on the pile are mounted approximately 2 mm
from the pile surface. This way it is insured that the water is able to
move freely up and down the wave gauges. Marking tapes are
placed with a distance of 0.02 m and video recordings are made to
allow visual inspection of the recorded run-up measurements.

4.2. Wave conditions

Two different wave types are tested, regular and irregular
waves. The target spectrum of the irregular waves is a JONSWAP



Table 2
Experimental conditions for irregular waves

d [m] Hs [m] Tp [s] s 2kHs
gT2

p

� �
[–] ka [–] d /L [–] Models

0.5 0.143 2.10 0.021 0.0877 0.11626 Monopile
0.5 0.159 2.28 0.020 0.0799 0.10603 Monopile

Cone
0.5 0.170 2.56 0.017 0.0701 0.09291 Monopile

Cone
0.5 0.195 2.56 0.019 0.0701 0.09291 Monopile

Cone
0.5 0.199 2.64 0.018 0.0676 0.08969 Monopile
0.5 0.133 1.78 0.027 0.1069 0.14173 Monopile

Cone
0.5 0.155 1.95 0.026 0.0957 0.12695 Monopile

Cone
0.5 0.165 1.95 0.028 0.0957 0.12695 Monopile

Cone
0.5 0.179 2.10 0.026 0.0877 0.11626 Monopile

Cone
0.5 0.192 2.10 0.028 0.0877 0.11626 Monopile

Cone
0.5 0.127 1.44 0.039 0.1413 0.18741 Monopile
0.5 0.146 1.52 0.041 0.1313 0.17413 Monopile
0.5 0.159 1.61 0.039 0.1218 0.16154 Monopile
0.5 0.167 1.71 0.037 0.1127 0.14943 Monopile
0.5 0.188 1.82 0.036 0.104 0.138 Monopile
0.5 0.112 1.12 0.057 0.2047 0.27147 Monopile
0.5 0.128 1.15 0.061 0.1956 0.25941 Monopile

Cone
0.5 0.144 1.30 0.054 0.1629 0.21612 Monopile

Cone
0.5 0.158 1.41 0.051 0.1448 0.19202 Monopile

Cone
0.5 0.163 1.39 0.054 0.1483 0.19669 Monopile
0.35 0.127 1.67 0.029 0.1328 0.1233 Monopile
0.35 0.133 1.95 0.022 0.1112 0.10321 Monopile
0.35 0.144 2.28 0.018 0.0936 0.0869 Monopile
0.35 0.142 2.10 0.021 0.1022 0.09492 Monopile
0.35 0.145 2.48 0.015 0.0852 0.07908 Monopile
spectrum, with a peak enhancement factor γ of 3.3. A total of 60
regular and 36 irregular tests are simulated.

The water surface elevations are measured next to the model
with two times three resistancewave gauges. Three gauges are used
to separate the incoming and reflected waves by means of the
method byMansard and Funke (1980). Target wave conditions are
generated satisfactorily, although slight deviations occur.

The records of irregular waves contain approximately 500
individual waves. The records of regular waves contain
approximately 50 waves.

For the regular waves, wave heights vary between 0.01 m
and 0.26 m, with a period varying between 0.40 s and 2.78 s,
corresponding with a wave steepness varying between 0.02 and
0.12.

For the irregular waves, only larger wave heights (Hs

between 0.127 m and 0.224 m) are generated. Table 2 shows the
most important parameters for the irregular wave tests. The deep
water steepness is defined as s0=Hs / (gTp

2 /2π).

4.3. Definition of run-up

As shown in Fig. 4, 10 resistance wave gauges are mounted
on the monopile to measure the run-up distribution around the
pile. Run-up is defined as the “green water” level on the surface
of the pile. Splash is not taken into account as the wave gauges
only measure the green water level. Splash is a phenomenon
which occurs mostly with the largest waves. It is assumed that
the largest forces on the structure are caused by the green water
level.

As mentioned, video recordings were made during the tests.
They show that the run-up levels are measured accurately. Only
thin run-up layers, caused by the highest waves with very high
run-up levels are underestimated slightly due to the distance of
wave gauges to the pile (2 mm).

The video images allow differentiating between the run-up
caused by breaking waves and the run-up caused by non-
breaking waves. They also allow to capture the splash height.

5. Analysis of wave run-up

5.1. Dimensionless quantities

For the irregular waves, it is not obvious what statistical
quantity should be used for design. The highest and largest
waves cause the largest run-up values, but the thickness of the
run-up layer is larger for smaller waves. It is therefore not sure
that the highest waves cause the highest load on the deck.

The 2% excess run-up height Ru2% is often used in the studies
of run-up on slopes. The use of Ru2% allows a safe design of
coastal structures against wave overtopping. Mase et al. (2001)
found that the Rumax value only differs by a constant factor from
the Ru2% value. They found that Rumax=1.22Ru2%. We found
approximately the same value in the present study (Rumax=
1.23Ru2%). For this reason only the Ru2% value is studied.

In most theories (valid for regular waves), the run-up is either
normalised by the maximum elevation ηmax or by the wave height
Hmax. When using linear theory this leads to ηmax=Hmax /2, but
for a large range of waves (in particular for breaking waves),
linear theory is not valid. Therefore beside linear wave theory,
also higher order wave theories are used.

5.2. Regular wave test results

Wave height and run-up measurement data are only
considered in the steady part of the wave train. Fig. 6 shows
an example of a steady part of the wave train, including both the
wave signals next to the pile and the simultaneous measure-
ments on all 10 run-up gauges. Even when a steady wave train is
reached, slight variations in the waves and in the run-up are
observed. To accommodate for the variation, we average 20
consecutive peaks and troughs for the regular wave data.
Averaging yields mean values of wave elevation, run-up and
run-down. These mean values are plotted in Figs. 7–14.

Some electrical noise on the measured signal is observed.
For small wave heights, this signal noise is of the same
magnitude as the difference between measured run-up and
measured wave height, which might lead to values of (Ru−H / 2)
smaller than 0. A wave height of 0.14 m yields a noise ratio of



Fig. 6. Steady part of regular wave train (H=0.12 m, T=1.6 s): wave signal next to the pile (wg2) and simultaneous measurements of run-up gauges.
less than 12%. For a wave height of 0.24 m, the noise ratio is
already smaller than 2%.

Fig. 7 shows the measured (Ru−H / 2)-values on the front
side of the pile as a function of wave height, for a target deep
water wave steepness s0=0.03 (measured deep water wave
steepness s0 varying between 0.24 and 0.34). Overlaid on this
graph are three theories using linear wave kinematics and two
theories using higher order wave kinematics. Linear theories
include the velocity stagnation head theory as well as the
suggestions from Niedzwecki and Duggal (1992) and Niedz-
wecki and Huston (1992). The applied higher order theories are
the second order Stokes theory and Fenton's Fourier approx-
imation method.

The graph shows that the velocity stagnation head theory
seriously underestimates the run-up value (starting from
H=0.16 m) when linear theory is applied to calculate the
wave kinematics in the crest. The suggestions made by
Niedzwecki and Duggal (1992) and by Niedzwecki and Huston
(1992) both overestimate the run-up for smaller wave heights,
but for larger wave heights a substantial underprediction is
observed. More so, the curve does not reproduce the test results.
The occurrence of the measurement at H=0.26 m indicates that
both theories might seriously underestimate the wave run-up for
very high wave heights. Better results are obtained when the
velocity stagnation head theory is calculated with higher order
(non-linear) wave crest kinematics (assuming that ηmax=Hmax /
2), as mentioned by other authors (Martin et al., 2001). The
applied non-linear theories are the second order Stokes theory
and Fenton's Fourier approximation method, with 20 Fourier
components. The improvement lies especially in the shape of
the curve which follows the trend of the measurements more
accurately. Hmax /2 is used instead of ηmax in this representation
so that measured run-up values are located above the
predictions made by the non-linear theories.



Fig. 7. Run-up on cylindrical monopile for steepness s0=0.03 (regular waves,
d=0.5 m).

Fig. 9. Run-up on cylindrical and cone shaped foundation for wave steepness
s0=0.03 (regular waves, d=0.5 m).
The second order Stokes theory seems to hand good results
(bearing in mind that ηmax is underestimated by using Hmax /2
in the velocity stagnation head theory). A huge advantage is that
this theory can be solved analytically, while the Fourier
approximation method cannot. The implementation of Fenton's
theory was done in the program ACES (Automated Coastal
Engineering System, 1992).

In Fig. 8, experimental results for different wave steepness
are shown. It is difficult to identify from the figure whether the
wave steepness has a big influence on the wave run-up, but the
highest run-up values are measured for the lowest steepness and
run-up values for the highest steepness (s=0.07) are somewhat
lower than for the other steepness. Linear theory predicts higher
run-up values for higher steepness, as u increases when the
steepness increases.

Fig. 9 compares the wave run-up on a monopile with the run-
up on a cone foundation for regular waves with the same wave
steepness. Run-up values for the cone foundation are higher
with increasing height of the incident waves.
Fig. 8. Run-up on monopile for different wave steepness (regular waves,
d=0.5 m).
In Figs. 10–14 the measured run-up is compared to the
estimated run-up for all tests with regular waves, while using the
theories which are described in Sections 2 and 3.

In Fig. 10, the velocity stagnation head theory is represented,
while linear theory is used to calculate the wave kinematics.
Low run-up values are predicted very well, but high run-up
values are clearly underestimated.

Fig. 11 shows the prediction made by linear diffraction
theory. The run-up prediction shows the same trend as for the
velocity stagnation head theory; run-up is seriously under-
estimated for almost all measured run-up values.

In Fig. 12, the adjustment made by Niedzwecki and Duggal
(1992) is presented. In the study of Martin et al. (2001), all run-
up values were overestimated by this formula. The present test
results show an overestimation of low run-up values, while the
high run-up values are underestimated. Further more, it is not
possible to get a good estimate of the run-up by adjusting the
value of the parameter m in Eq. (4) while using linear theory for
Fig. 10. Comparison between measured and theoretical run-up. Theoretical run-
up is calculated using the velocity stagnation head theory (Eq. (1)) with linear
theory for wave kinematics (regular waves).



Fig. 11. Comparison between measured (both cylindrical and cone shaped
foundation) and theoretical run-up. Theoretical run-up is calculated using the
diffraction theory (Eq. (3)) with linear theory for wave kinematics (regular
waves).

Fig. 13. Comparison between measured and theoretical run-up. Theoretical run-
up is calculated using the velocity stagnation head theory (Eq. (1)) with Stokes
second order theory for wave kinematics (Eqs. (8) and (9)) (regular waves).
the wave kinematics. Higher order wave theories offer a better
solution.

In Fig. 13, the second order Stokes theory is used to calculate
surface elevations:

gmax ¼
H
2
þ k

H
2
H
8
coshðkdÞ
sinh3ðkdÞ ð2þ coshð2kdÞÞ ð8Þ

and the horizontal particle velocity at the wave crest:

utop ¼ H
2
gk
x

coshðkðgmax þ dÞÞ
coshðkdÞ

þ 3
4
k
H2

4
x
coshð2kðgmax þ dÞÞ

sinh4ðkdÞ ð9Þ

The prediction of the run-up on a monopile is very good,
even for large run-up heights. Especially for the lower run-up
Fig. 12. Comparison between measured (both cylindrical and cone shaped
foundation) and theoretical run-up. Theoretical run-up is calculated using
Niedzwecki and Duggal's adjustment for the velocity stagnation head theory
(Eq. (4), with m=6.83) (regular waves).
there is a large improvement of the prediction compared to
Niedzwecki and Duggal's prediction. For the cone foundation,
run-up is underestimated for the larger wave heights.

In Fig. 14, Fenton's Fourier approximation method is used to
calculate both ηmax and u. The implementation of Fenton's
theory was performed using the code of ACES (1992). The run-
up prediction is not improved by using this more complicated
numerical wave theory.

As the velocity stagnation head theory with wave crest
kinematics determined with second order Stokes theory gives
the best results, it is further used for the irregular waves. The
main goal for the irregular waves is to find a simple reliable
formula to calculate the wave run-up.

5.3. Irregular wave experimental results

Although irregular/random waves are often used in the
design of offshore structures, there are no simple reliable
Fig. 14. Comparison between measured and theoretical run-up. Theoretical run-
up is calculated using the velocity stagnation head theory (Eq. (1)) with Fenton's
Fourier series approximation for wave kinematics (regular waves).



formulae for irregular wave run-up. For this reason, the present
study focuses on defining the wave run-up for irregular waves.

A typical part of an irregular wave train is shown in Fig. 15,
including both the wave signal next to the pile and the
simultaneous measurements on all 10 run-up gauges.

The influence of the wave steepness on the 2% excess run-up
is presented in Fig. 16. The target deep water steepness s0,
presented in this figure, is calculated with Hs and Tp. The
measured deep water wave steepness may deviate slightly from
the target value. Again, the difference for different wave
steepness is limited, but the highest wave steepness (s0) gives
clearly lower run-up values and the highest run-up is measured
for the lowest wave steepness.

Fig. 17 shows the 2% excess run-up height as a function of
the 2% excess wave height for a monopile in 2 water depths and
for the cone foundation. All measurements shown in this figure
Fig. 15. Irregular wave train (Hs=0.19 m, Tp=2.1 s): wave signal next t
have a deep water target wave steepness s0=0.03. Run-up is
significantly higher (15 to 35%) for the cone foundation. Due to
the limited water depth, wave breaking occurs for d=0.35 m,
leading to an equal H2% value for each test. This implies that
wave steepness decreases with increasing wave period. Again
lower steepness leads to higher run-up values.

For the irregular waves, a spectral analysis of both the run-up
and the wave properties can be made (e.g. Niedzwecki and
Duggal, 1992). Another possibility is to use linear random wave
theory in the case of irregular waves to determine the wave
kinematics. The random wave theory decomposes the irregular
wave spectrum into component waves and superposes the
kinematics determined by linear extrapolation or with stretching
techniques such as Wheeler stretching (Randall et al., 1993).
Another technique used for the prediction of irregular wave
kinematics is to substitute an equivalent regular wave and treat it
o the pile (wg2) and simultaneous measurements of run-up gauges.



Fig. 16. 2% Excess run-up on monopile for different wave steepness s0
(irregular waves, d=0.5 m).

Fig. 18. Comparison between measured and theoretical Ru2%. Theoretical run-
up is calculated using the velocity stagnation head theory (Eq. (1)) with Stokes
second order theory for wave kinematics in the crest (Eqs. (8) and (9)).
as a regular wave of equal height and frequency. The wave
kinematics can than be computed using a high order non-linear
wave theory, such as Stokes theory, and the resulting kinematics
are assumed to be that of the irregular wave (Randall et al., 1993).
In this study the latter method is used for several reasons. First of
all, a comparison between Figs. 16 and 17 and Figs. 8 and 9
reveals a similar behaviour for the wave run-up caused by regular
and irregular waves. Secondly, Randall et al. (1993) show that
Stokes second order theory gives comparable results to the
Wheeler stretching technique for the velocities in the wave crest.
They found that where Wheeler stretching under predicts the
velocities in an irregular wave and linear extrapolation over
predicts the velocities in an irregular wave, Stokes second order
theory tends to over predict the velocities under the SWL and
slightly over predict the velocities above the SWL. The main
reasonwhy the technique of an equivalent regular wave is used, is
that it makes it possible to obtain a simple formula.

Using H2% as a characteristic wave height to predict the 2%
run-up value might seem logical. Often however, only limited
Fig. 17. 2% Excess run-up on different foundations, target wave steepness
s0=0.03 (irregular waves).
wave characteristics (e.g. Hs) are known. For this reason both
the significant wave height Hs and the 2% excess wave height
H2% are used to predict wave run-up. Tp is used as a
characteristic wave period.

In Fig. 18, the results for the velocity stagnation head
theory are shown, applying Stokes second order equations to
calculate the wave kinematics in the crest (Eqs. (8) and (9)).
The best fit is obtained for the regular waves. For the irregular
waves, the theoretic run-up calculated with Hs and H2% is
compared to the measured 2% run-up value. When Hs is used
to calculate Ru2%, the run-up is seriously underestimated, due
to the fact that a much smaller wave height than the one
causing the run-up is used. When H2% is used to calculate the
run-up, the estimate is better, but still underestimating the 2%
excess run-up.
Fig. 19. Comparison between measured and theoretical Ru2%. Theoretical run-
up is calculated using the adjusted velocity stagnation head theory with Stokes
second order theory for wave kinematics in the crest (Eqs. (10) and (11);
(irregular waves, H=H2%, T=Tp).



Fig. 20. Variation of significant run-up along the monopile, s0=0.044. Fig. 21. Variation of 2% run-up along the monopile, s0=0.044.

Fig. 22. Variation of maximum run-up along the monopile, s0=0.044.
The velocity stagnation head theory is adjusted with a
coefficient m in Eq. (4) as suggested by Niedzwecki and Duggal
(1992) to improve the results, while using the second order
Stokes theory for the wave kinematics. Eqs. (10) and (11) give
the best result when ηmax is calculated with Eq. (8) and u is
calculated with Eq. (9), both using H=H2% and T=Tp. The
results are presented in Fig. 19. The value of m is determined by
postulating R̄u2%; measured ¼ R̄u2%; theoretic . As higher run-up
values were found for the cone foundation, a different
coefficient m is found while trying to find the best fit. We
find a value of m=4.45 for the cone foundation, while m=2.71
for the monopile. The difference indicates that the coefficient m
is probably a function of the shape of the foundation and/or the
pile diameter. It is however difficult to include this into the
parameter m as only two different shapes are tested.

A standard deviation of 0.024 is obtained for all estimates of
Ru2%, being less than 10% of R̄u2% ¼ 0:26 m:

Eq. (10) is to be used to calculate Ru2% on a monopile
foundation:

Ru2% ¼ gmax þ 2:71
u2

2g
ð10Þ

For the specific case of the cone foundation, the equation
becomes:

Ru2% ¼ gmax þ 4:45
u2

2g
ð11Þ

In each of these equations, H2% and Tp are used to calculate the
wave kinematics by means of Eqs. (8) and (9). In most practical
cases however, only Hs is known. When the waves are Rayleigh
distributed, H2% can be estimated by

H2% ¼ 1:40Hs ð12Þ

One must however be careful to use Eq. (12). When Hs is on
the limit of wave breaking, the run-up will be seriously
overrated by using both formula (10) and (12).

In the present study, the smaller wave heights are Rayleigh
distributed. For the larger significant wave heights, the distribution
deviates quite a lot from the Rayleigh distribution due to wave
breaking. In shallow water, Glukhovsky's (1966) distribution can
be used. The distribution of the wave heights in the present study
tends to be even steeper than Glukhovsky's distribution.

Generally, the Rayleigh distribution is adequate, except for
near-coastal wave records in which it may overestimate the
number of large waves. Investigations of shallow-water wave
records from numerous studies indicate that the distribution
deviates from the Rayleigh distribution, and other distribu-
tions have been shown to fit individual observations better
(SPM, 1984). The primary cause for the deviation is that the
large waves suggested in the Rayleigh distribution break in
shallow water. Unfortunately, there is no universally accepted
distribution for waves in shallow water. As a result, the
Rayleigh distribution is frequently used with the knowledge
that the large waves are not likely to occur (CEM, 2002).

5.4. Variation of run-up around the pile

The variation of the run-up around the pile for irregular
waves was measured at nine different angles of the wave



attack for four different wave steepnesses (0.020, 0.030, 0.044
and 0.070). Figs. 20, 21, and 22 correspond with the measured
Rus, Ru2% and Rumax values relative to the value of the run-up
at the front side of the pile, for a wave steepness of 0.044. The
relative run-up distribution along the pile is almost indepen-
dent of the generated wave height. The further from the front
line, the more the wave height affects the distribution of the
run-up. At the back side of the pile, the relative significant
run-up values tend to be smaller for higher waves (Fig. 20).
For the 2% run-up and the maximum run-up this is not the
case: there seems to be no straightforward relation between the
relative run-up at the back side of the pile and the wave
height.

When looking at the significant wave height, the maximum
run-up is found at the front of the pile. For the 2% and the
maximum values, the maximum run-up is mostly found at an
angle of 45°. At this location, the measured run-up values are
1% to 9% higher than those at the front side of the pile. The
difference increases for the higher waves. This is probably due
to the fact that the run-up tongue for very high waves is thinner
at the front side of the pile than at an angle of 45°. Due to the
distance of the wave gauges to the pile (2 mm), the very thin
run-up tongues induced by very high waves are slightly
underestimated.

Fig. 21 shows that the lowest 2% run-up is not located on
the leeside, as one might expect, but at an angle of
approximately 135°. For the significant wave height, the
lowest run-up is located at an angle of approximately 122.5°.
The run-up at this position amounts to approximately 40% to
50% of the maximum run-up. As the location of the access
facilities is optimal where maximum run-up is at its lowest,
this information can be combined with information on wave
directions to find an optimum location for the access facilities
to the wind turbine.

6. Summary and conclusion

Wave run-up on offshore wind turbine foundations is much
higher than often predicted by linear wave theory, causing
problems for the access facilities. A possible countermeasure
exists in placing the platforms higher, preventing the up-running
waves to reach them.

In this paper, formulae (Eqs. (10) and (11)) are given to
predict wave run-up for irregular waves, based on a small-scale
experimental study that examines both regular and irregular
wave run-up on two different shapes of pile foundations:
cylindrical and conical. The parameters selected for this study
reflect a range useful for understanding the run-up phenomenon
on a wind turbine foundation, placed in deeper water conditions
(d /L=0.10–0.8), with a flat bottom slope (tanθ=1:100). As
experience shows and as the formulae predict, run-up can often
be so high that placing the platform on a level were it cannot be
reached by the waves is hardly manageable. Designers of
offshore foundations should therefore take the wave forces from
up-running waves into consideration. To obtain the prediction
formula for the run-up caused by irregular waves, the velocity
stagnation head theory is adjusted with a coefficient m as
suggested by Niedzwecki and Duggal (1992), while using the
second order Stokes theory for the wave kinematics. It was
found that the shape of the foundation influences the expected
run-up level, leading to a different value m for a cylindrical
foundation and for the cone foundation. More research is
needed to assess the run-up for other foundation shapes and
types.

To find an optimal location for the access facilities of the
wind turbines, the variation of the run-up around the pile was
measured. The test results show that the position with the lowest
run-up level Ru2% or Rumax is located under 135°, while the run-
up at that position amounts to approximately 40% to 50% of the
maximum run-up at the frontline.
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Appendix A. Appendix: Notation

The following symbols are used in this paper:

a Cylinder radius
d Water depth
D Pile diameter
g Gravitational acceleration
h Height of wave flume
H Wave height
Hs Significant wave height
H0 Deep water wave height
H2% Wave height exceeded by 2% of the waves
k Wave number
l Length of wave flume
L Wave length
L0 Deep water wave length
m Coefficient
Ru Run-up on up-wave side of structure
Rus Significant run-up height
Rumax Maximum run-up height
Ru2% 2% excess run-up height
R̄u2% Average of run-up values higher than the 2% excess

run-up height
R̄u2%; measured Average measured run-up height
R̄u2%; theoretic Average theoretical run-up height

s Wave steepness, H /L

s0 Deep water wave steepness, 2πH /gT2

T Wave period
Tp Peak wave period
u Horizontal component of wave velocity
w Width of wave flume
tanθ Bottom slope
βm Coefficient
η Water surface elevation
ηmax Maximum water surface elevation
ω Radian wave frequency, 2π /T
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