First Record of Janicea antiguensis (Chace, 1972) from the Cape Verde Islands and in the
Eastern Atlantic (Decapoda, Caridea, Hippolytidae)
Author(s): Cédric d’Udeke d’Acoz
Published by: Brill
Stable URL: http://www.jstor.org/stable/20106386
Accessed: 11/01/2012 03:33
FIRST RECORD OF JANICEA ANTIGUENSIS (CHACE, 1972)
FROM THE CAPE VERDE ISLANDS AND IN THE EASTERN ATLANTIC
(DECAPODA, CARIDEA, HIPPOLYTIDAE)

BY

CÉDRIC d’UDEKEM d’ACOZ

Avenue du bois des collines 34, B-1420 Braine-l’Alleud, Belgium

During SCUBA diving investigations in the Cape Verde Islands, Prof. Dr. Peter Wirtz (Department of Oceanography and Fisheries, University of the Azores) observed several individuals of a shrimp unknown to him. He collected two specimens of this species, which he sent to the present author. It soon appeared that they belong to the genus Janicea Manning & Hart, 1984, and that they also look quite similar to its type and only known species, Janicea antiquensis (Chace, 1972). This shrimp was previously considered to be restricted to the warm parts of the northwestern Atlantic (Chace, 1972; Manning & Hart, 1984). In order to verify the identity of the Cape Verde Janicea, I have compared them with American J. antiquensis kindly provided by Dr. Rafael Lemaitre (Smithsonian Institution, Washington, D.C.). The Janicea material examined by me consists of the following specimens or collections:

Janicea antiquensis (Chace, 1972) (fig. 1)

Eastern Atlantic. — Cape Verde Islands, São Tiago island, Tarrafal, coarse shell sand bottom between large rocks, 10-12 m depth, night collecting, P. Wirtz coll., February 2000: 1 male, collection Institut Royal des Sciences Naturelles de Belgique/Koninklijk Belgisch Instituut voor Natuurwetenschappen, Brussels (IRScNB/KBIN). Same locality, small cave 7 m depth, night collecting, P. Wirtz coll., February 2000: 1 ovigerous female, collection IRScNB/KBIN.

A careful comparison of *Janicea* from the eastern and western Atlantic revealed no significant differences between them. So, I consider the Cape Verde *Janicea* as belonging to *J. antiquensis*. The habitat of the shrimps from both sides of the Atlantic is also similar: shallow-water bottoms with rocks, and, especially, semi-dark caves.

In fig. 1, I give illustrations of the anterior part of the two Cape Verde specimens, as well as a drawing of the tip of the sixth pleonite, a structure which, so far, had never been drawn at a larger scale.

Prof. Wirtz provided me also with colour slides of the Cape Verde *J. antiquensis*, photographed in situ during night dives. So, it is possible to give some information on its nocturnal colour pattern, which has never been described so far.

Shrimps more or less transparent. Cephalothorax, antennulae, antennae, scaphocerites, and third maxillipeds usually strongly tinged with red. Some specimens are less strongly pigmented, with a transparent cephalothorax and white inner antennular flagella. Pleon transparent with a red transverse stripe on the posterior part.

Fig. 1. *Janicea antiquensis* (Chace, 1972), Cape Verde Islands, São Tiago island, Tarrafal. A, male; B, C, ovigerous female. A, B, anterior part of body; C, posterolateral part of sixth pleonite.
of each segment; a longitudinal red line runs all along its ventral side; a shorter, inner dorsal red line arises posteriorly from the visceral mass. Tail fan slightly to strongly tinged with red. Third to fifth pereiopods usually with red merus, and white carpus and propodus; however, in some specimens these appendages are entirely white.

There are different explanations possible for the amphi-atlantism of these species. For *Latreutes fucorum*, the situation is quite evident: since it lives not only in coastal benthic habitats but also on pelagic *Sargassum*, adults may easily cross the Atlantic by means of their algal raft. For the other species, the situation is not clear. In most cases, transport by ships via hull fouling or via ballast waters seems unlikely, since none of these species has the type-profile of an invading alien species, i.e., a species with both a tolerance for harsh habitats like polluted harbours and a wide ecological niche. However, in the precise case of *J. antiquensis*, this explanation cannot be totally ruled out, since it may be found in harbour habitats and is possibly of recent occurrence in its type locality (Chace, 1972). Some species may have very long larval stages or the possibility to increase the length of their larval development when drifted by the currents in oceanic waters. In this context, it should be pointed out that the eggs of *Janicea antiquensis* and *Cinethorhynchus rigens* examined by me are very small, a characteristic which suggests a long larval development. Others may have a very slow evolutionary rate and have remained unchanged or nearly unchanged during the opening of the Atlantic basin, i.e., when the distance between both sides of the Atlantic Ocean became too large to allow larval transport any longer. Finally, it is possible that, in some cases, the amphi-atlantism is apparent only and we are actually dealing with a pair of vicariant cryptic or sibling species.
ACKNOWLEDGEMENTS

I would like to sincerely thank Prof. Dr. Peter Wirtz for the opportunity to study the Cape Verde *Janicea*, and Dr. Rafael Lemaitre for the loan of western Atlantic specimens.

REFERENCES

First received 23 June 2000.
Final version accepted 27 June 2000.