LOSS OF GENETIC VARIATION IN A STRONGLY ISOLATED AZOREAN POPULATION OF THE EDIBLE CLAM, *TAPES DECUSSATUS*

KURT JORDAENS, 1* HANS DE WOLF, 1 TANIA WILLEMS, 1 STEFAN VAN DONGEN, 2 CARLOS BRITO, 3 ANTONIO M. FRIAS MARTINS, 3 AND THIERRY BACKELJAU^{1,4}

¹Department of Biology University of Antwerp (RUCA) Groenenborgerlaan 171 B-2020 Antwerp, Belgium ²Department of Biology University of Antwerp (UIA) Universiteitsplein 1 B-2610 Wilrijk, Belgium ³Department of Biology University of the Azores Rua da Mãe de Deus 58 Apartado 1422 P-9502 Ponta Delgada Azores, Portugal ⁴Royal Belgian Institute of Natural Sciences Vautierstraat 29 B-1000 Brussels, Belgium

ABSTRACT We used allozyme electrophoresis to compare the genetic variation of an introduced and strongly isolated population of the edible clam *Tapes decussatus* in the Azores (Lagoa de Santo Cristo, São Jorge) with populations from the main range of the species (Ria and Thau). Observed and expected heterozygosity values, number of polymorphic loci, and mean number of alleles per locus in the main-range populations fall within the limits reported for *T. decussatus* and other Venerid clams. In contrast to previous studies on Venerid clams, we observed no heterozygote deficiencies. In the introduced Lagoa population, we observed a strong reduction of allelic diversity and expected heterozygosities and an effective population size of only 5.30. The Lagoa population is only slightly differentiated from populations from the species' main range and may thus be of low "biological value." Exploitation of *T. decussatus* could therefore be allowed to continue but must follow strict collection guidelines, especially given that only 15% of the area is suitable for exploitation. Otherwise, a unique component of the Azorean fauna that also serves as a fishery resource may be lost.

KEY WORDS: Azores, allozymes, founder effect, Tapes decussatus, population genetics, conservation

INTRODUCTION

Small or isolated populations can contribute substantially to biodiversity, and the conservation of such populations must be an important part of any effective Biodiversity Action Plan (Usher 1997). The genetic effects in small populations are manifold (Harris 1984, Usher 1987). Small effective population sizes ($N_{\rm e}$) often show a loss of genetic variability (i.e., founder effects, bottlenecks) caused by genetic drift (Lacy 1987). Apart from losing (rare) alleles, small populations often lose common alleles by chance (Nei et al. 1975, Simberloff 1988) and may show elevated inbreeding, which may impair reproductive fitness. In addition, the loss of genetic variability may limit the ability of a population to adapt to changing environments (Frankel and Soulé 1981, Thorpe et al. 1995). Over the long term, these effects may enhance the risk of extinction (Soulé 1987). Effective conservation or management plans require a thorough knowledge of the genetic population

structure before adequate measures can be taken. In this study, we estimated the effective population size and investigated whether genetic variation is reduced in an introduced, isolated population of the commercial edible clam *Tapes decussatus* (Linnaeus, 1758).

The main range of T. decussatus extends from Great Britain in the north to Senegal in the south, along the Iberian peninsula, and into the Mediterranean to the east (Tebble 1966). Outside its main range, the species has been introduced in the Lagoa de Santo Cristo, a small and isolated lagoon situated at the north coast of the island of São Jorge in the Azores, approximately 1,400 km from the African/European coasts, where it was discovered for the first time in 1967 (Morton 1967). This lagoon has a total area of 0.86 km² (length, 500 m; width, 250 m; and maximum depth, 6 m) and harbors a unique fauna (Morton 1967, Santos 1985, Santos and Martins 1986, Morton and Tristão da Cunha 1993, Morton et al. 1998). The lagoon was classified as a Natural Partial Reserve in 1984 on the basis of its unique origin, geology, and the presence of the edible clam T. decussatus. In 1989, it was also declared a Special Ecological Area, to safeguard the unique breeding population of T. decussatus and to maintain the ecological equilibrium

^{*}Corresponding author.

of the area. Although there is no written record, *T. decussatus* was probably introduced in the lagoon by humans, especially since the species occurs nowhere else in the Azores (Morton 1967, Morton and Tristão da Cunha 1993). Moreover, the planktonic stage of the larvae lasts approximately 10 days, during which larvae are transported by sea currents over a distance of 10–100 km (Borsa et al. 1991). Larval transport from the main range to the Azores by sea currents seems therefore unlikely.

At this moment, T. decussatus is the main commercially exploited species of the lagoon (Fonseca et al. 1995). Santos and Martins (1987), Santos et al. (1989), and Gonçalves and Martins (1991) showed that the population of T. decussatus in the Lagoa de Santo Cristo was declining through overexploitation, especially in the intertidal parts of the lagoon, where clam collection is easy. The intense fishery resulted in smaller individuals in the intertidal area. These potential detrimental impacts on the clams and other species of the lagoon have obliged the Azorean government to establish a management program for the Lagoa de Santo Cristo. Therefore, the clam fishery at the lagoon is nowadays closed during a period that largely coincides with the breeding season of the species (May 15 to August 15; Santos and Martins 1987, 1991). The present research was performed to provide genetic data that may be relevant for further substantial management of the clam population.

MATERIALS AND METHODS

Four samples of *T. decussatus* were collected from three sites: Lagoa de Santo Cristo (SC; July 1992 and June 1993), Étang de Thau (Thau; French Mediterranean coast; August 1993), and Playa do Testal (Ria; Ria de Muros y Noya, Galicia, Spain; December 1993). Specimens were immediately frozen in liquid nitrogen for transport to the laboratory, where they were stored at -80 °C.

Forty specimens of each sample were surveyed for allozyme variation with vertical polyacrylamide gel electrophoresis (PAGE). Individual tissue homogenates were prepared by dissecting specimens in ice-cold distilled water and removing the digestive gland, the gills, the foot muscle, and the adductor muscles. Each of the tissues was separately weighted and homogenized in a 20% (w/v) aqueous sucrose solution (5 μ L sucrose solution per mg tissue). Crude homogenates were centrifuged for 45 min at $\pm 27,000$ g at 5 °C to obtain clear supernatants for electrophoresis.

PAGE was performed as described by Backeljau (1987, 1989). Two electrophoretic buffer systems were used: (1) Tris/glycine pH 9.0 in the tray and Tris/HCl pH 9.0 in the gels and (2) Tris/citric

acid pH 8.0 in both the tray and the gels. Enzyme staining recipes were adapted from Harris and Hopkinson (1976).

Twenty-six enzyme systems were screened in the four tissues (see Backeljau et al. 1994). Seven of these enzymes yielded interpretable genetic polymorphisms and were retained for further analysis (Table 1).

Alleles were designated alphabetically according to decreasing electrophoretic mobilities (A = most anodal = fastest-migrating allele). Previously typed specimens were included with each run to compare different gels. The BIOSYS-1 version 1.7 package (Swofford and Selander 1981) was used for estimating allele frequencies, mean numbers of alleles per locus (MNA), observed heterozygosities (H_0 , direct count) and Nei's (1978) unbiased expected heterozygosities (H_e) . Numbers of polymorphic loci (P) were simply counted. Weir and Cockerham's (1984) fixation indices (F_{is}) were estimated with GENEPOP version 3.0 (Raymond and Rousset 1995), and genotype frequencies were evaluated for departures from Hardy-Weinberg (HW) equilibrium expectations with the probability test implemented by the same program. The significance of F_{is} values was tested with FSTAT version 1.2 (Goudet 1995). Linkage disequilibria (LD) between loci were tested with the exact probability test in GENEPOP version 3.0. Whenever needed, testing procedures were corrected for multiple testing with the sequential Bonferroni method (Rice 1989). Nei's (1978) unbiased genetic distance between populations was calculated with BIOSYS-1 version 1.7.

The effective population size (N_e) of the population from the Lagoa was estimated in two different ways. One method estimates $N_{\rm e}$ from the changes in expected heterozygosity. In a population of size N_e , the initial heterozygosity (H_o) will decrease to H_t after t generations. The relationship between H_0 and H_t is given by the equation $H_t = H_o (1 - 1/2N_e)^t$ (Crow and Kimura 1970). A second method (i.e., the temporal method) estimates N_e from temporal changes of gene frequencies as described by Waples (1989) and Hedgecock et al. (1992). Although a few T. decussatus individuals may spawn in their first year (Vilela 1950), the vast majority of individuals reach their sexual maturity at the beginning of their second year (Gallois 1977). Therefore, we used a generation time of 1 y for T. decussatus. An assumption of both methods is that the allozyme polymorphisms studied are selectively neutral. To test this, we performed the Ewens-Watterson test using the algorithm given in Manly (1985) and implemented by the program POPGENE version 1.31 (updated version of POPGENE version 1.2 of Yeh and Boyle [1997]).

Because many bivalves show a positive correlation between

TABLE 1.

Enzymes studied, E.C. numbers, enzyme codes, the tissue from which the enzyme was extracted, and the buffer system (TC = Tris/citric acid; TG = Tris/glycine) used to examine genetic variation in four *T. decussatus* populations.

Enzyme	EC Number	Code	Tissue	Buffer
Malate dehydrogenase	1.1.1.37	Mdh	Adductor muscle	TC
D-Octopine dehydrogenase	1.5.1.11	Opdh	Adductor muscle	TC
Isocitrate dehydrogenase (NADP+)	1.1.1.42	Idhp	Digestive gland	TC
Phosphogluconate dehydrogenase	1.1.1.44	Pgdh	Digestive gland	TC
3-Hydroxybutyrate dehydrogenase	1.1.1.30	Hbdh	Digestive gland	TG
Leucylalanine peptidase	3.4.13.11	Pep	Gills	TG
Phosphoglucomutase	5.4.2.2	Pgm	Adductor muscle	TG

shell size and individual heterozygosity (e.g., Zouros and Foltz 1984), we checked for such a relationship to avoid the possibility that discrepancies in $H_{\rm o}$ values would merely reflect size differences between populations. Therefore, Pearson's product-moment correlation was calculated between shell length and numbers of heterozygous loci, as outlined by Diehl and Koehn (1985) and Fevolden (1992).

RESULTS

Pep revealed two independent banding zones, the cathodal of which was clearly polymorphic in the Thau and Ria populations, but monomorphic in the Lagoa population. Yet, because the bands in this zone were often confused, they were not used for genotypic analysis. The six remaining enzymes yielded information for seven putative loci (Table 1), the population genetic data of which are provided in Tables 2 and 3. Out of 18 HW tests, only 2 were significant (Pgm in Thau and Idhp in Ria; Table 2), but this was no longer so after sequential Bonferroni correction. Not surprisingly, F_{is} values taken over all loci in all populations were not significantly different from 0 (0.193 < P < 0.27). However, compared with the Lagoa population, the Thau and Ria populations had higher heterozygosity levels and nearly twice as many polymorphic loci and mean numbers of alleles per locus (Table 2). Only two of the 31 LD tests were significant (data not shown), but both cases were no longer significant after sequential Bonferroni correction. Nei's (1978) unbiased genetic distance between the samples ranged from 0.036 (between two samples from the Azores) to 0.23 (between Thau and two samples from the Azores) (Table 3).

The estimate of $N_{\rm e}$ with the temporal method was infinity. This result is probably an artifact caused by the small number of loci analyzed (n=3) (Table 2). It simply indicates that the change in allozyme frequencies observed between the 2 years was not large enough to be distinguished from sampling error. The estimate of $N_{\rm e}$ obtained from the reduction of heterozygosity was 5.30. The test for neutrality gave nonsignificant results.

We found no significant correlation between individual heterozygosity and shell length (Thau, r = 0.173, P = 0.733; Ria, r = 0.36, P = 0.556; and Lagoa (pooled samples), r = 0.48, P = 0.409).

DISCUSSION

Observed and expected heterozygosity values, number of polymorphic loci, and mean number of alleles per locus in the Ria and Thau populations fall within the limits reported for *T. decussatus* and the palourde *Ruditapes philippinarum* (Table 4). As in many other bivalve species, heterozygote deficiencies have often been reported in *T. decussatus* and *R. philippinarum* (see references in Table 4), but at present the causes of this remain unclear (Zouros et al. 1988). Yet, in our study, we observed no heterozygote deficiencies. Nevertheless, our population genetic data of the Thau population are very similar to the results obtained by Jarne et al. (1988), Borsa and Thiriot-Quiévreux (1990), and Borsa et al. (1994) for the same population and for the nearby population of Étang du Prévost (Worms and Pasteur 1982). Moreover, genetic distances between our populations are similar to those reported by Jarne et al. (1988) (compare our Table 3 with their Table 4).

However, in the Lagoa population of T. decussatus in the Azores, we observed a strong reduction of allelic diversity and expected heterozygosities, but not heterozygote deficiencies, compared with main-range populations. Substantial losses of genetic diversity have also been observed in bivalves for which hatchery stocks have been established from only a few individuals (e.g., the oysters Crassostrea gigas [Gosling 1982, Hedgecock and Sly 1990] and C. virginica [Vrijenhoek et al. 1990, Gaffney et al. 1992]). This may have important implications when management and exploitation practices are developed. Many hatchery stocks or introduced populations have a low N_e value despite densities that can be very high (e.g., Saavedra 1997 and references therein). In the Lagoa, population densities of T. decussatus may reach 400 individuals/m² (Gonçalves and Martins 1991). Yet we estimated an effective population size of only 5.30 individuals. Founder effects, genetic drift, intentional selection, and inadvertent selection during culture are likely to reduce the genetic diversity of the Lagoa population further. The introduction of a small number of individuals a few decades ago probably resulted in the loss of genetic variation via founder effects. The strong isolation of this population probably does not allow transport of larvae from nearby populations (see Introduction), and genetic drift and inbreeding may further reduce genetic variability. These effects are probably reinforced by human activities such as selection during harvesting (e.g., the collection of only large adults). Indeed, the exploitation of T. decussatus in the Lagoa follows a classic "fishery" picture with old (i.e., large) shells lacking among empty shells in the lagoon because they were collected for consumption when alive (Morton and Tristão da Cunha 1993). It is unclear whether such selective harvesting affects the genetic structure of the population, because there was no association between individual heterozygosity and size. Yet this topic deserves further study, as Borsa et al. (1994) and Passamonti et al. (1997) found a high level of intrapopulation structuring, probably related to year-cohort heterogeneities, that perhaps indicate short-term selection or genetic drift (Borsa et al. 1994). Thus, harvesting a single age cohort (i.e., oldest and largest individuals) could affect the genetic population

In none of the populations did we observe a significant correlation between shell size and individual heterozygosity. Some other studies also failed to show a relationship between individual heterozygosity and morphological traits such as size and growth (Adamkewicz et al. 1984, Volckaert and Zouros 1989, Gaffney 1990, Slattery et al. 1991), but others report negative (Wilkins 1978) or positive (Garton et al. 1984, Koehn and Gaffney 1984, Zouros and Foltz 1984, Gaffney 1990) associations, although associations may differ among populations (Gaffney 1990).

A positive relation between heterozygosity, body size, and survival was found in a population of *T. decussatus* that survived natural anoxic stress (Borsa et al. 1992). However, in other populations of the same species, Jarne et al. (1988) observed no association between asymmetry of left and right valves (as a measure of fitness, i.e., the more asymmetric the less fit) and heterozygosity, and an increased variance for morphological traits in the classes with low heterozygosity. This also appears to be the case for some of the *R. philippinarum* populations in the Po river lagoon in Italy (Fava et al. 1994). In that study, individual heterozygosity and phenotypic variability appeared to be negatively correlated, but the relationship was heterogeneous between populations (Fava et al. 1994).

TABLE 2.

Allozyme variation in four populations of T. decussatus (for full population names we refer to the text).

TABLE 2. Continued

			-			Thau	Ria	SC92	SC93
	Than $(n = 40)$	Ria $(n = 40)$	SC92 (n = 40)	SC93 (n = 40)		(n = 40)	(n = 40)	(n = 40)	(n = 40)
Mdh					Overall				
A	0.837	000.1	1:000	1.000	H_{c}	0.400	0.306	0.212	0.192
В	0.163				(SE)	(0.096)	(0.104)	(0.114)	(0.110)
H_{ν}	0.272				H_o	0.404	0,271	0.214	0.193
H_{μ}	0.325				(SE)	(0.100)	(0.100)	(0.118)	(0.110)
Fie	-0.182				MNA	3.0	2.4	1.7	1.7
Pesse	0.564				P	7/7	5/7	3/7	3/7
Optill					P _(+Dep)	8/8	6/8	3/8	3/8
A	0.625	0.538	0.488	0.600				heterozygosity;	
В	0.213	0.225	0.262	0.212	index: Preserv	exact P-values	1*P < 0.05); M	NA, mean numb	er of alleles
C	0.162	0.237	0.250	0.188	per locus; P.	proportion of p	olymorphic loci:	SE, standard er	ror.
H.	0.538	0.604	0.631	0.560					
H_{ν}	0.575	0.575	0.675	0.575	2000		A		
F_{1a}	-0.057	0.061	-0.057	-0.015				agoa populatio	
Person	0.500	0,801	0.526	0.458				oly slightly dif	
Lahp					from popul	ations from th	e main range	and may thus	be of low
A	0.113	0.038			"biological	value" (i.e., in	terms of biod	liversity). Gath	ering of T.
В	0.887	0.962	1.000	1.000				o continue. No	
H,	0.200	0.072	11000	7.000				cussatus in the	
H_{ν}	0.125	0.025				Mark Control	The second second	pauperate interi	
F_{tr}	0.385	0.661						1987), exploita	
Pener	0.057	0.038*						idelines (see a	
Pgdh.	B 146							of the area is s	
A	0.138		6.00	5.444				mha 1993). O	
В	0.200	0.225	0.462	0.375				that also serve	
C	0.349	2000		0.000				there is much	
D	0.175	0.613	0.338	0.400	between Ilh	iéu de Vila Fra	anca on the isl	and of São Mi	guel in the
E	0.138	0.162	0.200	0.225	Azores and the Lagou de Santo Cristo. The faunistic and scientific				
He	0.769	0.548	0.632	0.649	value of Ilhéu de Vila Franca is strongly reduced because of tour-				
H _a	0.700	0.525	0.650	0.650	ism. Thus,	opening up the	Lagoa for to	urism could be	disastrous
F _{in}	0.102	0.054	-0.016 0.973	0.011				ne unique origi	
$P_{\rm cusci}$	0.384	0.001	0.973	0.378				clared a "Site	
Hbdh-1								da Cunha 199	
A	0.250	0.225			de la contraction de	do to the		and the same of th	-,,,
В	0.724	0.762	1.000	1.000					
C	0.013	0.013				ACK	NOWLEDGME	NTS	
D	0.013	0.013							
H_{e}	0.412	0.368							
H_{o}	0.400	0.275			We are i	indebted to B.	Morton (Unive	ersity of Hong	Kong) and
F_m	0.041	0.264			R. Tristão d	la Cunha (Univ	ersity of the A	zores, Portuga	l) for help-
Penset	0.832	0.144						J. Tronceso (
Hbdh-2	A SHOP	1.000	1.000	4 0000	and the same of th			Ria population	
A	0.987	1.000	1.000	1.000				gram "Biodive	
В	0.013							(EUJNICT)	
H.	0.025						. W. are FWO		W. W. 17 17 12 W
H_n	0.025				102/24. 3.	v. D. mid H. D	. W. Me I WO	Tenerws.	
Fin	-0.013								
P_{cini}	1.000						TABLE 3.		
Pgm					And the	1000			
A	0.400	0.586	0.887	0.937				ween the four p	The second second
В	0.537	0.363	0.113	0.063	of T. de	cussatus (for pe	opulation name	s we refer to th	e text).
	0.063	0.038							
C		0.013				Than	Ria	SC92	SC93
D			0.200	0.117					75 77
D_{H_e}	0.547	0.522	0.200						36.33
D H _e H _e	0.675	0.500	0.175	0.125	Than				3033
D H _e H _n F _{iv}	0.675 -0.222	0.500 0.055	0.175 0.136	0.125 -0.054	Ria	0.152	20.24		300
D H _e H _n	0.675	0.500	0.175	0.125		0.152 0.239 0.230	0.129 0.129	0.036	3033

TABLE 4.

Allozyme variation reported in other studies of *T. decussatus* and *R. philippinarum*.

Species	$H_{\mathbf{o}}$	H_{e}	MNA	P	Reference
T. decussatus					
		0.28	2.75	0.83	Worms and Pasteur (1982)
		0.23-0.28	2.18-2.73	0.64 - 0.73	Jarne et al. (1988)
	0.22	0.26	2.33	0.78	Borsa and Thiriot-Quiévreux (1990)
	0.18-0.24	0.23-0.33	1.54-1.99	0.54-0.66	Passamonti et al. (1997)
	0.19-0.40	0.19-0.40	1.71-3.00	0.43-1.00	This study (all populations)
R. philippinarum					
	0.26	0.26	3.18	0.73	Moraga (1986)
	0.16-0.20	0.18-0.22	2.67-3.44	0.22-0.33	Kijima et al. (1987)
	0.17-0.25	0.20-0.27	2.6-3.6	0:43-0.57	Oniwa et al. (1988)
	0.33	0.34	2.89	0.89	Borsa and Thiriot-Quiévreux (1990)
	0.34-0.37		2.80-3.10	0.80 - 0.93	Fava et al. (1994)
	0.19-0.22	0.20-0.27	1.57-1.63	0.54 0.75	Passamonti et al. (1997)
	0.27	0.27	3.15-3.35	0.75-0.85	Yokogawa (1998)

Ho, observed heterozygosity; He, expected heterozygosity; MNA, mean number of alleles per locus; P, percentage of polymorphic loci.

LITERATURE CITED

- Adamkewicz, L., S. R. Taub & J. R. Wall. 1984. Genetics of the clam Mercenaria mercenaria. II. Size and genotype. Malacologia 25:525– 533.
- Backeljau, T. 1984. Electrophoretic distinction between Arion hortensis, A. distinctus and A. owenii (Mollusca: Pulmonata). Zool. Anz. 219:33–39.
- Backeljau, T. 1989. Electrophoresis of albumen gland proteins as a tool to elucidate taxonomic problems in the genus *Arion* (Gastropoda, Pulmonata). *J. Med. Appl. Malac.* 1:29–41.
- Backeljau, T., C. Brito, A. Rodrigues, B. Morton, R. Verhagen, T. Willems & B. Winnepenninckx. 1994. Population genetics of *Tapes decussatus* in the Lagoa de Santo Cristo, São Jorge: preliminary results. pp. 20–22.
 In: Expedição Científica Faial/93. Relat. Comun. Depto. Biologia, Univ. Açores no. 22.
- Borsa, P., P. Jarne, K. Belkhir & F. Bonhomme. 1994. Genetic structure of the palourde *Ruditapes decussatus* L. in the Mediterranean. pp. 103–113. *In:* A. R. Beaumont (ed.). Genetics and Evolution of Aquatic Organisms. Chapman and Hall, London.
- Borsa, P., Y. Jousselin & B. Delay. 1992. Relationships between allozymic heterozygosity, body size, and survival to natural anoxic stress in the palourde *Ruditapes decussatus* L. (Bivalvia: Veneridae). *J. Exp. Mar. Biol. Ecol.* 155:169–181.
- Borsa, P. & C. Thiriot-Quiévreux. 1990. Karyological and allozymic characterization of *Ruditapes philippinarum*, *R. aureus* and *R. decussatus* (Bivalvia, Veneridae). *Aquaculture* 90:209–227.
- Borsa, P., M. Zainui & B. Delay. 1991. Heterozygote deficiency and population structure in the bivalve *Ruditapes decussatus*. *Heredity* 66:1–8.
- Crow, J. F. & M. Kimura. 1970. An Introduction to Population Genetics Theory. Harper and Row, New York.
- Diehl, W. J. & R. K. Koehn. 1985. Multiple-locus heterozygosity, mortality, and growth in a cohort of Mytilus edulis. Mar. Biol. 88:265-271.
- Fava, G., E. Fonsatti & L. Meggiato. 1994. Genetic study on two Adriatic lagoon populations of the clam *Ruditapes philippinarum*. *Mar. Life* 4:23–32.
- Fevolden, S. E. 1992. Allozymic variability in the Iceland scallop *Chlamys islandica:* geographic variation and lack of growth-heterozygosity correlations. *Mar. Ecol. Progr. Ser.* 85:259–268.
- Fonseca, L. C., G. Menezes, J. Gonçalves & F. Porteiro. 1995. Environmental characterisation of "Sto. Cristo" coastal lagoon (S. Jorge, Azores). Bol. Mus. Funchal, Suppl. 4:219–232.
- Frankel, O. H. & M. E. Soulé. 1981. Conservation and Evolution. Cambridge University Press, New York.
- Gaffney, P. M. 1990. Enzyme heterozygosity, growth rate, and viability in Mytilus edulis: another look. Evolution 44:204–210.

- Gaffney, P. M., C. V. Davis & R. O. Hawes. 1992. Assessment of drift and selection in hatchery populations of oysters (*Crassostrea virginica*). *Aquaculture* 42:289–302.
- Gallois, D. 1977. Sur la reproduction des palourdes, *Venerupis decussata* (Linne) et des clovisses, *Venerupis aurea* (Gmelin) de l'étang de Thau (Hérault). *Vie Milieu* 2:233–254.
- Garton, D. W., R. K. Koehn & T. M. Scott. 1984. Multiple-locus heterozygosity and the physiological energetics of growth in the coot clam, Mulinia lateralis, from a natural population. Genetics 108:445–455.
- Gonçalves, J. M. & H. R. Martins. 1991. Relatório preliminar de execução do projecto de investigação "Estudo pontual das condições físico-químicas e biológicas, com especial incidência na população de amêijoas (Ruditapes decussatus), na Lagoa de Sto. Cristo". Relat. Intern. Depart. Ocean. Pescas, Universidade dos Açores, Horta, Açores. 1–7.
- Gosling, E. M. 1982. Genetic variability in hatchery produced Pacific oysters (Crassostrea gigas Thunberg). Aquaculture 26:273–287.
- Goudet, J. 1995. FSTAT (version 1.2): a computer program to calculate F-statistics. *J. Hered.* 86:485–486.
- Harris, L. D. 1984. The Fragmented Forest: Island Biogeography Theory and the Preservation of Biotic Diversity. University of Chicago Press, Chicago.
- Harris, H. & D. A. Hopkinson. 1987. Handbook of Enzyme Electrophoresis in Human Genetics. Elsevier/North Holland Publishing Company, Amsterdam.
- Hedgecock, D., V. Chow & R. S. Waples. 1992. Effective population numbers of shellfish broodstocks estimated from temporal variance in allelic frequencies. *Aquaculture* 108:215–232.
- Hedgecock, D. & F. Sly. 1990. Genetic drift and effective sizes of hatchery-propagated stocks of the Pacific oyster, *Crassostrea gigas. Aqua*culture 88:21-38.
- Jarne, P., P. Berrebi & O. Guelorget. 1988. Variabilité génétique et morphométrique de cinc populations de la palourde *Ruditapes decussatus* (mollusque, bivalve). *Oceanol. Acta* 11:401–407.
- Kijima, A., N. Taniguchi, N. Mori & J. Hagiwara. 1987. Genetic variability and breeding structure in *Ruditapes philippinarum* (sic). Rep. Usa Mar. Biol. Inst., Kochi Univ. 9:173–181.
- Koehn, R. K. & P. M. Gaffney. 1984. Genetic heterozygosity and growth rate in *Mytilus edulis*. Mar. Biol. 82:1–7.
- Lacy, R. C. 1987. Loss of genetic diversity for managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. *Conserv. Biol.* 1:143–158.

- Manly, B. F. J. 1985. The Statistics of Natural Selection. Chapman and Hall, London.
- Moraga, D. 1986. Polymorphisme génétique de populations cultivées de la palourde du Pacifique *Tapes philippinarum*. C. R. Acad. Sc. Paris. 17:621–624.
- Morton, B. 1967. Malacological Report. pp. 30–39. In: Final Report, Chelsea College Azores Expedition, London. Chelsea College, University of London.
- Morton, B., J. C. Britton & A. M. de Frias Martins. 1998. Coastal Ecology of the Açores. Sociedade Alfonso Chaves, Ponta Delgada.
- Morton, B. & Tristão da Cunha, R. 1993. The Fajã de Santo Cristo, São Jorge, revisited and a case for Azorean coastal conservation. Açoreana 539–553.
- Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. *Genetics* 89:583–590.
- Nei, M., T. Maruyama & R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. *Evolution* 29:1–10.
- Oniwa, K., M. Nakano & Y. Fujio. 1988. Heterogeneity within and between geographical populations of the short-necked clam, *Ruditapes* philippinarum. Tohoku J. Agricult. Res. 38:49-60.
- Passamonti, M., B. Mantovani & V. Scali. 1997. Allozymic characterization and genetic relationships among four species of Tapetinae (Bivalvia, Veneridae). *Ital. J. Zool.* 64:117–124.
- Raymond, M. & F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86:248– 249
- Rice, W. R. 1989. Analysing tables of statistical tests. Evolution 43:223– 225.
- Saavedra, C. 1997. Low effective sizes in hatchery populations of the European oyster (Ostrea edulis): implications for the management of genetic resources. J. Shellfish Res. 16:441–446.
- Santos, R. S. 1985. Observações sobre as condições ecológicas da Lagoa de Santo Cristo, Ilha de São Jorge. Relat. Intern. Depart. Ocean. Pescas, Universidade dos Acores. Horta, Acores. 1–7.
- Santos, R. S., E. Goulart & L. R. Monteiro. 1989. Abundância e crescimento da amêijoa Tapes decussatus na Lagoa do Santo Cristo: aspectos da sua conservação e exploração. Communição proferida na 6ª Semana das Pescas. Horta.
- Santos, R. S. & H. R. Martins. 1987. Estudoes sobre as condições ecológicas da Lagoa de Santo Cristo (Ilha de S. Jorge), em especial das suas ameijoas. pp. 159–174. *In:* Relatório da VII Semana das Pescas, Universidade dos Açores, Horta, Açores.
- Simberloff, D. 1988. The contribution of population and community biology to conservation science. *Annu. Rev. Ecol. Syst.* 19:474–511.
- Soulé, M. E. 1987. Viable populations for conservation. Cambridge University Press, Cambridge.
- Swofford, D. L. & R. B. Selander. 1981. BIOSYS-1: a fortran program for

- the comprehensive analysis of electrophoretic data in population genetics and systematics (release 1.7). Illinois Natural History Survey.
- Tebble, N. 1966. British Bivalve Seashells. British Museum (Natural History), London.
- Thorpe, J. E., G. A. E. Gall, J. E. Lannan, C. E. Nash & B. Ballachey. 1995. The conservation of aquatic resources through management of genetic risks. pp. 33–46. *In:* J. Thorpe, G. Gall, J. Lannan & C. Nash (eds.). Conservation of Fish and Shellfish Resources. Academic Press, London.
- Usher, M. B. 1987. Effects of fragmentation on communities and populations: a review with applications to wildlife conservation. pp. 103–121.
 In. D. A. Saunders, G. W. Arnold, A. A. Burbridge, and A. J. M. Hopkins (eds.). Nature Conservation: The Role of Remnants of Native Vegetation. Chipping Norton, Surrey, Beaty.
- Usher, M. B. 1997. Small populations: fragmentation, population dynamics and population genetics. In: Proceedings of the British Ecological Society Symposium, York, UK, 18–19 September 1995. 11 pp.
- Vilela, H. 1950. Benthic life of Tapes decussatus L. Ph.D. Thesis.
- Volkaert, F. & E. Zouros. 1989. Allozyme and physiological variation in the scallop *Placopecten magellanicus* and a general model for the effects of heterozygosity on fitness in marine molluscs. *Mar. Biol.* 103:51-61.
- Vrijenhoek, R. C., S. E. Ford & H. H. Haskin. 1990. Maintenance of heterozygosity during selective breeding of oysters for resistance to MSX disease. J. Hered. 81:418–423.
- Waples, R. 1989. A generalized approach for estimating effective population size from temporal changes in allele frequencies. *Genetics* 121: 379–391
- Weir, B. S. & C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. *Evolution* 38:1358–1370.
- Wilkins, N. P. 1978. Length-correlated changes in heterozygosity at an enzyme locus in the scallop (*Pecten maximus* L.). *Anim. Blood Groups Biochem. Genet.* 9:69–77.
- Worms, J. & N. Pasteur. 1982. Polymorphisme biochemique de la palourde, Venerupis decussata, de l'étang du Prévost (France). Oceanol. Acta 5:395–397.
- Yeh, F. C. & T. Boyle. 1997. POPGENE version 1.2: Microsoft Windowsbased software for population genetics analysis. University of Alberta and Center for International Forestry Research.
- Yokogawa, K. 1998. Morphological variabilities and genetic features in Japanese common clam *Ruditapes philippinarum. Venus* 57:121–132.
- Zouros, E. & D. W. Foltz. 1984. Possible explanations of heterozygote deficiency in bivalve molluscs. *Malacologia* 25:583–591.
- Zouros, E., A. L. Romero-Dorey & A. L. Mallet. 1988. Heterozygosity and growth in marine bivalves: further data and possible explanations. *Evolution* 42:1332–1341.