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Geruime tijd reeds wordt door het Geologisch Instituut 

van de Rijksuniversiteit te Gent onderzoek verricht in verband 

met de hydrogeologie van het kustgebied. Deze studie beoogt een 

beter inzicht in de opbouw van de freatische laag en de grond- 

waterstromingen van het duingebied, de aangrenzende polders en 

het hoogstrand van de Westhoek.

Het voorafgaand onderzoek omvat een systematisch geo- 

elektrisch onderzoek in de Belgische kustvlakte. Hierbij werden 

meer dan 1700 resistiviteitssonderingen uitgevoerd. Deze lieten 

toe de zout-zoetwatergrens in kaart te brengen. In het oostelijk 

kustgebied werden de verschillende waters op grond van chemische 

analysen en geleidbaarheidsmetingen in verschillende groepen 

onderverdeeld. Het voorkomen, de verspreiding, de herkomst, de 

genese en de evolutie van deze werden er onderzocht door het 

uitvoeren van d i e p b o o r g a t m e t i n g e n , chemische analysen en ouder- 

domsbepaling van de verschillende waters.

In deze studie wordt het hydrochemische onderzoek 

van het grondwater verder gezet. Chemische analyses werden 

uitgevoerd op infiltrerend zeewater en regenwater dat in dit 

gebied opgevangen werd. Dit liet toe een schatting te maken 

van de hoeveelheid regenwater die naar de grondwatertafel i n ­

filtreert.

Door de aanwezigheid van verschillende waterwinningen 

in het zoetwaterreservoir van het westelijk kustgebied drong 

zich, naast het hydrochemische onderzoek, een kwantitatieve 

studie op van de g r o n d w a t e r s t r o m i n g . Hiervoor werden meer dan 

zestig handboringen en een twintigtal diepe boringen geslagen.

De boorputten werden naderhand van één of meer filters voorzien. 

Hierin werden de stijghoogten regelmatig gemeten. Deze metingen 

werden verwerkt onder de vorm van h y d r o - i s o h y p s e n k a a r t e n . Uit de 

filters werden eveneens de watermonsters onttrokken voor de 

chemische analyse.



De fysische Kenmerken van het reservoir werden op 

verschillende manieren achterhaald. De grondstelen werden aan 

een granulometrische analyse onderworpen. Op verschillende putten 

werden bemalingsproeven uitgevoerd. Tenslotte werden ook de 

g e t i J s c h o m m e 1 ingen van de stijghoogte ontleed.

Door het opstellen van een matematisch model werd e r ­

naar gestreefd de natuurlijke grondwaterstromingen in het 

studiegebied te simuleren. Bij het model werden zowel de 

hydrometeorologische als de hydrogeologische gegevens b e t r o k ­

ken. Het matematisch model laat toe de hydrologische balans 

van het gebied te bepalen en de gevolgen van menselijke i n ­

grepen op de grondwaterstromingen te voorspellen.

Het studiegebied is gelegen op de kaartbladen van het 

N.G.I. 11-7 (De Panne) en 19-3 (De Moeren). Het bevindt zich 

helemaal op het grondgebied van de fusiegemeente De Panne.

Ten noorden is het gebied begrensd door de Noordzee, ten oosten 

door de Frans-Belgische grens, ten zuiden door het kanaal van 

Nieuwpoort naar Duinkerken en ten oosten door de rijksweg 292 

De P a n n e - A d i n k e r k e .

Het noordelijk gedeelte van het studiegebied wordt 

ingenomen door het duingebied en het strand ten westen van 

de oude kern van De Panne. Het omvat het natuurreservaat van 

de Westhoek, de verkaveling "De Westhoek" en de waterwinning 

van de Intercommunale Waterleidingsmaatschappij van Veurne- 

Ambacht (IWVA).

Het sterk golvende duinlandschap bereikt aan de 

westelijke grens een breedte van 1600 m, aan de oostelijke grens 

een breedte van 2200 m.

Achter het voorduin ligt een noordelijke gordel van 

pannen en paraboolduinen en een zuidelijke gordel van zeer 

grote pannen en paraboolstrukturen, die gescheiden zijn door 

een van west naar oost verbredend centraal duinmassief (L. 

CHRISTIAENS, 1976). De pannevloer ligt meestal tussen 4,5 en



+6,5 s de hoogste gedeelten van de paraboolduinen, het centraal 

massief en de duinrepen stijgen boven +15. De hoogste top in

het zuiden overschrijdt + 2 0 .

Het strand, hier op zijn breedst langs de Belgische 

Kust, vertoont een patroon van evenwijdige strandruggen g e ­

scheiden door lange en smalle zwinnen. Bij laag tij ontwateren 

deze langs min of meer regelmatige verspreide muien. De g e m i d ­

delde strandhelling bedraagt er 1,13%.

In het zuiden van het studiegebied ligt het overdekte 

w a d d e n l a n d s c h a p . Hierin komen enkele duineilandjes voor, die 

behoren tot het Oud Duinlandschap (MOORMANN, E.R., 1951). Het

landschap is er vrijwel vlak en ligt tussen 3,5 en 4,5.

x

x
Alle peilen zijn aangegeven in meters t.o.v. het nulpunt van 

het N.G.I. (Tweede Algemene Waterpassing).



2, GEOLOGIE VA.» HET KlSTGEBIEi

2.1. Het Tertiair

D g vloer van de freatische laag wordt volledig gevormd 

door eocene klei van Ieperiaan-ouderdom. Deze afzetting heeft een 

dikte van circa 105 m en helt in N N E - r i c h t i n g .

Het oppervlak werd geboetseerd tijdens het Pleistoceen.

De glaciaties hebben immers telkens een aanzienlijke verlaging van 

de zeespiegel veroorzaakt. In die periode vormde zich ook het Mauw 

van Kales. Vooral de insnijding op het einde van het Saale-glaciaal 

en het begin van het Eemiaan heeft het uitzicht van het huidige 

bedolven oppervlak bepaald.

R. PAEPE (1971) heeft in een geologisch profiel tussen 

Gistel en Stalhille een opeenvolging van trappen en asymmetrische 

dalen in de top van het tertiair substraat waargenomen. De steil- 

wand is naar het noordoosten, de zachte helling naar het zuidwesten 

gericht. Ook de kleine bulten of kommen vertonen dezelfde asymmetrie 

als de dalen. R. PAEPE schrijft die asymmetrie toe aan de structuren 

die in het Ieperiaan (Yc en Yd) zelf optreden. De trappen zouden 

wijzen op een algemeen erosieoppervlak op het niveau van circa -2,5 

dat zowel onder de polders als onder de dekzandrug van Oudenburg- 

Ettelgem doorloopt.

In een geologisch profiel tussen Veurne en de Franse grens 

heeft men (C. B A E T E M A N , G. LAMBRECHTS & R. PAEPE, 1974) aan de zuide 

lijke rand van het westelijkkustgebied, twee vervlakkingen in de top 

van het tertiair substraat waargenomen. Het facies van het Tertiair 

bestaat hier uitsluitend uit zware klei (Yc). De eerste vervlakking 

treedt op rond het peil 0, een tweede rond het peil -5. De beide ver 

vlakkingen zijn onderbroken door geulen die opgevuld zijn met de 

afzetting van Kales. De geulen in de tweede vervlakking zijn dieper 

en breder.

2.2, Het Pleistoceen

Die intensieve erosie heeft voor gevolg gehad dat zeer 

weinig oudere pieistocene sedimenten in het kustgebied bewaard g e ­

bleven zijn.

In de westelijke kustvlakte rekent men de zanden van 

Izenberge met Cardium edule in biocenotische positie en de boven-



liggends venige laag tot hst Holstsiniaan (R. TAVERNIER £ J. ds 

HEINZELIN, 1962; R. VANHOORNE, 1962).

In het oostelijk kustgebied rekenen sommige auteurs 

(R. PAEPE, R. VANHOORNE & 0. D E R A Y M A E C K E R , 1972) ds grijsgroens 

zanden onder de zgn. "Brugge Bodem" (een humus-ijzer podzol) tot 

het Saaliaan.

2.2.1. HET EEf;IAAi>l

Door de vsrbreding van het Nauw van Kales geschiedde 

materiaaltransport van west naar oost. In de Belgische kustvlakte 

kwam aldus de afzetting van Oostende tot stand (R. TAVERNIER, 1947). 

Het onderste gedeelte hiervan bestaat uit grof zand, al of niet 

gebroken silexkeisn grove kwarts korrels, zandsteenfragmenten, 

geremanieerde tertiaire fossielen en kwartaire schelpen. Daarop rust 

een middelmatig zand met veel schelpgruis. Bovenaan wordt meestal 

een grinthoudend niveau met talrijke schelpen aangetroffen. De basis 

van deze afzetting bevindt zich in de oostelijke kustvlakte tussen 

-17 en -22, de top tussen -9 tot -15 (DE BREUCK, DE MOOR S MARECHAL, 

1969). In de centrale kustvlakte zou de top van deze afzetting 

tussen -6 en -6 liggen (R. PAEPE, 1965).

Aanvankelijk werd alleen de hierboven beschreven laag 

als Eemiaan in de kustvlakte herkend. Uit recsnt ondsrzoek aan de 

rand van het oostelijk kustgebied (R. PAEPE, 1971; R. PAEPE & R. 

VANHOORNE, 1972; R. PAEPE, R. VANHOORNE & 0. DERAYMAEKER, 1972;

G. DE MOOR & W. DE BREUCK, 1973; P. HOLVOET, 1974) meent men te 

mogen besluiten dat het Eemiaan er uit twee litostratigrafische 

eenheden bestaat.

De onderste afzetting, de afzetting van Meetkerke, rust 

op het tertiair substraat (Meetkerke) of op Saale-dekzanden (Sint- 

Pieters - B r u g g e ). Het i3 een overwegend lemig-kleiig waddensediment 

waarin zandige, lemige en kleiige facieswisselingen voorkomen. De 

afzetting heeft te Meetkerke een dikte van 5 6 m, en komt voor

tussen de peilen - 6 en 0. Erboven ligt de schelprijke afzetting 

van Stalhille. Deze circa 1 m dikke afzetting is ontstaan als een 

lage strand- tot een hoge zandwal in een getijdezone met sterke 

oostelijke k u s t s t r o m i n g e n . Het oppervlak van deze litorale afzetting 

ligt rond het peil 0 en blijkt in zekere mate geërodeerd (G. DE MOOR

S W. DE BREUCK, 1973). Dit zou de bovengrens zijn van het Eemiaan.



Aan de zuidelijke rand van de westelijke kustvlakte treft 

men geen Eemiaan-sedimenten aan (C. BAETEMAN, G. LAMBRECHTS & R. 

PAEPE). In de westelijke kustvlakte is de Eemiaan-afzetting (J. 

SCHITTEKAT, 1972) slechts één meter dik. Ze is begrepen tussen de 

peilen -22 en -23.

2.2.2. HET WEICHSELIAAN

Tijdens het W e i c h s e 1-g 1a c i a a 1 daalde het niveau van de 

Noordzee opnieuw. De zeebodem kwam droog te liggen waardoor het 

materiaal beschikbaar werd voor de niv e o - e o 1 ische afzetting.

R. TAVERNIER (1947) aanziet de zanden en lemen, die 

boven de afzettingen van Oostende voorkomen als een Weichseliaan- 

afzetting en noemt ze ”de zone van Leffinge". Ze kunnen ver achter 

de poldergrens worden vervolgd en sluiten aan op het d e k z a n d g e b i e d .

In het oostelijk kustgebied (W. DE BREUCK, G. DE MOOR &

R. MARECHAL, 1969) onderscheidde men twee afzettingen die tot het 

Weichsel-glaciaal behoren, de afzetting van Uitkerke en de afzetting 

van Wenduine. De afzetting van Uitkerke bestaat er uit fijn m i d d e l ­

matig tot middelmatig zand. Naast laagjes fijn zand en zandleem treft 

men ook talrijke kleilenzen aan. Behalve een weinig planten- en schelp 

gruis worden alleen enkele zeldzame Cardium edule aangetroffen. De 

basis van de afzetting ligt in de oostelijke kustvlakte op -9 tot 

-15. De top bevindt zich op het peil -8 en stijgt tot -6 naar het 

binnenland toe. De afzettingen van Wenduine rusten op de afzettingen 

van Uitkerke. Het is een grinthoudende laag met gerolde silexen, grof 

zand en kleine z a n d s t e e n £ r a g m e n t e n . In verschillende boringen werden 

in dit grintniveau, vooral bovenaan dunne venige laagjes aangetroffen. 

Deze afzetting bereikt soms een dikte van 1 m maar blijft meestal 

beperkt tot enkele decimeters. Een koolstof-14 analyse (DAUCHOT- 

DEHON & HEYLEN, 1969) op schelpen geeft een maximale ouderdom van 

11 . 349 B.P. (_+ 364) .

Aan de zuidelijke rand van de oostelijke kustvlakte (G. DE 

MOOR & W. DE BREUCK, 1973) werden te Meetkerke de afzetting van de 

Lage Moeren aangetroffen boven de E e m i a a n - s e d i m e n t e n . Ze bestaan uit 

zandig hydrocryostatisch materiaal dat uit de onderliggende a f z e t t i n ­

gen van Stalhille is opgeperst. Plaatselijk is deze laag weggespoeld. 

Hoger ligt de afzetting van S i n t - A n d r i e s , een fijnzandig sediment, dat 

door niveo-eolische aanvoer is afgezet. Aan haar oppervlak heeft zich 

vóór het Subatlanticum een holocene bodem, de zgn. Bodem van Varsenare



ontwikkeld. Dat oppervlak stemt overeen met het huidige maaiveld dat 

op +2 ligt. Hst subboreale oppervlakteveen is weggegraven. Volgens 

R. PAEPE & R. VANHOORNE (1972), komt de afzetting van Sint-Andries 

overeen met het Dekzand 2 van het W e i c h s e l - g l a c i a a l .

Te Sint-Pieters-Brugge komt er een meer volledige sekwentie 

voor van het Weichseliaan, die gaat vanaf het begin tot het einde 

van de glaciale periode (R. PAEPE, R. VANHOORNE & D. D E R A Y M A E K E R , 

1972). Ze bestaat uit een afwisseling van lemen en grove zanden, met 

daarboven verschillende dakzanden.

Aan de zuidelijke rand van de westelijke kustvlakte komen 

geen Wei chse 1iaan-sedimenten voor. Uit een vergelijking van de hoogte- 

ligging van de basis van de afzetting van Kales aan de zuidelijke rand 

van het westelijke kustgebied en die van de zuidelijke rand van het 

oostelijke kustgebied volgt dat er ten westen van de IJzermonding 

een belangrijke erosie heeft plaatsgegrepen door de uitsnijding van 

de vermoedelijke reeds bestaande geulen (C. BAETEMAN, G. LAMBRECHTS 

& R. PAEPE, 1974). Dit blijkt eveneens uit de gegevens van diepe 

boringen te Oostduinkerke (J. SCHITTEKAT, 1972).

Tijdens het Preboreaal hseft zich een zeer diepe insnijding 

voorgedaan waardoor alle Weichseliaan- en een groot gedeelte van de 

Eomiaan-afzettingen werden geërodeerd.

2,3. Het Holoceen

Gedurende het gehele Holoceen bleef de zeespiegel stijgen, 

eerst ! tamelijk snel, maar vanaf het Atlanticum nog slechts 1 tot 

10 m per duizend jaar ( BLOOM, 1971). Hiermee gepaard verminderde 

de fluviatiele erosie en nam de sedimentatie vanaf het Atlanticum 

toe.

2.3.1. PREBOREAAL EN BOREAAL (CA. 12.000-6.450 B.P.)

In het Preboreaal was de fluviatiele erosie, die reeds 

begonnen was in het L a a t - g l a c i a a l , zeer belangrijk. Aan de zuidelijke 

rand van de kustvlakte werd een stelsel van diepe en nauwe valleien 

uitgeschuurd. Dit valleienstelsel is in het gebied van de Golf van Lo 

(R. MARECHAL, 1953) zeer sterk vertakt, w aarschijnlijk tengevolge 

van de ondoorlatende Ieperiaanklei in de ondergrond. Zoals eerder 

vermeld was deze erosie vrij belangrijk ten westen van de IJzermonding. 

Te Oostduinkerke zijn erosiegeulen ingesneden tot -22. Tijdens het



Boreaal werd deze geul opgevuld met grof middelmatig zand met veel 

schelpen dat een dikte van 6 m bereikt (J. SCHITTEKAT, 1972).

In de laagste delen van de preboreaal uitgeschuurde valleien, 

heeft zich tijdens het Boreaal veen ontwikkeld, het zogenaamde "veen 

op grote diepte". In verscheidene diepe boringen in het oostelijk 

kustgebied werden dunne venige laagjes aangetroffen van dit diepte- 

veen (W. DE BREUCK, G. DE MOOR 8 R. MARECHAL, 1969).

2.3.2. HET ATLANTICUM (6.4 50-3.950 B.P.)

Het Midden-Holoceen wordt gekenmerkt door de zogenaamde 

Flandriaanse transgressie, die te wijten was aan het afsmelten van 

de W e i c h s e l - i j s k a p . Door die transgressie werden de mariene sedimenten 

van de Assise van Kales afgezet (TAVERNIER, 1947).

R. MARECHAL (1953) en R. PAEPE (1960) onderscheiden in de 

Assise van Kales een marien en een fluviatiel facies in het k u stge­

bied gelegen tussen Duinkerken en de I J z e r m o n d i n g . Het mariene facies 

komt voor in het grootste gedeelte van het kustgebied met uitzondering 

van de boreale valleien en van een nauwe zone langs de zuidelijke 

grens van de Nustvlakte.

In het mariene facies heeft men (C. BAETEMAN, G. LAMBRECHTS

& R. PAEPE, 1974) tussen Veurne en de Franse grens een ' lito-stra- 

tigrafische differentiatie gemaakt en deze met het Nederlandse k u s t ­

gebied g e k o r r e l e e r d . Men onderscheidt vier litostratigrafische e e n ­

heden. Tussen de drie onderste kan veen (Holland Veen) voorkomen.

De Kales 1-afzetting bestaat uit een komplex van blauwgrijs k l e i ­

en leemhoudend zand met veen en plantenresten, en talrijke schelpen 

en schelpgruis. De Kales 2-afzetting is een blauwgrijze klei, vaak 

zandig, met talrijke veen- en plantenresten. Tussen deze twee lagen 

vindt men soms veen op het peil - 6; de ouderdom ligt omstreeks 

6.500 B.P. De Kales 3-afzetting bestaat uit grijs fijn zand met 

schelpen en schelpgruis met plaatselijk veel klei. De Kales 2- en 

de Kales 3-afzetting worden soms door een veenlaag gescheiden die 

zich vrijwel kontinu rond het peil -3 handhaaft. De ouderdom van 

deze veenlaag ligt vermoedelijk rond 5.200 B.P. De erosie van dit 

veen vóór-en tijdens de opbouw van de Kales 3-afzetting schijmt 

beperkt geweest te zijn. Ook de dikte en de horizontale uitbreiding 

van deze schelprijke laag blijven omzeggens konstant. De overgang 

van de Kales 3- naar de kleiiger Kales 4-afzettingen wordt vaak g e ­

kenmerkt door een venige zone. De Kales 4-afzetting is meestal een



kleihoudend grijs fijn zand met talrijke veen- en plantenresten en 

sporadisch schelpen en schelpgruis.

Te Oostduinkerke rekent men de fijne mariene afzettingen 

tussen de peilen -16 en -10 tot de afzetting van Kales. Onderaan 

deze laag rond het peil -16 ligt een kleilens waarvan het p o l l e n ­

spectrum wijst op een Oud-Atlanticum ouderdom (J. SCHITTEKAT, 1972).

In het oostelijk kustgebied onderscheidt men in de a f z e t ­

ting van Kales de afzetting van Houtave en de afzetting van Zuien- 

kerke (W. DE BREUCK, G. DE MOOR & R. MARECHAL, 1969).

De afzetting van Houtave omvat fijn tot middelmatig fijn 

zand, waarin kleilensjes, houtrestjes en verspreide schelpen, 

hoofdzakelijk Cardium edule en Hydrobia sp. aangetroffen worden.

De dikte van de laag bedraagt vier tot vijf meters. De top ligt 

op -2. Helemaal bovenaan bevindt zich een grovere zone die p l a a t s e ­

lijk een schelpbank met vooral Cardium sdule of een silexgrint 

bevat. In deze afzetting werden te Uitkerke (124DB6) talrijke o p ­

eenvolgende veenlaagjes aangeboord.

De afzetting van Zuienkerke wordt gekenmerkt door fijn 

middelmatig zand met p 1 a n t e n g r u i s , schelpfragmenten en gehele s c h e l ­

pen, hoofdzakelijk Cardium e d u l e . De dikte van de laag kan tot 4 m 

oplopen. De afzetting ravineert soms de onderliggende lagen tot het 

piel -4. Plaatselijk komt verder zeewaarts ook een kleiige topzone 

voor. Op andere plaatsen bestaat de topzone uit middelmatig zand 

met veel s c h e l p f r a g m e n t e n .

2.3.3. HET SUBBOREAAL (3.950 tot 2.150 B.P.)

Op het einde van het Atlanticum en in het begin van het 

Subboreaal werd de waddenzee afgesloten door een duingordel, de 

zgn. oude duinen. De duinzone van Adinkerke-Ghyvelde is hiervan 

een overblijfsel. In boringen te Oostduinkerke worden resten van 

deze subboreale duinen aangetroffen tussen de peilen -5 en -9 (J. 

SCHITTEKAT, 1972).

Door de opbouw van de duingordel nam de invloed van de zee 

op het achterliggende gebied af. In de afgelosten lagunes o n t w i k k e l ­

de zich een v e e n l a n d s c h a p . Dit veen bedekte de gehele afzetting van 

Kales en varieerde in dikte van enkele decimeters tot enkele meters. 

Dit veen vormt het hoofdlid van het Holland- of het oppervlakteveen 

en wordt in de ganse Belgische kustvlakte teruggevonden. Hierin is



een evolutie te herkennen : aan de basis rietveen, daarop mos- en 

bosveen (J. AMERYCKX, 1959).

De ontwikkeling van het veen bereikte op sommige plaatsen 

zulke hoogten dat het door de latere Duinkerken-transgressies niet 

overstroomd werd. Dat was het geval in het gebied van de Frans- 

Belgische Moeren, waar het naderhand door de Abdij Ter Duinen o n t ­

gonnen werd.

De duingordel werd nog vóór het einde van het Subboreaal 

te Oostduinkerke doorbroken. Er ontstond een netwerk van geulen 

waarin middelmatig tot fijn middelmatig zand afgezet werd. Het 

bevindt zich tussen de peilen -2 en -4 en ravineert soms de o n ­

derliggende lagen tot -7 (J. SCHITTEKAT, 1972). Ook later tijdens 

het Subatlanticum werd van hieruit een netwerk van kreken gevormd.

2.3.4. HET SUBATLANTICUM (VANAF 2.150 B.P. TOT NU)

Deze periode is gekenmerkt door de verschillende fazen 

van de Duin kerken-trans g r e s s i e .

2.3.4.1. De Duinkerken I— transgressie

De transgressie was vooral belangrijk in het NE van het 

Belgisch kustgebied. Een kleine doorbraak deed zich voor tussen 

de Grote Bogaard en Wulpen ten zuiden van Veurne.

De sedimenten van de Duinkerken I-transgressie vertonen 

een mikrogelaagdheid veroorzaakt door een afwisseling van zandige 

en kleiige laagjes van één tot enkele millimeters dikte. P l a a t s e ­

lijk komt aan de top een vegetatie voor. De bovenste horiaont, die 

10 cm bereikt, is ontkalkt. Men vindt deze sedimenten echter n e r ­

gens aan het oppervlak, waardoor hun maximale uitbreiding niet 

met zekerheid bekend is (J. AMERYCKX, 1959). Ze zijn steeds bedekt 

door de Duinkerken I I - s e d i m e n t e n . Het venige bandje en de bovenste 

ontkalkte zone kunnen in verband gebracht worden met de k o r t s t o n ­

dige Romeinse regressie. Tijdens deze regressie vormden zich de 

middeloude duinen.



2.3.4.2. De Duinkerken II-transgressie

De Duinkerken II-transgressiefase heeft een diepgaande 

invloed gehad op de morfologie van de kustvlakte. De overstroming 

van deze faze, vooral naar het zuiden was veel belangrijker dan de 

voorgaande transgressie. De Duinkerken Il-transgressie werd g e k e n ­

merkt door twee subfazen.

Tijdens de eerste subfaze had vooral erosie plaats. De 

oude duingordel werd op talrijke plaatsen doorbroken en verbrokkeld 

en diepe geulen werden uitgeschuurd. In deze doorbraakgebieden werd 

het veen nagenoeg volledig weggeslagen. Het vroegere veenlandschap 

werd tweemaal per dag overstroomd, behalve enkele eilanden, gevormd 

door de oude duinen van Adinkerke-Ghyvelde, een aantal pleistocsne 

hoofden of " d onken” en het gebied van de Frans-Belgische Moeren waar 

het veen hoog opgegroeid was.

Tijdens de tweede subfaze greep vooral sedimentatie plaats. 

In de getijgeulen werd grof materiaal afgezetj erbuiten, meestal 

op de veenplaten, vooral kleiig materiaal. Op het einde van de 

sedimentatiefaze werd bij de verlanding van de kreken ook klei 

afgezet op de zandige sedimenten.

Door de latere ontwatering klonken de klei-opveengebieden 

in, terwijl de zandige sedimenten weinig of niet van hoogte v e r a n ­

derden. Aldus ontstonden hoge zandige kreekruggen en de laaggelegen 

klei-op-veenplaten of poelgronden.

Op het einde van de Duinkerken II-transgressie (8ste eeuw) 

bleven er nog enkele kreken in werking in het inbraakgebied tussen 

Oostduinkerke en Koksijde. Daar werden vooral zandige sedimenten 

a f g e z e t .

Langzamerhand vormde zich naar het einde van de Duinkerken 

II-transgressie een strandvlakte aan de zeezijde waarop zich staps­

gewijze de Jonge Duinen ontwikkelden (L. CHRISTIAENS, 1 976).Achter- 

eenvolgens vormden zich verschillende duinrepen voor elkaar. De 

laatste, waarvan men nog resten in de bebouwde kom van De Panne 

aantreft, zou ontstaan zijn vóór de aanvang van de 1 2 de eeuw.



3. SEDIMENTOLOGISCH ONDERZOEK

Het onderzoek verliep in drie fazen. Tijdens de eerste 

faze werd op het terrein de litostratigrafie bestudeerd; tevens 

werd een aantal representatieve monsters verzameld. Tegelijkertijd 

werden er hydrogeologische waarnemingspunten uitgebouwd. In een 

tweede faze werden de monsters in het laboratorium onderzoch en de 

resultaten ervan verwerkt. Een derde faze bestond erin de resultaten 

van het terrein- en het laboratoriumonderzoek syntetisch voor te 

stellen.

3,1, Terreinonderzoek

Voor de studie van de litostratigrafie werden boringen 

geslagen met de handboor, met inspoeling en met de mechanische 

aangedreven booruitrusting.

In het totaal werden er 66 handboringen uitgevoerd tot 

een diepte tussen 6 en 10 meters. Boven de watertafel geschiedde 

dit met een wangboor. Onder de watertafel diende men, om het t o e ­

vloeien van het boorgat te verhinderen, voerbuizen aan te brengen. 

Hierin werd met een kleine puls verder geboord terwijl t e g e l i j k e r ­

tijd de voerbuizen dieper ingedrukt werden. Klei en veen werden 

met de guts gestoken. De litostratigrafische opeenvolging werd 

ter plaatse genoteerd. Hierbij werden geen monsters verzameld.

In het studiegebied werden verder 20 diepe boringen 

zonder inspoeling uitgevoerd met een kabelboortoestel met slagin- 

richting en d r a a i b o o r a p p a r a t e n . Tot aan de watertafel werd met 

de grote spiraal geboord. Nadien werden de voerbuizen aangebracht. 

Naargelang van de aard van het sediment werd bem'onsters met een 

rambuis in zand of met een spiraalboor in leem en klei. Vermenging 

werd zo goed mogelijke vermeden. In principe gebeurde de monstername 

om de 50 cm.

Daarnaast werden ook hydrogeologische waarnemingsputten 

gespoeld. Hun ligging nabij diepe mechanisch geboorde putten 

maakte een litologische beschrijving overbodig.

In fig. 3.1. wordt de plaats van de handboringen en diep- 

boringen samen met drie punten weergegeven. Deze laatste zijn putten 

die reeds in het studiegebied aanwezig waren voor de aanvang van deze 

s t u d i e .



3.2. Laboratoriumonderzoek

Op 79 monsters werden volgende bepalingen verricht : de 

hoeveelheid kalk, de hoeveelheid organisch materiaal, de granulo- 

metrie zonder k a l k v e r w i j d e r i n g .

3.2.1. VOORBEHANDELING V M  DE MONSTERS

Van het luchtdroge monster wordt vooraf de fraktie groter 

dan 2 mm afgescheiden en het procentueel gehalte van deze fraktie 

berekend. Met het oog op de bepaling van het kalkgehalte wordt een 

hoeveelheid van 2,5 of 5,0 g fijn verpulverd materiaal afgewogen 

naargelang van de hoeveelheid kalk. Deze laatste wordt geschat door

het aanbrengen van een druppel HC1 op het te onderzoeken materiaal.

Voor de bepaling van het organische materiaal wordt 1 g afgewogen, 

voor het granulometrisch onderzoek 50 g.

3.2.2. DE BEPALING VAN HET KALKGEHALTE

De meting van het kalkgehalte van het monster wordt met 

een calcimeter bepaald en berust op de reaktie

C a C 03 + 2HC1 -v C a C l2 + H 20 + C 02 +

De gewogen hoeveelheid materiaal (2,5 of 5,0 g) wordt 

samen met een kuvet, waarin zich 10 ml HC1 (2N) bevindt, in een 

fles gebracht. Deze laatste staat in verbinöing met één van de 

armen van een U-vormige buis gevuld met een gekleurde vloeistof.

De fles wordt zorgvuldig gesloten en geschud. Door het vrijkomende 

CO^ ontstaat in de U-vormige buis een verandering van de m e n i s c u s ­

stand van de gekleurde vloeistof; deze verandering is recht e v e n ­

redig met de hoeveelheid CaC03 in het materiaal, welke direkt in 

percent op schaal afgelozen wordt.

3.2.3. DE BEPALING VAN HET GEHALTE AAN ORGANISCH tATERIAAL

Volgens de metode van WALKLEY & BLACK wordt het organisch 

materiaal nat geoxideerd met ^ C ^ O ^  in zuur milieu. De overmaat 

oxidans wordt getitreerd met FeSO^. Het resultaat wordt uitgedrukt 

in percent organisch materiaal.
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Van het luchtdroge monster wordt 1 of 0,5 g afgewogen 

naargelang van de hoeveelheid humus, die op zicht geschat wordt. 

Hierbij wordt 10 ml K2 Cr20 7 (1N) en 20 ml H2S 04 (geconcentreerd) 

gevoegd. Het geheel wordt geschud en naderhand afgekoeld. Dan 

wordt 200 ml water toegevoegd. Voor de titratie van de overmaat 

oxidans met FeSO^ wordt 10 ml H^PO^ en 1 ml difenylamine als 

indicator toegevoegd. Het e k w i va lentiepunt is bereikt bij de 

kleuromslag van paarsblauw tot donkergroen.

Dezelfde behandeling wordt herhaald zonder monster cm 

een blanco in te stellen. Het gehalte aan organisch materiaal is 

gelijk aan :

(ml.blanco - ml. titratie) x 0,4

3.2.4. DE GRAN ULO MET RI S CUE ANALYSE

De granulometrische analyse werd uitgevoerd op monst-ers 

waaruit kalk en organisch materiaal niet verwijderd is. De a a n ­

wezigheid van deze laatste beïnvloeden immers het gedrag van 

het sediment t.o.v. water, zodat bij de berekening van de p e r m e a ­

biliteit aan de hand van de granulometrische gegevens ermee rekening 

dient gehouden te worden.

De eigenlijke bepaling van de korrelgrootteverdeling g e ­

beurt op 50 g luchtdroge grond die nat gezeefd wordt op een zeef 

van 50 ym. Bedraagt de klei-leemfraktie (<50ym) meer dan 5% van het 

totale gewicht dan wordt deze verder onderverdeeld met de pipet- 

metode van KÖHN in de frakties 50-20, 20-10, 10-2 en kleiner dan 

2 ym.

De gedroogde zandfraktie wordt gedurende 10 minuten g e ­

schud op een stel genormaliseerde Tyler-zeven gerangschikt in 

dalende orde. Iedere onderste klasselimiet is gelijk aan de 

bovenste klasselimiet gedeeld door 5̂ 2. Deze schaal kan ook u i t ­

gedrukt worden in de meer praktische 0-waarden (KRUMBEIN, 1934).

De $-waarde is de negatieve logaritme met basis 2 van de o v e r ­

eenkomende mm-waarde. Aldus uitgedrukt bedraagt het klasseïnterval 

0,25 $.



3.3. Verwerking van de resultaten van het laboratoriumonderzoek

Het terreinonderzoek verschaft de kwalitatieve gegevens, 

die in het laboratorium omgezet worden in nauwkeurige, k w a n t i t a ­

tieve gegevens. Aan deze kwantitatieve gegevens wordt een fysisch 

begrip gekoppeld. Vooral de granulometris is in deze s t u d i e •b e l a n g ­

rijk omwille van litostratigrafische identifikatie en van de 

evaluatie van hydraulische eigenschappen.

3.3.1. DE KUMULATIEVE KURVEN

Men verkrijgt een kumulatieve kurve door de resultaten 

van de granulometrische analyse grafisch uit te zetten. Op de 

rekenkundige ordinaat plaatst men de som van de gewichtsprocen- 

ten en op de logaritmische abscis de overeenkomende maasopening 

in mm. De kumulatieve kurven worden opgesteld zodanig dat zand-, 

leem- en kleifraktie samen 100% uitmaken. Voor iedere litostra- 

tigrafische eenheid werd aldus een bundel van de korre 1 v e r d e 1 ing 
bepaald (fig. 3.13-3.19).

3.3.2. STATISTISCHE PARAMETERS

Men bekomt statistische parameters door berekeningen 

volgens de metode van de momenten of volgens de grafische metode.

Bij de grafische metode houdt men rekening met enkele percentielen 

afgeleid uit de kumulatieve kurve. Wanneer men de parameters matema- 

tisch uitdrukt in funktie van de momenten houdt men rekening met 

de gehele korre 1 v e r d e 1 i n g .

In het kader van dit onderzoek zijn naast enkele g r a ­

fisch bepaalde parameters eveneens de momentenparameters berekend.

3.3.2.1. Grafische parameters

De mediaan is de korreldiameter in ^-waarde, die 

overeenstemt met 50% op de kumulatieve kurve. Deze waarde duidt 

men aan als Verder leidt men uit de kumulatieve kurven de

$5, ^-|0» ^25' ^75' ^84 8n ^95 waarc*en a^* Ze stemmen overeen met 
5, 16, 25, 75, 84 en 95% op de ordinaat van de kumulatieve kurve.
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De globale grafische standaardafwijking, (R.L. FOLK en 

W.C. WARD, 1957)

*84 ’ *16 . *95 " *5 (3.1)
°I 4 + 6,6

is een maat voor de uniformiteit (of sortering).

De globale grafische asymmetrie ("s k e w n e s s "),

Qk = $ 16 * *64 " 2 *50 *5 * *95 ~ 2 *50 (3.2)
I _ 2 ( $ - $ ) 2 ( $ - $ )84 16 1 95 5

duidt aan of het sediment een overmaat aan fijn materiaal ( " s taart” 

naar rechts : positieve asymmetrie), ofwel een overmaat aan grof 

materiaal ("staart" naar links : negatieve asymmetrie) bevat.

3.3.2 .2 . Momentenmetode

Als maat voor de gemiddelde korre lafmeting werd het 

eerste moment bepaald

“  - 1 Ef m . (3.3)$ 100 $

waar f de frekwentie (g e w i c h t s p r o c e n t ) is waarmee een bepaald 

klasselnterval met m^ als klassemiddelpunt voorkomt.

Als maat voor de uniformiteit heeft men de s t a n d a a r d a f ­

wijking (vierkantswortel van het tweede moment vanaf het gemiddelde)

Ef (m - x^) 2
%  • 1---- f o b ' ' ■ 1 ( 3 -4)

De asymmetrie (derde dimensieloos moment vanaf het 

g e m i d d e 1 d e )

°t - . a o .  3 Ef(m. - x ) 3 (3.5)3 $ 1 0 0 0  $ $

De kurtosis (vierde dimensieloosmoment vanaf gemiddelde)

" TH7T a*'4 Zf(m* - t3-B)4 $ 1 0 0 $ $ 0



3.3.2.3. Specifieke oppervlakte U

De korrelgrootteverdeling kan ook door één parameter 

weergegeven worden nl. de specifieke oppervlakte ü. Ze wordt g e d e ­

finieerd als de verhouding tussen de totale oppervlakte van alle 

deeltjes en de oppervlakte van eenzelfde gewicht aan sferische delen 

van hetzelfde materiaal met een diameter van 1 cm.

Het specifieke oppervlakte van een bepaalde zeeffraktie bij 

een granulometrische analyse wordt met de volgende formule bepaald 

(N.A. DERIDDER i  K.E. WIT, 1965) :

U = ________ 0 j A 3 ± 3 ______ _1_____ 1_
cm log d^-log d i + 1 d i + 1 d i

waarin d.̂  de grootste en + ̂ de kleinste diameter is van de 

beschouwde zeeffraktie uitgedrukt in cm.

Men bekomt het specifieke oppervlakte van het monster 

door het optellen van de specifieke oppervlakten van iedere z e e f ­

fraktie vermenigvuldigd met de overeenstemmende gewichtsfrakties 

voor ieder klasseïnterval tussen de 2000 en 20 pm of in de formule

SU w.
u. -  1 s . e
tot “ tot

waarbij het gewicht is van de zeeffraktie i tussen de diameters

d . en d . .i i+1
W t o t *ie*: Êewicht is van alle frakties tussen 2000 en 20 um.

3.3.2.4. De bepaling van de permeabiliteit op grond van granulometrie

De permeabiliteit of de hydraulische konduktiviteit k van 

een sediment wordt gedefinieerd als de hoeveelheid water die per 

tijdseenheid door een oppervlakteëenheid vloeit van een poreus m a ­

teriaal onder een piëzometrisch verhang van een eenheid bij een b e ­

paalde temperatuur. De permeabiliteit is dus afhankelijk van de 

fysische eigenschappen zowel van de vloeistof als van het poreus 

medium.

Aangezien de dichtheid en de viskositeit van het g r o n d ­

water nagenoeg konstant zijn, mag men hier de permeabiliteit b e ­

schouwen als een funktie van de eigenschappen van het medium. Dit



zijn dB Korrelgrenzen en -strukturen, de graad van kompaKtie, de 

Korrelgrootteafmeting en -verdeling.

Meestal zijn de sedimentaire afzettingen anisotroop voor 

wat betreft de permeabiliteit, d.w.z. dat de permeabiliteit verschilt 

naargelang van de richting. In een zandlaag waarin fijne leemlaagjes 

voorkomen is de vertiKale permeabiliteit KV meestal veel Kleiner dan 

de horizontale permeabiliteit K h . Deze anisotropie van het sediment 

wordt meestal bepaald door zijn textuur en vooral door zijn struKtuur. 

Het is nagenoeg onmogelijK de struKtuur van het sediment uit boringen 

af te leiden. Daardoor is het vrijwel onmogelijK om deze anisotropie 

te Kwantificeren. Uit geroerde monsters Kan men noch de horizontale 

noch de vertiKale permeabiliteit afleiden.

TalrijKe onderzoeKers hebben evenwel gepoogd om aan de 

hand van één of meerdere granulometrische parameters de permeabiliteit 

van het sediment te schatten. EnKele van deze formules worden in deze 

studie toegepast en met elKaar vergeleken. De aldus bepaalde p e r m e a ­

biliteit swaarden zijn bij horizontaal ge lame 1 1 eerde zanden meestal 

iets Kleiner dan de werKelijKste horizontale permeabiliteit maar 

meestal veel groter dan de vertiKale p e r m e a b i l i t e i t .

Men Kan in hoofdzaaK twee groepen formules onderscheiden 

nl. degene die uitgaan van een bepaalde Korreldiameter en degene die 

uitgaan van de specifieke oppervlaKte U.

3.3.2.4.1. De formules van HAZEN, O.C.W., K.RUMBEIIM & MONK en 

MASCH 8 DENNY

HAZEN stelde in 1892 de volgende empirische formule voor

K = C . d*0 3. 9

waarin K = permeabiliteitsKoëfficiënt in cm/sec

d 1Q = aKtieve Korreldiameter in cm
- 1  -1 C = Konstante in cm .sec.

Later werd deze formule

K = C.d? (o,7 + 0 , 0 3 t ) 3.101 0

waarbij t = temperatuur in °C.



De aktieve korreldiameter, d ^ ,  wordt gedefinieerd als 

de korreldiameter beneden dewelke het fijner materiaal 10 percent 

bedraagt. De waarde van C staat niet vast. Verschillende onderzoekers 

hebben limietwaarden van C vooropgezet. Als breedste limieten v e r ­

meldt D. TAYLOR (1948) de waarden 41 en 146. Als temperatuur wordt 

meestal de waarde van 10°C genomen, d.i. de temperatuur van het 

grondwater in het studiegebied.

Deze formule werd toegepast bij de berekening van de p e r ­

meabiliteit uit de gegevens van de k o r r e l g r o o t t e a n a l y s e n . Aan de 

constante C werd de waards 77 toegekend zodanig dat de resultaten 

overeenstemmen met de proefbemalingen in het studiegebied.

In 1967 heeft het Opzoekingscentrum voor Wegenbouw (O.C.W.) 

te Brussel een formule opgesteld op grond van 48 soorten n a t u u r ­

lijke zanden, waarin de permeabiliteit bij volledige verzadiging 

herleid werd bij een temperatuur van 10°C en een porositeit van 0,4.

k = 25.d 2 0 3.11

waarbij k = p e r m e a b i 1 iteitskoëfficiënt in cm/sec

d 5Q = korreldiameter overeenstemmend met 50% op de kumula- 

tieve kurve in cm.

Volgens hst O.C.W. zou deze formule snel een eerste 

benadering geven van k, op een faktor 2 na. Het gehalte aan m a t e ­

riaal fijner dan 20 ym mag echter niet meer dan 3% bedragen.

De voorgaande metoden steunen op slechts één diameter, 

afgeleid uit de korrelgrootteanalysen. Verschillende onderzoekers 

hebben naast de formule met de gemiddelde diameter een korrektie- 

faktor ingevoerd voor de sortering van de zanden.

Uit de proeven van KRUMBEIN & MONK (1942) op glaciale 

zanden volgde de formule :

k = b x d 2 x e " a 0 G 3.12

waarin k = p e r m e a b i l i t e it s k o ë f f i c i ë n t ,

Oç = grafische standaarddeviatie in e e n h e d e n ,

d = geometrisch gemiddelde diameter in mm, 

a en b zijn konstanten.



MASH S DENNY (1966) hebben de permeabiliteit uitgezet tegenover

de verschillende distributieparameters van zanden. Op die manier werd

een Korrelatie gelegd tussen de Md_ n en de o.-waarde om de permeabi-
b  U 1

liteit bij benadering te bepalen (LEBBE, L., 1973).

3.3.2.4.2. De formules van BOUSSINESQ, SCHLICHTER, K O Z E N Y , ERNST

BOUSSINESQ (1866) en SCHLICHTER (1899) poogden rechtstreeks 

de vorm van de kanalen af te leiden door een zekere schikking van de 

volkomen ronde korrel aan te nemen.

KOZENY hernam het werk van BOUSSINESQ en kwam in 1927 tot 

de volgende formule

a 3 ?k = c x -------  x d 3.13
( 1 - a ) 2 W

waarin c, een faktor afhankelijk van de vorm van de korrel en van 

de temperatuur die de dynamische viskositeit van de 

vloeistof beïnvloedt, 

a, de porositeit, w

d , afgeleid uit - -  E Ew ’ d d.xWw i tot

waarin ^  het gewicht is van de zeeffraktie 

Wtot het gewicht is van alle frakties

en d

d d . + d . , d . . i i i+1 i+1

waarin d i en d i +  ̂ respektievelijk de grootste en de kleinste diameter 

van de beschouwde zeeffraktie.

1
Daar —  bij benadering gelijk is aan de specifieke o p p e r ­

vlakte U, . wordï de formule van KOZENY tot

k . x 3.14

U tot

Uit een groot aantal laboratoriumproeven op kunstmatig 

vermengde monsters van natuurlijke sedimenten, met een gemiddelde 

porositeit van 0,35, leidde ERNST (1955) af dat kU2 = 27.000 

(DE RIDDER N.A. et al., 1957).



Verschillende onderzoekers hebben aangetoond dat het 

produkt kU2 , varieert van 31 x 1 0 3 tot 71 x 1 0 3 bij een porositeit 

van 0,4 (tabel 3.1).

Tabel 3.1 - Waarden van kl)2 bij aangenomen porositeiten van 0,4 

(KESSLER, J. & OOSTERBAAN, R.J.. 1974)

Auteur k U2> (K in m / d a g )

SEELHEIM 31 X 1 O 3
SLICHTER 33 X 1 03
KRUGER 36 X 1 0 3
TERZAGHI 40 X 10 3 .■ 71 X 1 0 3
SCHONWALDER 40 X 1 0 3
ZÜNKER 32 X 1 03 .■ 44 X 1 O 3
HOOGHOUDT 44 X 1 O 3
FAHMY 47 X 1 0 3

De vergelijking van resultaten van laboratoriumproeven en 

bemalingen leverde volgens ERNST de volgende empirische betrekking 

(N.A. DE RIDDER & K.E. WIT, 1965) :

-  2
54.000 u x A x B x C 3.15

waarin k = permeabiliteitskoëfficiënt in m/dag,

U = specifieke oppervlakte,

A = korrektiefaktor voor de sortering van het zand

B = korrektiefaktor voor de aanwezigheid van korrels <16 ym

C = korrektiefaktor voor de aanwezigheid van grint.

3.3.2.4.3. Aanpassing van de formule van ERNST

De korrektiefaktoren A, B en C kunnen afgeleid worden 

uit fig. 22. De sortering wordt gegeven door het gewichtspercentage 

van de topfraktie, d.i. de som van het gewichtspercentage van de 

drie grootste naast elkaar liggende zeeffrakties in een bepaald 

zeefstel. Voor een sortering van 70% is de faktor A = 1, voor 

grotere sortering is A>1, voor een kleinere sortering is A<1.
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De korrek t i e f aKtor B heeft betrekking op deeltjes <16 ym. 

Het is niet mogelijk deze metode toe te passen op monsters die meer

dan 6% deeltjes <16 ym bevatten. De faktor B is kleiner of gelijk

aan 1 .

De korrektiefaktor C houdt rekening met de grintinhoud. Als 

grint tussen de fijnere deeltjes voorkomt hindert het de stroming 

van het water en vermindert het bijgevolg de permeabiliteit. Het 

grint komt echter normaal als afzonderlijke lagen voor, zelfs als 

het vermengd lijkt in verstoorde monsters. In dat geval wordt de

permeabiliteit vergroot. Bij het opstellen van de korrektiefaktor

C werd alleen met dit laatste rekening gehouden. De faktor C is 

groter of gelijk aan 1 .

De metode van ERNST werd in deze studie aangewend. Om 

ze toe te passen door middel van een grafisch komputersysteem,

4051 TEKTRONIX, was het nodig de grafieken van fig. 32 te vervangen 

door formules.

Bij de berekening van de korrektiefaktor A stelt men vast 

dat het percentage van de drie belangrijkste fr^kties afhankelijk 

is van het gebruikte zeefstel. Daarom werd een korrelatie gezocht 

tussen de korrektiefaktor A en de standaarddeviatie die eveneens 

een maat is voor de sortering van de zanden maar niet of weinig a f ­

hankelijk is van het gebruikte zeefstel. Uit proeven werd afgeleid 

dat wanneer Oj>0,63 de korrektiefaktor A = 1/Oj en wanneer 

aj<0,63 de korrektiefaktor A = 1,6.

Aan de korrektiefaktor C wordt een waarde 1 toegekend

indien het grintpercentage f kleiner is dan 10. Is het grintiper-b
centage groter dan 10 maar kleiner dan 47 dan wordt de k o r r e k t i e ­

faktor C uit onderstaande formule berekend

C = 0,944 ♦ 0,00926 f_ - 0,000249 f£ + 0,00000626 f*! 3.16b b b

waarin f_ het grintpercentage voorstelt.b

Is het grintpercentage groter dan 47 dan wordt

C - -0,305 + 0,03956 f_b 3.17



De k orrektiefaktor B wordt berekend aan de hand van het 

percentage korrels kleiner dan 16 pm

B = 0,996 - 0,254 f q + 0,0231 f| - 0,000994 f| 3.18

Op grond van permeameterproeven en van proefpompingen 

blijkt dat in ons geval de volgende aanpassing van de formule van 

ERNST

k = 27.000 x ü " 2 x A x B x C 3.19
tot

de meest geschikte is.

3 , 4 .  Syntetische voorstelling van de resultaten van het terrein­
en HET LABORATORIUMONDERZOEK

3.4.1. HYDROLITOLOGISCHE PROFIELEN VAN DE BORINGEN (FIG. 3.3 - 3.12)

De diepte in meters ten opzichte van het maaiveld wordt

op de rechterschaal aangegeven, het peil in meters t.o.v. het nul-
x

peil te Oostende van het N.G.I. (Z.D.G.) op de l i n k e r s c h a a l . De 

veldbeschrijving is gesyntetiseerd weergegeven onder de vorm van 

een litostratigrafische kolom. Daarnaast worden de resultaten van de 

laboratoriumproeven voorgesteld, uitgevoerd op monsters representatief 

voor de verschillende litostratigrafische eenheden. In de olom van 

de granulometrie zijn de peilen waartussen het monster genomen werd 

voorgesteld door twee volle lijnen. De grenzen van de l i t o s t r a t i g r a ­

fische eenheden waarvoor een bepaald monster representiatief is 

worden aangegeven door stippellijnen. De ^25' ^50' $ 75'

procentielen worden aangeduid door volle vertikale lijnen
o b y b

tussen de grenzen van de litostratigrafische eenheid. Waarden groter 

dan 6$ zijn niet aangeduid.

Per litostratigrafische eenheid wordt vervolgens het k a l k ­

en grintgehalte (>2 mm), de permeabiliteit k, berekend volgens de 

formule van HAZEN en berekend volgens de aangepaste formule van 

ERNST, voorgesteld. Daarnaast staat de specifieke oppervlakte en de 

globale grafische standaardafwijking aangegeven.

Z.D.G. Zéro du Dépôt de la Guerre, oorsprong van de waterpassingen 

van het Nationaal Geografisch Instituut.



3.4.2. LITOSTRATIGRAFISCK PROFIEL (FIG. 3.20)

De litostratigrafische profielen geven het verband tussen 

de litologische profielen van de boringen aan en verschaffen een 

ruimtelijk overzicht van de opbouw van de litostratigrafische eenhe-

De litostratigrafische profielen dienen als leidraad bij 

de bespreking van de litostratigrafische eenheden in het studiegebied.

3,5. ÙE LITOSTRATIGRAFISCHE EENHEDEN

3.5.1. HET TERTIAIR SUBSTRAAT (1)

Het tertiair substraat (1) wordt gevormd door de mariene 

zware klei van het Ieperiaan CYc). De top van het substraat ligt 

tussen de peilen -24,5 (117DB6) en -31,6 (117DB14). In het litostra- 

tigrafische profiel volgens de hoogwaterlijn daalt de top van het 

substraat kontinu van west naar oost (van -24,6 in 117DB13 over 

-29,3 in 117DB12 naar -31,6 in 117DB14). In het litostratigrafische 

profiel dwars door de duinen van de hoogwaterlijn tot in het o v e r ­

dekte waddenlandschap (fig. 3.20) vertoont de top ervan een golvend 

verloop.

3.5.2. LAAG (2) s MIDDELMATIGE TOT GROF MIDDELMATIGE ZANDEN ?!ET 

SCHELPEN EN SCHELPGRUIS

Deze afzetting wordt nagenoeg overal teruggevonden. Ze 

ontbrak alleen in de boringen 117DB7 en 193DB6. De top van de a f ­

zetting ligt meestal tussen de -15,5 en -18,5, zodat de dikte in 

de meeste boringen begrepen is tussen 12 en 6 m. In boring 193DB5 

wordt slechts een rest van deze afzetting teruggevonden met een 

dikte van circa 1,5 m.

Laag (2) is opgebouwd uit middelmatig tot grof m i d d e l ­

matig zand met een erg veranderlijke hoeveelheid schelpen en schelp- 

gruis. De grintfraktie bestaat grotendeels uit schelpen en schelp- 

gruis. Behalve deze schelpen en schelpgruis komen in de grintfraktie 

nog enkele silexstukken en veldsteenfragmenten voor. Deze worden t a l ­

rijker en nemen toe in grootte met de diepte.

De monsters met een hoog grintpercentage bezitten e v e n ­

eens een groot percentage schelpgruis met afmetingen tussen de 

2000 en 300 ym. Hierdoor vertonen deze monsters een positieve 

asymmetrie en een minder goede sortering (grote standaarddeviatie). 

Daar het percentage schelpgruis sterk varieert liggen de kumula- 

tieve kurven van deze laag tussen de zeefopeningen 2000 en 300 ym



ver uiteen (fig. 3.13).

Daardoor vertoont ook de gemiddelde k o r r e l g r o o t t e , bepaald 

volgens de momentenmetode een grote spreiding. Het kalkgehalte 

wordt bepaald door de hoeveelheid schelpen en schelpgruis.

De fraktie beneden 150 vim is steeds kleiner dan 10%. De 

grenzen waartussen de kumulatieve kurven liggen ter hoogte van 

de fijnere fraktie, de rechter " s t a a r t ” zijn er nauw; daardoor ver­

andert de waarde van d 1Q weinig zodat de permeabiliteit berekend 

volgens de metode van HAZEN een geringare spreiding vertoont dan 

die bepaald volgens de metode van ERNST.

Tabel 3.1 - Kenmerken van de laag (2) van de middelmatige tot grof

middelmatige zanden (13 m o n s t e r s )

Gemiddelde
waarde

S t a n d a a r d ­
deviatie

M a x . 
waarde

Min.
waarde

Gemiddelde korrelaf- 
meting (1 ste mom.)

1,73$
(301ym)

0,30$ 2,13$
(228ym)

1 , 33$
(398ym)

Standaarddeviatie 
(2de m o m . )

0,68$ 0,2 2$ 1 ,0 1 $ 0, 30$

Specifieke oppervlakte 
(2000-20 ym)

37,4 5 , 97 45,6 28 , 6

Permeabiliteit (vol­
gens ERNST)

24,1 m/dag 5,3 m/d 35,8 m/d 18,3 m/d

Permeabiliteit (vol­
gens HAZEN)

22, 6 m/dag 4,0 m/d 2 8, 2 m/d 15,4 m/d

% Grint 10,7% 9,6% 35% 0,1 1 %

3.5.3. LAAG (3) : KLEI-LEEMKOMPLEX

Deze afzetting komt in de helft van de boringen voor, 

ni. 117DB14, 117DB13, 117DB7, 117DBB. 117DB6. 193DB6 en 193DB5.

De samenstelling, de dikte en het peil, waarop men de afzetting 

aantreft, verandert van plaats tot plaats.

In het noordelijk gedeelte van het studiegebied ontbreekt 

deze afzetting meestal. Uitzondering hierop zijn boringen 117DB12 

en 117DB14, waar de afzetting bestaat uit een circa 2 m dikke lemige 

zandlaag met fijn schelpgruis en klei-leemlenzen met erboven 10 
tot 50 cm leem met kleilaagjes van verschillende cm dikte.



In het zuidelijke gedeelte treft men deze laag vaker aan. 

Ze vertoont er kort op elkaar volgende facies- en d i k t e w i s s e l i n g e n . 

In de boring 117DB6 rust deze laag rechtstreeks op de Ieperiaanklei 

De dikte van de afzetting bedraagt er 9,5 m; ze ligt tussen de 

peilen -17,3 en -26,0. De afzetting bestaat er onderaan uit een 

zandige leemlaag van 2,5 m dikte met aan de basis schelpgruis, klei 

brokken en grint. Daarop rust een 4,5 m dikke leemlaag met aan de 

top enkele kleibanden. Bovenaan tenslotte ligt leemhoudend zand tot 

zandige leem dat naar boven grover wordt. In deze laag treft men 

leemlenzen aan met resten van organisch materiaal en zeer fijne 

bleke s c h e l p s t u k j e s . De dikte van dat bovenste gedeelte bedraagt

2,5 m .

Verder naar het zuiden, in de boringen 117DB8 en 117DB6, 

bereikt de afzetting slechts 3 à 4 m dikte tussen de peilen -18 en 

-14. De laag bestaat er uit sterk leemhoudend zand en leem. In de 

boringen 117DB15 en 117DB16 is de laag herleid tot een leemlens op 

het peil -16.

In de meest zuidelijke boringen (193DB5, -DB6 en -DB7) 

neemt de laag opnieuw in dikte toe. Ze is er opgebouwd uit zwaarder 

materiaal en bevindt zich tussen de peilen -19 en -27. In de boring 

193DB5 gaat deze laag geleidelijk over in de onderliggende laag (2) 

In de boring 193DB6 rust laag (3) op een zeer heterogene afzetting 

van zand, klei en leem waarin men resten van organisch materiaal 

aantreft. Het Ieperiaankleisubstraat werd hier niet bereikt. In de 

boringen 193DB1 en 193DB8 komt deze afzetting niet voor. Er blijken 

dus twee faciessen in voor te komen. Een overwegend lemig facies 

(3.1) tussen de peilen -14 en -18 met een maximale dikte van 4 m en 

een overwegend kleiig facies (3.2) tussen de peilen -17 en -27 met 

een maximale dikte van 10 m. Hierdoor liggen de kumulatieve kurven 

van afzetting (3) ver uit elkaar en vertonen de kenmerken afgeleid 

uit de granulometrie een sterke spreiding (fig. 3.14).



T a b e l  3.2 - K e n m e r k e n  van laag (3) (9 m o n s t e r s )

Gemiddelde
waarde

S t a n d a a r d ­
deviatie

M a x . 
waarde

Min.
waarde

Gemiddelde korrel- 
afmeting (1 ste 
m o m e n t )

4,86$
( 34 ,4vim)

1,27$ 6,44$
( 1 1 ,5ym)

2,75$
(14 9pm)

Standaarddevia- 
tie (2de moment)

3,40$ 0,56 4,28$ 2,76$

Specifieke o p p e r ­
vlakte (2000-20um)

119 38 182 74,7

Daar de formules van HAZEN en van ERNST enkel gelden voor 

zanden werden geen permeabiliteit bepaald.

3.5.4. LAAG (4) : MIDDELMATIG TOT FIJN MIDDELMATIG ZATD

Deze afzetting rust ofwel op laag (2) ofwel op laag 

(3). De basis ervan ligt tussen de peilen -14,5 en -17,5. De top 

schommelt tussen +1 en +3, behalve ter hoogte van boring 117DB12, 

waar men hem op - 1  aantreft.

De laag (4) bestaat grotendeels uit goed gesorteerde 

middelmatige tot fijn middelmatige zanden. De kumulatieve kurven 

van deze 24 monsters liggen binnen enge grenzen (fig. 4.15).

Hieruit volgt dat ook de spreiding van de parameters afgeleid uit 

granulometrie vrij gering is. De grootste ^-waarden voor de g e m i d ­

delde korreldiameter treft men aan in monsters uit het zuidelijke 

gedeelte van het studiegebied.



T a b e l  3.3 - K e n m e r k e n  van de laag (4) : de m i d d e l m a t i g e  tot fijn

m i d d e l m a t i g e  zand en (24 m o ns te rs )

Gemidde1de 
waarde

S t a n d a a r d ­
deviatie

M a x . 
waard e

M i n . 
waarde

Gemiddelde korrel- 
afmeting (1 ste 
m o m e n t )

2,56$ 
(170ym)

0,14$ 2,76$ 2,18$

S t a n d a a r d d e v ia ­
tie (2 de moment)

0,41 $ G , 0 8 $ 0,62$ 0,28$

Specifieke o p p e r ­
vlakte (2000-20ym)

63,5 5,7 70 50

Permeabiliteit 
(volgens ERNST)

8,73 m/d 2,72 m/d 14,42 m/d 3,53 m/d

Permeabiliteit 
(volgens HAZEN)

8,94 m/d 2,08 m/d 14,19 m/d 5,06 m/d

In laag (4) treft men ook lenzen aani. Dit is het geval

in het zuiden waar aan de basis een fijne zandlens voorkomt (4.1);

de kenmerken ervan zijn in tabel 2.4 samengevat.

Tabel 3.4 - Kenmerken van de laag 4.1 : zandlens (3 monsters)

Monster 193DB5M44 193DB6M4 5 117DB15M46

Gemiddelde korrel- 
groote (1 ste 
m o m e n t )

3,01$ 
(124ym)

3,02$ 
(123ym)

2,81$ 
(143ym)

S t a n d a a r d d e v i a ­
tie (2de moment)

U, 44$ 0,51$ 0,61$

Specifieke o p p e r ­
vlakte (2000-20ym)

87,4 120 79,9

Permeabiliteit 
(volgens ERNST)

3,4 m/dag 0,90 m/dag 3,1 m/dag

Permeabiliteit 
(volgens HAZEN)

4,0 m/ dag 2,5 m / d a g 2,8 m/ d a g



In de boring 117DB15 treft men eveneens een fijne zandige 

lens (4.2) aan middenin de goed gesorteerde middelmatige tot fijn 

middelmatige zanden tussen de peilen -7 en -12.

Tabel 3.5 - Kenmerken van de laag (4.2) fijn zandige lens in 

boring 117DB15 (2 monsters)

Gemiddelde korrelgrootte 2,76$ (148ym) 2,86$ (138ym) 
(1 ste moment)

Standaarddeviatie 0,43$ 
(2 de moment)

0,43$

Specifieke oppervlakte 73 
(2000-20ym)

78

Permeabiliteit (volgens 5,2 m/dag 
ERNST)

5,0 m/dag

Permeabiliteit (volgens 5,1 m/dag 
HAZEN)

4,6 m/dag

% leem + klei (<50y) 3,1% 2,4%

Deze lens (4.2) is waarschijnlijk te kcrreleren met

het weinig leemhoudend fijn zand (4.3) in de boringen 193DB6 en

193DB7 tussen de peilen -8 en -11,5. Hetzelfde materiaal vindt

men ook terug in de boring 117DB9 tussen - 2 en -6 en in de boring

117DB7 tussen -12,75 en -14,25.

Tabel 3.6 - Kenmerken van de laag (4.3) weinig leemhoudend fijn

zand (3 monsters)

Monster 193DB6M26 117 DB9M2 9 117DB7M38

Gemiddelde korrel- 3,14$ 
grootte (1 ste (113ym) 
m o m e n t )

2,99$ 3,05$
(12 6ym) (1 2 1 ym)

Standaarddeviatie 1,31$ 
(2de moment)

1,23$ 1,41$

Specifieke opper- 83 
vlakte (2000-20ym)

7 B 87

Permeabiliteit 2,6 m/dag 
(volgens ERNST)

3 , 2 m/dag 1 ,7 m/dag

Permeabiliteit 4,2 m/dag 
(volgens HAZEN)

8,0 m/dag 2,5 m/dag

% l e e m + k l e i  4,3% 
(<50 ym)

4,1% 7,5%



In het noorden vertonen de boorprofielen 117DB12, 117DB10 

en 117DB13 dn 117DB14 een leemhoudend fijn zand (4.4) tussen de 

peilen -2 en -12. Twee monsters werden aan een granulometrische 

analyse onderworpen.

Tabel 3.7 - Kenmerken van laag (4.4) leemhoudend fijn zand 

(2 monsters)

Monsters 1 17DB12M33 117DB10M29

Gemiddelde korrelgrcotte 
(1 ste moment)

3,41$ (94pm) 3,65$ (80ym)

Standaarddeviatie 
(2de moment)

1,90$ 2,25$

Specifieke oppervlakte 
(2000-20ym)

92, 9 96, 1

Permeabiliteit 
(volgens ERNST)

N.B. N.B.

Permeabiliteit 
(volgens HAZEN)

0,93 m/dag 0, 22 m/dag

% leem-klei (<50ym) 1 1 ,6% 14,9%

In het grootste gedeelte van het studiegebied komt .nabij

de basis van de goed gesorteerde middelmatige tot fijn middelmatige

zanden (4) schelpgruis voor (4.5). Van deze bank werd een zestal 

monsters granulometrisch onderzocht.

Tabel 3.8 - Kenmerken van de laag (4.5) schelpgruisrijke bank 

(6 monsters)

Gemiddelde
waarde

S t a n d a a r d ­
deviatie

M a x . M i n .

Gemiddelde korrel- 2,06$ 
grootte (1ste (240ym) 
m o m e n t )

0,20$ 2,31$ 1,87$

Standaarddeviatie 0,83$ 
(2de moment)

0,13$ 1,02$ 6,65$

Specifieke opper- 50 
vlakte (2000-20um)

8 62 39

Permeabiliteit 10,9 m/dag 
(volgens ERNST)

4,3 m/dag 18,7 m/dag 6,3 m/d

Permeabiliteit 9,7 m/dag 
(volgens HAZEN)

3,4 m/dag 15,1 m/dag 5,4 m/d

% grint (>2 mm) 1 0 ,1 % 9,1% 27,6% 2,0%



31 . -

In het midden van de goed gesorteerde middelmatig tot 

fijn middelmatige zandafzetting (4) Komt ter hoogte van de borin 

gen 117DB1 en 117DB9 tussen de peilen -7 en -22 een schelpbank 

(4.6.) v o o r .

Tabel 3.9 - Kenmerken van de laag (4.6) schelpbank (2 monsters)

Monster 1 17D61M32 117DB9M42

Gemiddelde korrelgrootte 2,00$ (250 y m) 1 91 $ (266 ym)

Standaarddeviatie 0,71$ 0, 73$

Specifieke oppervlakte 
(2000-20 ym)

45 42

Permeabiliteit 
(volgens ERNST)

14,8 m/dag 14,6 m/dag

Permeabiliteit 
(volgens HAZEN)

1 1 , 6  m/dag 13,0 m/dag

% Grint (>2 mm) 2 ,66% 3,95%

3.5.5. LAAG (5) : RLEI-LEMIG ZAÎ7D

Op de goed gesorteerde middelmatige tot fijn middelmatige 

zandafzetting (4) rust een laag die lateraal sterk in facies w i s ­

selt. De top van deze laag ligt rond +4. In het zuiden, het o v e r ­

dekte weddenlandschap, valt de top van deze afzetting samen met

het maaiveld. Deze laag werd in de meeste handboringen doorboord.

Drie faciessen zijn te onderscheiden. Het eerste (5.1) 

is een lemige klei- of een kleiige leemlaag waarvan de dikte 

varieert tussen 20 en 100 cm in een sterk lemig zand. Naar onder 

toe wordt de afzetting zandiger.

Tabel 3.10 - Kenmerken van de laag (5.1) klei-lemig zand (4 monsters)

Monster 1 93DB6M3 1 17DB8M5 11 7DB7M6 1 1 7DB7M9

Gemiddelde 
korrelgrootte 
(1 ste moment)

7,42$
( 5, 8v|m)

9, 10$
( 1 ,B^m)

6,29$ 
(1 2 ,8ym)

4,69$ 
(38,7ym)

S t a n d a a r d ­
deviatie

3,56$ 3,45$ 3,61$ 3,15$

Specifieke 
oppervlakte 
(2000-20 ym)

180 154 163 123



In sommige boringen ligt veen (0,5 m dik) onder de 

kleilaag (117HB33, 117HB32, 117HB45, 117HB12 en 117DBB). Soms 

komt erboven een humushoudende of venige laag voor (117HB22, 117HB33, 

117DB9 en 1 1 7 H B 3 8 ) .

Het tweede facies (5.2) is hoofdzakelijk een zeer lemig 

fijn zand met leem- of kleilenzen (dikte <10 cm). Meestal treft 

men erboven een humeuze of venige laag aan.

Tabel 3.11 - Kenmerken van de laag (5.2) klei-lemig zand (2 m o n ­

sters )

Monster 1 1 7DB15M3 117 D B 6 M 1 1

Gemiddelde korrelgrootte 
(1 ste moment)

3,45$ (92 m) 4,06$ (60 m)

Standaarddeviatie 2, 04$ 2, 70$

Specifieke oppervlakte 
(2000-20 ym)

S8 113

De formules van HAZEN en van ERNST zijn op de monsters 

van de lagen (5.1) en (5.2) niet toe te passen.

Het derde facies (5.3) komt voor aan de zeezijde, onder 

de duinreep en het hoge strand tussen de peilen -1 en +4; het

bestaat er uit een bank van roestkleurige schelpen en schelpgruis.

Deze bank werd aangeboord in 5 handboringen (117HB2, 117HB14, 

117HB17, 117HB54 en 117HB55) en in 3 diepe boringen (117DB12,

1 1 7DB13 en 1 1 7 D B 1 4 ) .

Tabel 3.12 - Kenmerken van de laag (5.3) : schelprijke bank 

(1 monster)

Monster 117DB12M8

Gemiddelde korrelgrootte (1ste moment) 2,31$

Standaarddeviatie (2de moment) 0,58$

Specifieke oppervlakte (2000-20ym) 53

Permeabiliteit (volgens ERNST) 14,3 m/dag

Permeabiliteit (volgens HAZEN) 13,0 m/dag

Grint (>2 mm) 17%



Tussen het tweede en het derde facies ligt een zone in 

het noordelijke gedeelte van het studiegebied waarin op hetzelfde 

peil goed gesorteerde middelmatige tot fijn middelmatige zanden 

voorkomen tussen de peilen +1 en +4.

3.5.6. DE LAAG (6) : DUIN- EN STRANDAFZETTINGEN

In het duingebied komt het duinzand voor vanaf het m a a i ­

veld tot het peil +4. Men treft banden van bruin licht humeuze 

zanden aan op verschillende diepten. Het zijn resten van oude be- 

groeiingshorizonten.

Naargelang van de plaats in het duingebied heeft er zich

een bodem ontwikkeld. Op de- hoger gelegen plaatsen, nl. de duin-

reep en de centrale duinrug, heeft zich geen bodem gevormd. In 

de noordelijke pannen ligt een dunne humeuze toplaag. In de z u i d e ­

lijke pannen is deze humeuze laag veel sterker ontwikkeld. In de 

duingordel nabij de polders t r e Ft men aan de top van deze laag een 

dunne licht humeuze laag aan. In de windgeulen van de duinreep 

ligt aan het oppervlak een schelpenrijke zandlaag.

Het strandzand is enigszins fijner en iets minder g e s o r ­

teerd dan het duinzand (fig. 3.19). Ook blijkt de mediaan (in ym) 

evenals de sortering een weinig toe te nemen met de afstand van de 

zee. De standaarddeviatie is in het zuiden evenwel iets kleiner.

Tabel 3.13 - Kenmerken van de laag (6) : duin- en strandzand

Duinzand (7 m o n s t e r s ) Strandzand
Gemiddelde
waarde

Standaard
deviatie

M a x . Min . 1 1 7DB12M3

Gemiddelde 
.orrelgrootte 
(1 ste moment)

2,34$
(198ym)

0,07$ 2,44$ 2,25$ 2,49$

Standaard 
deviatie 
(2de moment)

0,31$ 0,04$ 0,39$ 0, 28$ 0,40$

Specifieke
oppervlakte
(2000-20pm)

53 2 56 51 59

Permeabiliteit 
(volgens ERNST)

13,5 m/d 3,2 m/d 16,7 m/d 7,2 m/d 11,9 m/i

Permeabiliteit 
(volgens HAZEN)

13,8 m/d 1 , 8 m/d 15,8 m/d 1 1 , 1  m/d 1 1 , 6  m/d



3.6. Besluit

Uit het sedimentologisch onderzoek blijkt dat het 

freatisch reservoirgesteente duidelijk gestratifieerd is.

Onderaan bestaat de watervoerende laag uit middelmatig 

tot grof middelmatig zand (2). Uit de granulometrie is af te 

leiden dat de gemiddelde permeabiliteit 24 m/dag bedraagt. Hierop 

rust soms het klei-leemkomple* (3). In het klei-leemkomplex zijn 

twee faciessen te onderscheiden, een lemig (3.2) tussen de peilen 

-14 en -18 met een maximale dikte van 4 m en een kleiig (3.1) 

tussen de peilen -17 en -27 met een maximale dikte van 10 m. In 

het noordelijke deel van het studiegebied ontbreekt meestal het 

klei-leemkomplex. Het is niet mogelijk de permeabiliteit uit de 

granulometrie te bepalen.

Op de lagen (2) en/of (3) rust middelmatig tot fijn

middelmatig zand (4) met lenzen van fijn zand, die leem kunnen

bevatten (4.1), (4.2), (4.3) en (4.4). De gemiddelde permeabiliteit

is op grond van de granulometrie te schatten op 9 m/dag. De p e r ­

meabiliteit van de lenzen van zeer lemig fijn zand (4.4) kan echter 

dalen tot 0,2 m/dag.

Tussen de peilen +1 en +4 ligt een klei-leem-zandkomplex

(5) dat lateraal grote facieswisselingen vertoont : deze gaan van

middelmatig tot fijn middelmatig zand (5.3) tot sterk leemhoudend 

zand met dunne klei-leemlagen en veen. De permeabiliteit van deze 

afzetting varieert van 9 m/dag tot zeer kleine waarden. De laag 

(5) ligt in het overdekte waddenlandschap aan het oppervlak en 

vormt in de duinen de basis van de duinzanden (6). De gemiddelde 

permeabiliteit van de duinzanden bedraagt 14 m/dag.

De middelmatige tot grof middelmatige zanden (2) zijn 

van Eemiaanouderdom. Tijdens het Weichseliaan hebben w a a r s c h i j n ­

lijk eolische afzettingen deze grove sedimenten bedekt. De eolische 

afzettingen zouden echter door de sterke erosie gedurende het Pre- 

boreaal weggeschuurd zijn. Tijdens deze erosiefaze hebben zich 

bovendien diepe geulen ontwikkeld in de E e m i a a n a f z e t t i n g .

Het klei-leemkomplex (3) zou kunnen geparalleliseerd 

worden met de kleilens rond het peil -16 te Oostduinkerke waarvan 

het pollensprektrum wijst op Oud-Atlanticum (J. SCHITTEKAT, 1972). 

Tijdens het Atlanticum werd dus aanvankelijk een klei-leemkomplex 

afgezet, in een latere faze hoofdzakelijk middelmatige tot fijn 

middelmatige zanden. Hierin treft men soms lenzen.-» van sterk



leemhoudend fijn zand aan. Op het einde van het Atlanticum worden 

hoofdzakelijk klei-lemige afzettingen afgezet. Deze A 1 1 a n t i c u m a f - 

zettingen worden soms door een dunne laag van Duinkerkensedimenten 

b e d e k t .

Aan de basis van de recente duinzanden komt soms een 

venige of sterk humeuze laag voor die zich meestal boven de klei- 

lemige zanden ontwikkeld heeft. Een C14-analyse 1 000 jaar) 

wijst op een plaatselijke veengroei juist voor de vorming van de 

recente duinen.



4. HET HYDROCHEMISCH ONDERZOEK

4.1. Inleiiing

Het hydrochemische onderzoek had tot doel een inzicht 

te verkrijgen in de chemische samenstelling, de verspreiding, de 

herkomst, de genese en de evolutie van het grondwater.

Deze kennis zal toelaten te voorspellen hoe de kwaliteit 

van het grondwater kan veranderen door een menselijke ingreep of 

door natuurkrachten, zoals overvloedige regens, grote droogte of 

tijdelijke zee-incursies in het duingebied.

De kennis van ruimtelijke verdeling van de kwaliteit 

van het grondwater is onontbeerlijk voor een nauwkeurige evaluatie 

van de potentialen. Uit deze laatste leidt men de stroomlijnen af 

in de verschillende waters. Hieruit kan men verder de evolutie 

van de zoet-zoutwatergrens nagaan.

Watermonsters van 55 waarnemingspunten werden onderzocht. 

Sommige van deze punten bevinden zich op één zelfde plaats doch op 

verschillende diepten. Bij dit onderzoek werden ook boorgatmetingen 

betrokken. Deze geschiedden zowel bij lage als bij hoge g r o n d w a t e r ­

stand en op verschillende tijdstippen om de evolutie van de v e r s c h i l ­

lende waters te kunnen nagaan.

Om de herkomst, de genese en de evolutie van de g r o n d ­

waters te achterhalen werden analyses uitgevoerd op monsters van 

de neerslag en van zeewater dat tijdens de storm van 4 januari 1976 

langs een windgeul in het gebied binnengedrongen was.

4.2. Vroegere onderzoekingen in het belgisch kustgebied

In de watervoerende kwartaire laag van de Kustvlakte 

(J. DE PAEPE & W. DE BREUCK, 1958) treft men zout water aan met een 

gehalte aan opgeloste stoffen dat de 30.000 mg/1 kan overschrijden.

Op grond van een uitgebreide g e o - e 1e k t r i sche verkenning 

van meer dan 1700 sonderingen en verschillende profileringen werd 

de zoet-zoutwaterverdeling in kaart gebracht (W. DE BREUCK et al, 

1974).

In het oostelijk kustgebied (G. DE MOOR S W. DE BREUCK, 

1969) werden talrijke diepe boringen geslagen en uitgebouwd tot 

hydrogeologische waarnemingspunten met het oog op een grondige 

studie van de chemische samenstelling van het grondwater en van de



hydrochemische betekenis van de geo-elektrische gegevens. Geofysische 

boorgatmetingen werden toegepast (W. DE BREUCK, 1974).

Koolstof-14 dateringen op de diepe zoute waters in de 

Belgische kustvlakte wijzen uit dat het zoute water in het grootste 

gedeelte van het kustgebied minstens van Subboreale ouderdom is.

Uit deze metingen zou men kunnen besluiten dat een zeer trage of 

geen beweging plaatsvindt in het diepere gedeelte van de w a t e r ­

voerende laag (W. DE BREUCK & G. DE MOOR, 1974). Eén van de w a t e r ­

monsters was afkomstig uit ons studiegebied in het overdekte 

w a d d e n l a n d s c h a p . Het water werd genomen op het peil -24 (193DB1) in de

middelmatig tot grof middelmatig zanden met schelpen en schelp-

gruis. De koolstof-14 datering leverde een ouderdom van 3476+^224 B.P.

bij T = 5570 jaar en 3580_*160 B.P. bij T = 5730 jaar.

4,3, Hydrochemisch onderzoek van het grondwater

4.3.1. DE BEMONSTERING j

De boorputten werden tot hydrogeologische waarnemingspun- 

ten uitgebouwd door het aanbrengen van één of meer afzonderlijke 

bronbuizen van verschillende lengte, onderaan voorzien van filter- 

elementen. Hiermee kan men watermonsters nemen op een bepaalde 

diepte. Deze diepte is gekozen op grond van de litologische ken­

merken van het reservoirgesteente. Rondom de filters wordt om- 

storting aangebracht van gekalibreerd zand (0,8-1,25 mm). Bovenaan 

stopt men de grintomstorting af met een kleistop. Dat verhindert 

het instromen van water uit hoger gelegen lagen.

Het water werd opgepompt met een rotatieve perspomp, 

aangedreven door een tweetaktmotor. Hiermee kan tot op 6,5 m diepte 

onder het maaiveld water onttrokken worden. Het debiet varieerde 

tussen 0,05 en 1,0 m 3/u, afhankelijk van de diepte van het rustpeil 

en de permeabiliteit van de watervoerende laag.

4.3.2. DE ANALYSE

Op het veld bepaalt men de kleur, de troebelheid, de 

reuk, de smaak en de temperatuur van het water alsook de t e m p e r a ­

tuur van de lucht.



De b u f f erkapaciteit wordt getitreerd, met een zuur 

(HC1, 0,1N) t.o.v. f enolftaleïne (alkalische titer, TA) en t.o.v. 

een mengindicator (methylorood en bromocresolgroen in isopropanol) 

(totale alkalische titer TAC). De a l k a l i n i t e i t , TA, heeft betrekking 

op een deel van de aardalkalicarbonaten, de totale alkaliniteit 

op het geheel van de carbonaten en b i c a r b o n a t e n . Het gehalte aan 

agressief C02 wordt t i t r i m e t risch t.o.v. dezelfde mengindicator 

bepaald na behandeling met cal ciu m c a r b o n a a t .

De resistiviteit meet men in het laboratorium met een 

geleidbaarheidsbrug (model R.C.-12C1P van Industrial Instruments 

Inc.) en een elektrode (Wissenschaftlich Technische Werkstate). De 

temperatuur van het water in het laboratorium meet men met een 

temperatuurmeter (model TMS man Marek Instruments Inc.). Men rekent 

de resistiviteit om naar veldtemperatuur, de geleidbaarheid naar 

18°C. Voor de pH maakt men gebruik van een pH-meter en een g l a s ­

elektrode (W T W ) .

Verder meet men : de v e r d a m p i n g s r e s t , de verassingsrest, 

het gehalte aan zwevende stoffen, het gehalte aan organische 

stoffen en het gehalte aan SiO^ (mg/ 1 ).

De meting van de aardalkalizouten onder de vorm van 

totale, blijvende en tijdelijke hardheid (°F) gebeurt titrimetrisch 

met titripex III en m a g n e s i u m - t i t r i p l e x ; dat is respektievelijk 

het dinatrium- en het dimagnesiumzout van ethyleendiaminetetra- 

azijnzuur.

De ionenbalans (in mé/1) stelt men op met de volgende 
+ + ++ ++ ++ +++ + 

kationen : Na , K , Ca , Mg , Fe , Fe en NH^ en anionen :

Cl", S 0 ‘ ", N O ~ , N O ” , H C O 2 • C 0 “ " en P0~"".

De chloriden bepaalt men met een chloridometer (Buchler 

Instruments Inc.), de sulfaten g r a v i m e t r i s c h , de nitraten colori- 

metrisch volgens de metode van G R A N D V A L - L A J O U X ; de bicarbonaten en 

carbonaten berekent men uit TA Bn TAC; verder bepaalt men de ni- 

trieten met de sulfanilzuur-fenolmetode in ammoniakaal milieu en 

de fosfaten colorimetrisch met m o l y b d e e n v a n a d a a t m e t o d e .

Wat de kationen betreft, bepaalt men natrium, kalium; 

calcium, magnesium en mangaan met de atomaire absorptie, ijzer 

colorimetrisch volgens de sulfosalicylzuurmetode en ammoniak c o l o ­

rimetrisch volgens de N E S S L E R - m e t o d e . Bij al deze analysen moet 

de ionenbalans (mé/ 1 ) aan de volgende voorwaarden voldoen :



E k a t .-E a n . 
E k a t . + E a n . x 1 0Q<5

4.3.3. KLASSIFICATIE VAiSI DE WATERS

4.3.3.1. Symbool van het v/atertype

De resultaten van de wateranalysen worden syntetisch 

voorgesteld onder de vorm van een symbool. Dit symbool laat toe 

de waters op een snelle wijze te Identificeren, en onder te b r e n ­

gen in typen die alle waters met analoge chemische kenmerken o m ­

vatten. Daarbij volgen we de werkwijze van G. DE MOOR & W. DE 

BREUCK (1969) : ieder watertype wordt door een symbool van drie

letters en twee cijfers voorgesteld. De eerste letter, een h ó ó f d ­

letter, duidt de totale mineralisatie aan. De tweede letter, een 

kleine letter, geeft het relatief belang aan van de meest v o o r ­

komende kationen en wordt gevolgd door een eerste cijfer dat de 

verhouding magnesium/calcium (mgca) voorstelt. De derde letter, 

eveneens een kleine letter wijst op het belang van de meest 

voorkomende anionen en wordt gevolgd door een tweede cijfer, dat 

op de verhouding sulfaat/chloor (socl) slaat. De hardheid werd 

niet in het type-symbool opgenomen. Het t y p e - s y m b o o l , dat de 

gewichtskoncentratie van de voornaamste ionen (in m g / 1 ) alsook 

enkele andere belangrijke resultaten van de wateranalysen worden 

in het aanhangsel weergegeven.

4.3.3.2. Totale mineralisatie

De hóófdletter in het symbool geeft de totale m i n e r a l i ­

satie aan, d.w.z. de koncentratie van de totale hoeveelheid o p g e ­

loste stoffen. Deze totale hoeveelheid opgeloste stof werd hier * 

gelijkgesteld aan de som van de anionen en de kationen waarvan het 

gehalte bepaald werd bij het opstellen van de ionenbalans. Er b e ­

staat een duidelijk verband tussen deze totale mineralisatie in 

m é / 1 , de geleidbaarheid van het water en in mindere mate de g e ­

wichtskoncentratie in m g / 1 .

De totale mineralisatie is volgens HEM (1959) recht 

evenredig met de geleidbaarheid van het water, alhoewel PIPER 

(1953) systematische afwijkingen tussen de werkelijke m i n e r a l i s a ­

tie en de berekende mineralisatie veststelde. Volgens sommige 

auteurs blijkt dat de geleidbaarheid van NaCl-houdend water bij 

lage koncentraties vermindert door de aanwezigheid van HCO -ionenO
(WALTER, 1963).



De geleidbaarheid is sterk t e m p e r a t u u r a fh a n k e l i j k w a a r ­

door men alle waarden gemeten bij laboratoriumtemperatuur h e r ­

leidt naar 18°C aan de hand van een korrektietabel van een KC1- 

oplossing in verschillende koncentraties (J.P. CNUDDE, 1976).

Door G. DE MOOR & W. DE BREUCK (1969) werden negen g e ­

le idba arhe i ds kl as sen onderscheiden waarvan de begrenzingen aan-

gegeven 

Tabel 4.

zijn in

1 - De 

W.

tabel 4.1.

geleidbaarheidsklassen van 

DE BREUCK, 1969)

grondwater (G. DE MOOR &

Eerste letter Geleidbaarheid Totaal ionen- Resistivi- K w a l i t a ­
van het sym- (18° C ) yS/cm gehalte teit tieve b e ­
boo 1 m é / 1 (10°C) flm oordeling

G <200 <4 60< zeer zoet

W 200-400 4-9 60-30 zoet

V 400-800 9-20 30-1 5 matig zoet

F 800-1600 20-36 15-7,5 zwak zoet

A 1600-3200 36-72 7,5-3,75 matig brak

B 3200-6400 72-180 3 ,75-1,88 brak

C 6400-12800 180-400 1 ,88-0, 94 zeer brak

S 12800-25600 400-800 0,94-0,47 matig zout

Z 25600-38400 8 0 0< <0,47 zout

4.3.3.3. Relatieve ionenverdeling

De relatieve verdeling van de belangrijkste kationen 
+ + + ♦ + +  -  —

(Ca , Mg , Na en K ) en de belangrijkste anionen (HC03> C 0 3 ,

SO^ en Cl 1 kan zeer duidelijk voorgesteld word&n in een PIPER- 

diagram, dat een ruitdiagram en twee driehoeksdiagrammen omvat 

(fig. 4.1).

In het linkerdriehoeksdiagram worden de kat 1.onen (in mé/1)
+ + + + + +

Ca , Mg en (Na + K ) percentsgewijze tegenover hun som woorge- 

steld, in het rechterdriehoeksdiagram de anionen SO^ , Cl en 

(HCO^ + C 0 3 ). De projektie van de overeenstemmende punten van 

beide driehoeksdiagrammen geeft één punt in het ruitdiagram, dat 

de relatieve ionenverdeling weergeeft. In het ruitdiagram worden 

aldus enerzijds komplementair de kationen (Ca++ + Mg ) en (Na + K ) 

en anderzijds komplementair de anionen CHCOg + C 0 3 ) en (Cl + SO^ ) 

afgebeeld.



Een 1 0 % - i n t e r v a l , aangegeven door letters aan beide 

zijden van het ruitdiagram verdeelt dit ten slotte in 100 ruitjes. 

EIK ruitje wordt door twee letterkoördinaten bepaald die de beide 

kleine letters in het symbool voor het watertype vormen (tabel 4.2).

Tabel 4. 2 - De waarden voor de tweede en derde letter van het

sy m b o o 1 (G. DE MOOR S W. DE 3REUCK., 1969)

Tweede 
letter 
van het 
s y m b o o 1

Percent 
+ + 

Na + K

Percent 
+ +

Ca + Mg

Derde 
++ letter 

van het 
symbool

Percent 

HCO' + C O ”

Percent

c i~+so~"
4

a 0- 10 90-100 a 0- 10 90-100

b 1 0-20 80-90 b 10- 20 80-90

c 20-30 70-80 c 20-30 70-80

d 30-40 60-70 d 30-40 60-70

e 40-50 50-60 e 40-50 50-60

f 50-60 40-50 f 50-60 40-50

g 60-70 30-40 g 60-70 30-40

h 70-80 20-30 h 70-80 20-30

i 80-90 10- 20 i 80-90 10- 20

k 90-100 0- 1 0 k 90-100 0- 10

en voor

Uit tabel

fs° r
socl i ..—  '

Cl

4.3 worden de symbolen voor mgca 

x 1 00) afge l e i d .

(-£ ---  x 1 00) 
C a + +

Tabel 4 . 3 - De waarden van het eerste en het tweede cijfer van het

s y m b o o 1 (G. DE MOOR S W. DE B R E U C K , 1969)

Eerste cijfer 
in symbool

mgca Tweede cijfer 
in symbool

socl

0 0-1 0 0-1
1 1 - 20 1 1 - 1 0
2 20-50 2 10- 20
3 50-100 3 20-50

4 100-200 4 50-100

5 200-300 5 100-200
6 30 0 < 6

7

200-300

300<



4.3.4. VOORKOMEN, VERSPREIDING EN EVOLUTIE VAN DE WATERS

Omwille van de grote verscheidenheid van de hydrochemische 

Kenmerken van de freatische waters is de horizontale en vertikale 

verdeling van de verschillende groepen alleen in een kartogram aan 

te geven (fig. 4.2). Waar meer dan één monstername op een bepaalde 

filter geschiedde, wordt in kartogram na de groep de datum van de 

monstername aangegeven.

4.3.4.1. Duinwaters

In het duingebied, met uitzondering van de windgeulen 

in het noorden en het zuidelijk duingebied ter hoogte van de 

waterwinning, komt uitsluitend water van groep 3 (3b) voor. De 

gemiddelden, de standaarddeviatie en de maximum- en de m i n i m u m w a a r ­

den van de koncentraties van de bijzonderste kationen en anionen 

werden in tabel 4.4 weergegeven.

De duinwaters worden gekenmerkt door een geringe tot 

matige mineralisatiegraad; het zijn zoet tot matig zoete waters.
+ + + +

Ze bevatten relatief veel aardalkaliën (Ca + Mg ), van 80 tot 

95% van de kationen, en weinig alkaliën (Na + K ), van 20 tot 5% 

van de kationen. In de meeste monsters vertegenwoordigt bicarbonaat 

tussen de 55 tot 85% van de anionen. Het duinwater bevat echter 

opvallend veel sulfaten. In de anionenverdeling neemt het een zeer 

wisselende hoeveelheid in. Daarom werd de koncentratie aan sulfaten 

in mg/1 op de kaart uitgezet (fig. 4.3).

Uit deze kaart leidt men af dat het sulfaatgehalte in de 

omgeving van de waterwinning drie- tot vijfmaal hoger is dan dat op 

andere plaatsen in de duinen. Waarschijnlijk is dit toe te schrijven 

aan de watertafeldaling in het w aterwinningsgebied vanaf het jaar 

1967. Hierdoor komt een gedeelte van de vroegere watervoerende laag 

vrij frekwent boven de watertafel te liggen waardoor oxidatie o p ­

treedt. De sulfiden in de klei- en veenrijke laag oxideren tot 

sulfaten. Deze komen langs het doorsijpeld water in het ondiepe 

grondwater terecht. Het duinwater bevat eveneens veel ijzerionen, 

waarvan het gehalte erg kan uitlopen (tabel 4.4 en fig. 4.4).



Tabel 4.4 - Chemische eigenschappen van het duinwater (27 monsters) 

dat behoort tot de groep 3

G e m i d ­
delde

Stan- 
daard- 
devia- 
t i e

Varian-
tie
K o ë f f i - 
ciënt

M a x i ­
mum

Monster
met
maximum

M i n i ­
mum

Monster
met
minimum

N a+ (m é / 1) 0, 765 0,375 0,49 1,576 1 17HB20 0, 1 20 1 1 7HB38F2

N a + (mg/ 1 ) 17,58 8,62 0,49 36,24 117HB20 2,76 117HB38F2

K + (mé/1) 0,052 0,029 0,56 0,127 1 1 7HB1 0,002 1 1 7HB51

K + (mg/1) 2,03 1,15 0,56 4, 95 1 1 7HB1 0,07 117HB51

Mg (mé/1) 0,352 0,135 0,38 0,707 11 7 D B 1 0 0,082 117HB17

M g + + (m g / 1) 4,28 1 , 64 0,38 8,60 11 7DB10 1 , 00 117 H B 1 7

Ca + (m é / 1) 4,850 1 , 698 0,35 9,855 1 1 7HB31 2,174 1 1 7HB48

Ca + (m g / 1 97,15 34,00 0,35 1 94 ,4 117HB31 43,55 11 7HB48

Cl"(mé/1) 0 , 892 0, 384 0,43 2, 098 1 1 7HB20 0,530 117HB38

Cl"(mg/1) 31 , 64 13, 62 0,43 74,4 1 1 7HB20 18,8

(F 1 + F 2 ) 

11 7HB38

S O ”  (mé/1) 1 , 175 1,166 0,99 5,438 117HB31 0,073

(F1+F2) 

1 1 7DB4F4

S O ”  (mg/ 1 ) 56,38 55,99 0,99 261 1 1 7HB31 3,50 1 1 7DB4F4

H C O ” (m é / 1 ) 4,232 1 ,303 0,31 6,180 1 1 7HB51 1 , 920 1 1 7HB38F2

HCO"(mg/1) 258,2 79,46 0,31 377 , 0 1 1 7HB51 117,1 117HB38F2

c° r  +++ ++ 
Fe (Fe 

(mé/ 1 )

- - - - - - -

)
0, 195 0,313 1 ,60 1 , 332 1 1 7HB33 0,001 1 1 7 D B 1 1

+ + + + + 
Fe (Fe 

(mg/ 1 )
)
3, 63 5,82 1 , 60 24,78 1 1 7HB33 0, 02 1 1 7 D B 1 1

Geleidbaar 
heid pS/m 516,9 138,3 0,27 825 1 1 7HB31 230,0 11 7HB38F2

T o t . miner 
m g / 1 472, 6 149,8 0,32 848 1 17HB31 200,3 11 7HB38F2

T o t .h a r d . 
° F 26,86 8,59 0,3 2 51,7 1 1 7HB31 1 2 , 2 117HB48

Blij v . 
h a r d h . °i F 8,56 5,23 0,61 27 , 8 1 1 7HB31 3, 32 1 1 7HB51



Enkele monsters uit het duingebied wijken echter af 

van de andere duinwaters. Watermonster 117DB4F1 genomen op 33 m 

diepte nabij het Ieperiaan-kleisubstraat bevat duidelijk meer 

alkaliën : (Na + K + ) vormen 43% van de kationen. Het watermonster

117HB12 genomen op een geringe diepte, 5 tot 6 m, vertoont e v e n ­

eens een opvallend hoog gehalte aan alkaliën : (Na +K ) vormen

52% van de a a r d a l k a l i ë n .

4.3.4.2. Waters ter hoogte van het strand en de windgeulen

De waters van het strand en van de windgeulen variëren 

sterk in mineralisatiegraad en onderscheiden zich door hun r e l a ­

tieve ionenverdeling duidelijk van de duinwaters.

Op het strand nabij de hoogwaterlijn werden twee diepe' 

boringen uitgevoerd. De boring 117DB13, ter hoogte van de Frans- 

Belgische grens, en de boring 117DB14, aan de oostelijke grens 

van het studiegebied, werden voorzien van vier bronbuizen zodat het 

mogelijk was op vier verschillende diepten grondwater te o n t t r e k ­

ken.

De filters 117DB13F4, 117DB13F3, 117DB14F4 en 117DB14F3, 

r e s p e k t i e v e l i j k op +0,6, -8,4, +1,2 en -7,3, bevatten matig zout 

water met een mineralisatiegraad van 21.000 mg/1. De relatieve 

kationenkoncentratie is ongeveer die van zeewater. Men bekomt een
+ +

relatieve kationenkoncentratie van circa 80% (Na +K ) en een r e l a ­

tieve anionenkoncentratie van circa 99% (S0^ +C1 ). De rngca- 

verhouding varieert tussen de 400 en 550 en ds socl-verhouding 

tussen 10 en 1 1 ,6.

De filter 117DE14F2 op -12,3 bevat brak water met een 

mineralisatiegraad van 5000 mg/1. De relatieve kationenkoncentra-
+ +

tie wordt gekenmerkt door 75% (Na +K. ) en de relatieve a n i o n e n ­

koncentratie door 94% (SO^ +C1 ). De mgca-verhouding bedraagt 

200 en de s o c 1-v e r h o u d ing 97. Het type-symbool wordt bijgevolg 

als Bh5al geschreven.

De filters 117DB13F2, 117DB13F1 en 117DB14F1, respektie- 

velijk op -15,4, -21,1 en -29,8, bevatten water met dezelfde e i g e n ­

schappen als de duinwaters.



Aan de duinvoet en in de windgeulen werden watermonsters 

verzameld op twee tijdstippen. In de handboringen 117HB35, 117HB54, 

1 1 7 H B 1 ’ en 117HB49 geschiedde dat in de maand september 1S75. De 

waters uit de filters 117HB35 en 117HB1' behoren respeK t i e v e l i j K 

tot groep 6 en 4. Het zijn zwak zoete waters met een mineralisatie- 

graad van 650 mg/1. De waters uit de filters 117HB49 en 117HB54 

behoren tot groep 5. Het zijn brakke waters met esn mineralisatie- 

graad van respektievelijk 2350 en 4000 mg/1.

Dp 3 en 4 januari 1976 ging de springtij gepaard met 

een hevige storm uit noordwestelijke richting. Hierdoor kwam de 

vloed op een zeer hoog peil te staan en werden de windgeulen o v e r ­

stroomd. Bij het terugtrekken kon niet alle water terug naar de 

zee vloeien omwille van de drempel, die zich voor de windgeulen 

bevindt. Het achtergebleven zeewater sijpelde traag in de bodem met 

achterlating van een laagje slib. Na verloop van tijd droogde het 

slib op en vormde fijne polygonale plaatjes.

Op 15 januari 1976 werden in de windgeulen watermonsters 

genomen. In de grootste windgeul, waarin de filter van handboring 

1 1 7 H B 1 ’ zich bevond, was het zeewater niet volledig weggesijpeld. 

Van het zeewater werd een monster geanalyseerd. De totale m i n e r a ­

lisatie bedroeg 24.450 mg/1. De relatieve kationenverdeling werd
+ +

gekenmerkt door 81% (Na +K ) en de relatieve anionenverdeling 

door 99,5% (Cl + S0^ ). De mgca bedroeg 450 en de socl 3,4. Met 

als type Z i 6al behoorde het water tot groep 1.

De filter 117HB54 lag op de rand van het overstroomde 

gedeelte van de windgeul. Hier was alle zeewater volledig in de 

bodem verdwenen, zodat alleen het uitgedroogde slib het o v e r s t r o o m ­

de gedeelte van de windgeul aangaf. Het watermonster dat op 15 

januari 1976 uit deze filter genomen werd, vertoonde een totale 

mineralisatie van 4080 mg/1. De filter bevindt zich op -0,2. De 

totale mineralisatie en de relatieve ionenverdeling van dit w a t e r ­

monster is ongeveer gelijk aan die van het watermonster genomen 

in de maand september 1975. Hieruit kan men besluiten dat g e d u r e n ­

de de periode van september 1975 tot januari 1975 noch zeewater, 

noch regenwater of duinwater zich met het water op dat peil v e r ­

mengd heeft.



Het watermonster genomen uit de filter 117HB55 op 15 

januari 1976 had een totale mineralisatie van 11.050 mg/1. De r e ­

latieve kationenverdeling wordt gekenmerkt door 75% (Na +K ) en 

de relatieve anionenverdeling door 97,6% (Cl + S04 ). V e r o n d e r ­

stellen we dat het water op het peil 117HB55 -0,3, dezelfde s a m e n ­

stelling had als dat in 117HB54 juist voor de storm en dat het 

geïnfiltreerde zeewater dezelfde samenstelling had als dat in 

de windgeul van 1 1 7 H 3 1 ’ dan zou men uit de mineralisatiegraad 

kunnen besluiten dat het watermonster van 15 januari een mengsel 

kan zijn van twee delen oorspronkelijk grondwater en één deel 

geïnfiltreerd zeewater. Berekent men aan de hand van deze v e r ­

houding het gehalte aan de belangrijkste kationen en anionen dan 

vindt men een goede overeenkomst met de analyseresultaten van 

het watermonster genomen op 15 januari (tabel 4.5).

Tabel 4.5 - Resultaten van de wateranalyse 117HB55 en het mengwater 

(2/1 )

Kationen Wateranalyse 
1 1 7HB55

Mengwater 
(2 / 1  )

Anionen Wateranalyse 
1 17HB5

Mengwater 
(2 / 1  )

N a + (m é / 1) 141 143 Cl"(mé/1) 166 170

K (mé/ 1 ) 1,87 2,38 S 0 ~ ~ ( m é / 1 ) 17, 95 17, 95

Mg (mé/1) 26,03 27,40 H C 0 ‘ (mé/1) 3,99 3,42

Ca (mé/1) 20,45 17,21

Op 23 januari 1976 was het zeewater in de grootste wind-

geul volledig in de bodem gedrongen. Een watermonster werd o n t t r o k ­

ken aan de filter 117HB1', die zich op +2 bevindt. De totale m i n e ­

ralisatie van dit water bedroeg 21.800 mg/1. De relatieve i o n e n v e r ­

deling is dezelfde als die van het zeewater.

Filter 117HB49 ligt op een twintigtal meters van één 

windgeul die gedurende de storm van 3 januari 1976 slechts g e d e e l ­

telijk overstroomd werd. Het watermonster genomen op 23 januari 

1976 vertoonde er een totale mineralisatie van 1410 mg/1 t.o.v.

2860 mg/1 op 1 september 1975. Sindsdien had zich dus zoeter water 

met het laatste vermengd. De relatieve kationenkoncentratie van 

(Na+ +K ) was afgenomen van 84,6% tot 76,9% en de relatieve anionen- 

koncentratie van (SO^ +C1 ) van 90,2% naar 79,7%.



Op 21 april 1976 werd de geleidbaarheid van het opgepompte 

water uit de vier filters, in de windgeulen opgemeten. Hieruit 

leidde men af dat de mineralisatiegraad in filter 117H554 gestegen 

was, in 117HB55 gelijk gebleven, in 1 1 7 H B 1 ’ gedaald en in 117HB49 

licht gedaald was tijdens de periode eind januari tot 21 april.

4.3.4.3. Uaters in het overdekte w a d d s n l a n d s c ha p

In het overdekte waddenlandschap en aan de zuidelijke 

rand van het duingebied ter hoogte van de waterwinning werden op 

geringe diepte waters van groep 7 of groep 6 aangetroffen.

De watermonsters uit de filter 117HB21, 117DB16F4, 193DB5F2 

behoren tot groep 7. De totale mineralisatiegraad varieert rond de 

1200 mg/1. Bij de relatieve kationenkoncentratie vindt men rond de 

20% (Na + K + ). De relatieve a n i o n e n kon centratie wordt hier ook g e k e n ­

merkt door het hoge sulfaatgehalte dat 20 en 50% bedraagt. De w a ­

ters zijn dus van de sulfaatrijke variëteit van de subgroep 7c.

Het water uit 117HB22 vertoont een gelijkaardige koncen- 
+ + +

tratie aan Na -, Mg -, Cl -, HCO -ionen als de voorgaande maar
+ + +

bevat meer SO^ , Ca en K . Hieruit kan men afleiden dat het o o r ­

spronkelijke water eveneens tot subgroep 7c behoort, maar dat het
+ + + — —

aangerijkt is door zouten uit kunstmeststoffen, nl. K , Ca en S0„ .

In boring 193DB6, nabij een a f w a t e r i n g s g r a c h t , komt ondiep

water voor dat behoort tot groep 6. Het water, uit de filter op

-0,6, bezit een mineralisatiegraad van 1900 mg/1. Het water bevat

relatief 67% alkaliën. Het relatieve anionengehalte wordt gekenmerkt

door 73% (C1~/S0~~) en 27% HCO".4 3

De waters van de diepere filters van 193DB6 werden gekenmerkt 

door 77% (Na +K.+ ) en 92% (Cl +SQ^ ). Het zijn waters van de groep 2.

Het water van -16,2 is het sterkst gemineraliseerd., 1 5 . 700 mg/1.

De mgca-verhouding bedraagt 363. Het water behoort tot subgroep 2a.

Het water van de filters F1 en F3, respek t i e v e l i j k geplaatst rond 

de peilen -9,7 en -24,7 vertonen een kleinere mineralisatie,

6000 mg/1. De verhouding mgca ligt rond de 200. De waters behoren 

tot subgroep 2b. Bijgevolg is het water ter hoogte van 193DB6 reeds 

bovenaan matig brak terwijl het water op grotere diepte varieert 

tussen brak tot matig zout water. De verziltingsgrens ligt hier dus 

zeer o n d i e p .



In 117DB16, op nauwelijks 300 m van 193DB6, ligt de ver- 

zi ltingsgrens zeer diep, een weinig boven het Ieperiaan-klei s ubstraat 

Het water uit filter F3, op -9,2, vertoont een totale m i n e r a l i ­

satie van 21U0 mg/1. De relatieve kationenverdeling wordt gekenmerkt 

door 65% (Na +K ) en de relatieve kationenverdeling door 78%

(Cl +SÜ4 ). Het water behoort tot groep 6 . Het water uit filter 

F 2 , op -17,7 vertoont daarentegen een geringe m i n e r a l i s a t i e g r a a d ,

640 mg/1. De relatieve anionenverdeling door 19% (Cl +S0^ ). Het 

water behoort tot de bicarbonaatrijke variëteit van de subgroep 7b. 

Het komt boven de v e r z i 1tingsgrens voor. Het water van de filter 

F 1, op -23,8, vertoont een hoge mineralisatiegraad, 25.500 mg/1.
+ +

De relatieve kationenverdeling wordt gekenmerkt door 77% (Na +K j 

en de relatieve anionenverdeling door 96% (SO^ +C1 ). Het is een 

zout water die tot groep 1 behoort.

4,4. HyDROCHEMISCH ONDERZOEK VAM HET REGENWATER

4.4.1. METODE EN RESULTATEN

Het regenwater werd verzameld nabij de put 117IP1 door 

middel van een vergaarbekken met een opening van 0,275 m 2 . De opening 

van het vergaarbekken bevindt zich op een 25-tal centimeters boven 

het maaiveld. Het opgevangen water bleef na een regenval in het v e r ­

gaarbekken staan waardoor een gedeelte kon verdampen. Op vrij 

regelmatige tijdstippen werd de hoeveelheid water in het v e r g a a r ­

bekken opgemeten. Bij iedere monstername werd de inhoud van het 

vergaarbekken geledigd.

Van ieder regenwatermonster werd het chloor- en het sulfaat 

gehalte en de geleidbaarheid bepaald. Op het regenwatermonster, v e r ­

zameld van 25 januari 1975 (10u30) tot 1 februari 1975 (11u00), werd 

een volledige analyse uitgevoerd.

De uitslagen van de analyse alsook de tijdstippen van 

monstername zijn in tabel 4.6 samengevat.



Tabel 4.6 - Analyses van regenwaters opgevangen nabij de water 

toren te De Panne

Tijd

van tot

Hoeveelheid 
opgevangen 
water in 1

Cl SO
in ppm in ppm

G e l e i d ­
b a a r ­
heid
in
liS/cm

4 u3 0 27.11.74 1 1 u00 30.11 .74 3,5 27,6 18,0 105
1 1 u00 30.11.74 1 6 u30 01.12.74 1 , 0 1 1 , 1 11,5 33
1 6 u3 0 01.12.74 1 9u00 04.12.74 0,5 1 2 , 6 23, 9 69
1 9u00 04.12.74 1 BuOO 08.12.74 0,8 20,7 35,0 1 08
1 6u00 08.12.74 11 uOO 14.12.74 3,8 27,9 10,3 104
1 1 u00 14.12.74 1 0u30 21.12.74 1 , 6 20,5 30,5 138
1 0u30 21.12.74 1 1 uOO 25.12.74 0, 75 13,8 21,9 76
1 1 u00 25.12.74 1 3u00 27.12.74 5,2 14,6 35,8 37
2 0 uOO 29.12.74 1 OuOO 13.01.75 1 ,2 2 2 , 6 53,9 188
1 OuOO 13.01.75 11 uOO 18.01.75 4,4 10, 0 1 2 , 8 34
1 1 uOO 18.01.75 1 7u30 19.01.75 1,15 1 2 , 2 14,8 40
1 7u30 19.01.75 1 0u30 25.01.75 8,6 1 1 , 0 6,0 59
1 0u30 25.01.75 1 1 u00 01.02.75 8,5 9,6 6,6 43
1 1 uOO 01.02.75 1 3u00 15.02.75 3,7 1 1 , 0 7,4 59
1 3u00 15.02.75 1 4 u30 27.02.75 2,5 9,2 15,8 77
1 4 u 30 27.02.75 1 4u00 08.03.75 4, 05 8, 1 8,9 48
1 4 uOO 08.03.75 1 4u00 15.03.75 2,45 10,9 8,7 79
1 4 üOO 15.03.75 1 4 u30 22.03.75 9 19,4 18,5 88
1 4 u30 22.03.75 1 5 u30 31.03.75 10,05 1 1 , 6 11,5 43
1 5 u3 0 31.03.75 1 6u00 05.04.75 2,5 15,4 12,7 52
1 6uü0 05.04.75 11 uOO 22.04.75 7,8 15,3 42,3 91
1 1 uOO 22.04.75 1 2 u00 20.05.75 6,5 16,0 18, 0 95
1 4 uO 0 20.05.75 1 5u00 23.06.75 8,2 46,0 1 0 , 1 139
1 5 uOO 23.06.75 1 3u30 25.06.75 3,1 54,5 109,4 310
1 3 u30 25.06.75 1 5u30 10.07.75 1 , 6 14,8 14,8 199
1 5 u30 16.07.75 1 9u00 22.07.75 0,55 9,4 13,4 95
1 9u00 22.07.75 1 OuOO 01.08.75 0,9 1 2 16,9 144
1 0 uO 0 01.08.75 1 5 u 3 0 22.08.75 11,4 7,2 9,3 35
1 5 u3 0 22.08.75 1 3u45 12.09.75 4,9 10,8 5,8 52
1 3u45 12.09.75 1 4 u55 15.09.75 10,25 16,2 0,2 64
1 4 u5 5 15.09.75 1 5 uOO 04.10.75 1 0 , 2 13,7 7,8 144
1 5 uOO 04.10.75 1 4 u30 02.12.75 43,8 - - -

1 4 u30 02.12.75 1 4 u4 5 13.12.75 10, 6 - - -

1 4 u4 5 13.12.75 1 3u30 22.03.76 16,5 - - -

1 3 u 3 0 22.03.76 1 5u1 5 18.09.76 27 12,5 17,5 74
1 5 u 1 5 18.09.76 1 7u00 26.09.76 1 , 6 6,4 1 2 , 0 81
1 7 uO 0 26.09.76 1 6u30 06.10.76 10, 0 5,0 24, 1 40
1 6u30 06.10.76 1 8u30 16.10.76 1 , 6 14,6 8, 0 110
1 8 u30 16.10.76 11 u 1 0 01.11.76 6,3 9,0 13,2 56
1 1 u 1 0 01.11.76 1 2u30 28.11.76 18,8 9,3 7,0 45
1 2 u3 0 28.11.76 1 6u00 04.12.76 7,7 10,9 4,1 40
1 6u00 04.12.76 1 0 u3 0 09.12.76 2,8 13,8 8,7 54
1 0u30 09.12.76 1 6 uOO 18.12.76 1 , 2 13,0 28,4 11 7
1 6u00 18.12.76 1 6u00 05.01•77 4,6 7,9 8,7 35



4.4.2. VOEDINGSKOEFFICIS'.'JT VAN DE FREATISCHE LAAG AFGELEID UIT DE 

HYDROCHEMIE VAN HET REGENWATER EN VAN HET DUINWATER

Aan de hand van het Cl -gehalte van het regenwater en 

van het grondwater Kan men (H. SCHOELLER, 1962) de voedingsKoëffi- 

ciënt van een watervoerende laag bepalen. De voedingskoefficiënt 

van een waterlaag geeft aan welK gedeelte van het regenwater de 

watervoerende laag bereiKt :

I = ApxP 4.1'

waarbij I, de hoeveelheid water die de watervoerende laag bereiKt 

en P, de neerslag is.

SCHOELLER, H. (1962) meent dat het Cl -gehalte van het 

grondwater uit volgende formule Kan afgeleid worden :

. H - R ) C l p  , rq-t 4 2
Ap PxAp

waarbij Cln.het Cl -gehalte van het grondwater,

Clp,het Cl -gehalte van het regenwater, 

r+rt,de opgeloste Cl -ionen afKomstig van de aëratiezone 

gedurende de infiltratie r en van de saturatiezone 

gedurende de stroming in de watervoerende laag,

R,de afvloeiKoëfficiënt,

Ap,de v o e d i n g s K o ë f f i c i ë n t ,

P, de neerslag.

SCHOELLER (1961) neemt aan dat in een watervoerende laag, 

zoals de zanden van de Landes, de hoeveelheid opgeloste Cl -ionen, 

afKomstig van het terrein, te verwaarlozen is. De afvloeiKoëfficiënt 

Kan aan nul gelijK gesteld worden. De voorgaande formule wordt dan :

Cln = 4.3Ap

De faktoren r+rt en R Kunnen voor de watervoerende laag 

van de duinen van de WesthoeK gelijK gesteld worden aan die van de 

zanden van de Landes. Zo wordt dan ooK de bovenstaande formule 

in het studiegebied geldig.

Uit tabel 4.6 leidt men af dat het Cl -gehalte bepaald 

werd op 225,25 1 verzameld water. Het bevatte samen 3146,97 mg Cl - 

ionen. Dit beteKent dat het in het vergaarbeKKen verzamelde water 

gemiddeld 13,97 mg Cl /I bevatte.



51 . -

In de periode van december 1974 tot en met december

1976 werd op de luchtmachtbasis van Koksijde een neerslag van

1240 mm gemeten. In dezelfde periode werd 289,25 1 verzameld in 

een vergaarbekken met een opening van 0,275 m 2 ; dit stemt overeen 

met een neerslag van 1051,8 mm. Hieruit kan men afleiden dat van 

het in het bekken opgevangen water er 15,18% verdampt zijn.

Het Cl -gehalte dient dus omgerekend te worden naar 

262,02 1 i.p.v. 222,25 1. Het gemiddelde Cl -gehalte van het 

regenwater bedroeg dus 1 2 , 0 1 m g / 1 .

Uit tabel 4.4 leiden we af dat het gemiddelde Cl - g e h a l ­

te van het duinwater gelijk is aan 31,64 mg/1. De voedingskoëfficiënt 

volgens SCHOELLER is dan :

a p ■ r i ï  ' M ?  ■ °-380 4 -4

Dit getal komt tamelijk goed overeen met de voedingskoëfficiënt

bepaald volgens de metode van PENMAN.

4.4.3. HERKOMST VAN DE BELANGRIJKSTE IONEN IN HET DUINWATER

Vertrekkend van de voedingskoëfficiënt kan men aan de 

hand van een volledige analyse van het regenwater en de gemiddelde 

concentraties van de ionen de herkomst van de belangrijkste 

ionen in het duinwater (tabel 4.7) trachten te achterhalen.

Tabel 4.7 - Herkomst van de belangrijkste ionen in het duinwater

Kationen Afkomstig uit 
neerslag

N a + +_ 55%

K + j* 50%

M g + + _+ 35%

Ca + + +_ 10%
+ + + + +

Fe +Fe zeer weinig

Afkomstig Anionen 
uit aëratie- 
en saturatie 
zone

+_ 45%

^ 5  0% Cl'

+_ 65% S O "

_+ 90% H C O ”

1 0 0 %

Afkomstig Afkomstig 
uit uit aëra-
neerslag tie- en

saturatie
zone

10G% zeer
w e i n i g

+_ 45% _+ 55%

zeer 100%
weinig



'4,5. E le k t r is c h e  boo rga tm e tingen

4.5.1. RESISTIVITEIT VAÏ HET GESTEENTE

De interpretatie van elektrische boorgatmetingen in 

litologische termen is gesteund op het resistiviteitskontrast 

tussen verschillende gesteenten. De resistivitait of de s o o r t e ­

lijke weerstand (firn) van een gesteente is de weerstand ( Q ) tussen 

twee evenwijdige vlakken van een kubus met een ribbe van één meter 

van dat gesteente.

Elektrische geleiding kan zich in een gesteente op twee 

verschillende wijzen voordoen : door metallieke of e l e k t r o n e n g e ­

leiding en door eIe ktrolyt i sche of ionengeleiding.

Metallieke of elektronengeleiding doet zich voor in de 

m i n e r a a 1 korre 1 s , terwijl de elektrolytische of ionengeleiding g e ­

beurt in het poriënwater. In de meeste gesteenten is de eloktroly- 

tische geleiding de belangrijkste.

De resistiviteit van een gesteente is funktie van de 

resistiviteit van de matrix, de resistiviteit van het poriënwater, 

de porositeit, de verzadigingsgraad, de koncentratie aan zouten in 

het poriënwater, de i o n e n u i t w i s s e lingskapaciteit van het gesteente 

en tenslotte de temperatuur CV.N. DAKHNGV, 1962).

4.5.1.1. De resistiviteit van het gesteente en dc resistiviteit 

van de matrix

Is de gesteentematrix geleidend, dan is de geleidbaar- 

heid van het gesteente de som van de geleidbaarheid van de matrix 

(1/pf ) en de geleidbaarheid van de vloeistof C1/p c ) (PATNODE & 

WYLLIE, 1 950)

1 1 + 1 1 1 4 5
pt " p f p c p f F .p p w

p t
= de resistiviteit van het gesteente.

p f = de resistiviteit van het geleidend vast matrix.

p c = de resistiviteit van de vloeistof in het gesteente.

pw = de resistiviteit van de poriënvloeistof alleen,

F p = de formatiefaktor indien geen van de vaste materialen

geleidend is.



D g resistiviteit van de geleidende vaste matrix is een 

funktie van de koncentratie van de geleidende mineralen in deze 

matrix. Bij lage koncentraties kan het geleidend mineraal volledig 

door isolerende mineralen omgeven zijn zodanig dat het niet 

effektief bijdraagt tot de elektrische geleiding.

Gesteenten bevatten meestal een hoeveelheid vocht w a a r ­

door hun resistiviteit zelden 1 05/£2m overschrijdt. Dit is a a n z i e n ­

lijk minder dan de resistiviteit van de gesteentevormende mineralen 

zelf. Sedimentaire gesteenten bevatten meestal water, waarin 

zouten voorkomen, waardoor de invloed van de weinig geleidende 

mineralen op de resistiviteit te verwaarlozen is (G.V. KELLER,

1962) .

4.5.1.2. De resistiviteit van de poriënvloeistof

De resistiviteit van het poriënwater wordt gegeven als :

_______ 1_________
Pw ' ZCC 1 +C 1 ) a a c c

waarbij C en C de koncentraties zijn van de verschillende kationen a c
en anionen in oplossing en 1 en 1 de anionische en kationische

3 C
equivalente g e l e i d b a a r h e d e n . De equivalente geleidbaarheden zijn 

funktie van de koncentratie en van de temperatuur.

Bij lage koncentraties nadert de equivalente geleidvaar- 

heid tot een asymptotische waarde waarbij de resistiviteit van het 

elektrolyt omgekeerd evenredig wordt met de koncentratie aan o p g e ­

loste zouten, c :

p = A /c 4.7w

De parameter A is afhankelijk van het soort zout en als de 

koncentratie hoog is, ook van de koncentratie (V.N. DAKHNOV, 1962).

4.5.1.3. Verband tussen de resistiviteit van het gesteente en de 

porositeit a

In de saturatiezone zijn alle poriën met water gevuld.

Hierin geldt de wet van ARCHIE (1942) : p = Fp
t w

Volgens DAKHNOV (1947) is het verband tussen de resisti­

viteit, p^, en de porositeit, a, van een volledig verzadigde niet 

verkitte afzetting als volgt uit te drukken :



waarbij F de f o r m atiefaktor is.

De meest algemene formule over het verband tussen de 

resistiviteit van het gesteente, p t> en de porositeit, a, van een 

volledig verzadigde, verkitte afzetting is :

waarbij a en m afhankelijk zijn van de verkittingsgraad (tabel 

4.8).

Tabel 4.8 - De parameters a en m in de formule van ARCHIE voor 

verschillende gesteentetypen (G .V . KELLER, 1968)

Omschrijving van het gesteente a m

Weinig verkit detritisch gesteente, zoals zand, 
zandsteen en sommige kalkzanden met een p o r o ­
siteit van 25 tot 45%, gewoonlijk Tertiair 0,88 1 ,37

Tamelijk goed verkitte sedimentaire gesteenten, 
w aaronder zand- en kalksteen, met een porositeit 
van 18 tot 35%, gewoonlijk Mezozoxsch 0,62 1 ,72

Goed vrrkitte sedimentaire gesteenten met een 
porositeit van 5 tot 25%, gewoonlijk Paleozoïsch 0,62 1 , 95

Vulkanische gesteenten met een porositeit van 
20 tot 80% 3,5 1,45

Gesteenten met minder dian 4% porositeit, zoals 
magmatische en metamorfe gesteenten waarBij de 
spleetporositeit belangrijk is 1,4 1 , 58

4.5.1.4. Verband tussen de resistiviteit van het gesteente en van 

de v e r z adigingsgraad

In de onverzadigde zone zijn de poriën slechts g e d e e l ­

telijk met water gevuld zodat men rekening moet houden met de v e r ­

zadigingsgraad van het gesteente

p = p x S _n 4.10
S t

waarbij p̂ ., de resistiviteit van het volledig verzadigde gesteente,

p , de resistiviteit is van het onverzadigde gesteente, s
S, verzadigingsgraad,

n, een proefondervindelijke faktorj voor zand en zandsteen 

gelijk aan 2 .



De verzadigingsgraad is in de onverzadigde zone sterk a f ­

hankelijk van de k o r r e l g r o o t t e , van de korre 1 groot t e v e r d e 1 ing en 

van de b o d e m v o c h t i g h e i d s s p a n n i n g . .Hierdoor is het mogelijk de 

bodemvochtigheidsapanning af te leiden uit de resistiviteit van 

een bodem. Deze metode is echter niet ts gebruiken op zandige 

bodems met een horizontaal gedeelte in de pF-kurve waardoor voor 

een kleine verandering in bodemvochtigheidsspanning een grote 

verandering van vochtgehalte inhoudt CW.P. STAKMAN, 1974). Het 

zou echter wel mogelijk zijn het vochtgehalte van het monster 

te bepalen uit de r e s i s t i v i t e i t .

4.5.1.5. Verband tussen de resistiviteit in de verzadigde zone,

de korrelgrootteverdeling, de katioiaenuitwisselingskapa- 

citeit van de afzetting en de koncentratie aan zouten in 

het poriënwater

In boorgatmetingen wordt de resistiviteit alleen gemeten 

in de verzadigde zone. De resistiviteit is hier afhankelijk van de 

korrelgrootteverdeling van de afzetting. Er werd vastgesteld dat 

door dezelfde resistiviteit van het poriënwater, p , een f i j n ­

korrelige afzetting, verzadigd met zoet water, een lagere r e s i s t i ­

viteit heeft dan een middelmatig- of een grofkorrelige afzetting.

Het tegenovergestelde is waar in afzettingen verzadigd met sterk 

verzilt water CV.N. DAKHNOV, 1962).

De resistiviteit neemt toe in fijnkorrelige gesteenten 

verzadigd met zout water. Een gedeelte van de ionen wordt immers 

geadsorbeerd als ze de elektrische dubbellaag naderen langs de 

korrelgrenzen en ook de viskositeit van het water in de dubbellaag 

nesn l toe.

De vermindering van de resistiviteit in fijnkorrelige 

gesteenten verzadigd met zoet water is toe te schrijven aan de 

k ationenuitwisselingskapaciteit van de kleimineralen en aan de 

o ppervlaktegeleiding door het water in de dubbellaag langs de 

korrelgrenzen. De afscheiding van ionen van de kleimineralen v e r ­

groot de elektrische geleiding van het gesteente. Hoe groter de 

hoeveelheid klei in een afzetting en hoe groter de specifieke 

oppervlakte U van de korrels, hoe kleiner de resistiviteit.

Anderzijds doet zoet water de kleimineralen in de poriën 

zwellen waardoor de doorsnede voor de geleiding afneemt en de r e s i s ­

tiviteit verhoogt. Daar al deze processen simultaan plaatsvinden en



daar hun onderling belang niet heel duidelijk is kan men b e z w a a r ­

lijk het globale effekt ervan voorspellen.

Uit laboratoriumproeven hebben HILL & MILBURN (1957) 

de volgende empirische vergelijking afgeleid :

F ---------------------------------I _ _ ---------------  -----------  4 t 1 1

o, , , b l n p / p  (p /p ) w wow wo

waarbij F , de formatiefaktor met sterk verzilt water in een meto
een resistiviteit Pw o » verzadigde afzetting,

F , de formatiefaktor met een minder zout water in een met

een resistiviteit p verzadigde afzetting,w
b , een parameter afgeleid uit de k a t i o n e n u i t w i s s e 1 i ngska- 

paciteit, Q (in m é / c m 3 poriënvolume).

b = 0,1350 ♦ 0,0055

Het verband tussen de formatiefaktor gemeten bij een 

bepaald poriënwater met zoutgehalte (F) en de formatiefaktor bij 

een poriënwaterresistiviteit van 0,01 firn (F 0,01) wordt grafisch 

voorgesteld in fig. 4.5 voor verschillende waarden van de p a r a ­

meter b. Deze kurven tonen aan dat de parameter b een grote 

invloed heeft op de resistiviteit van het gesteente indien het 

een grote kationenuitwisselingskapaciteit, 0 , heeft en verzadigd 

is met zout water.

4.5.1.6. Verband tussen resistiviteit van het gesteente en de 

temperatuur

De elektrische geleidbaarheid van een elektrolyt is 

een funktie van de temperatuur. De temperatuur beïnvloedt nl. 

de viskositeit van het water en bijgevolg ook de mobiliteit van 

de ionen. Een temperatuurstoename van 40°C doet de resistiviteit 

voor de helft dalen (V.N. DAK.HN0V, 1962).

Met de invloed van de temperatuur dient men slechts 

rekening te houden in metingen op grote diepte of in gebieden 

met een grote t e m p e r a t u u r s g r a d i ë n t . In het bestudeerde gebied kan 

de temperatuur van de watervoerende laag als konstant beschouwd 

w o r d e n .



4.5.2. METODE

4.5.2.1. Opstelling

Brengt men in een homogeen isotroop milieu met een r e s i s ­

tiviteit p en een stroom I door middel van twee puntelektroden A 

en B, dan kan men de resistiviteit van dat milieu bepalen door 

meting van het potentiaalverschil tussen de elektroden M en iM.

Het potentiaalverschil tussen de punten M en N wordt 

gegeven door :

AV = V M ~ V N = T ff (AM " B M 5 " (ÂTT " B N 3 4 , 1 2

Bij normale opstelling wordt een stroomelektrode A en 

een potentiaalelektrode M in het boorgat neergelaten. De onderlinge 

afstand tussen beide is 1 m. De stroomelektrode B en de p o t e n t i a a l ­

elektrode N, worden aan het oppervlak geplaatst, zodanig dat de 

afstand AB, MN en BN praktisch oneindig zijn ten opzichte van de

afstand AM (fig. 4.6). Hieruit volgt dat de resistiviteit van de

afzetting ter hoogte van de elektroden A en M kan bepaald worden 

door volgende formule :

AV
p t = 4 ff— y  4 . 1 3

4.5.2.2. Uitwerking

Om de stroomlijnen zoveel mogelijk in het gesteente te 

doen dringen gebruikt men r i n g e l e k t r o d e n . Hierdoor is echter de 

bovenstaande formule voor puntelektroden niet geldig. P r o e f o n d e r ­

vindelijk werd vastgesteld dat de konstante 4ff in voorgaande f o r ­

mule dient vervangen te worden door 8,04.

De resistiviteit van het gesteente wordt bijgevolg gegeven 

door de volgende formule

AV s
p . = 8 , 0 4  1 4.14
u S

AV g
De weerstand ---  kan men meten met een aardmeter "Gossen G e o h m ” .

g
Deze maakt gebruik van een wisselspanning van 75Hz om polarisatie- 

verschijnselen te vermijden.



De resistiviteit van het water in het boorgat meet men

op verschillende diepten door middel van een re s i s t i v i t e i t s c e 1
van T.N.O. De elektroden van deze cel zijn eveneens geplaatst

volgens de normaalopstelling. Aangezien de stroomelektrode A

en de potentiaalelektrode M zich zeer dicht bij elkaar bevinden

is het mogelijk de stroomelektrode B en de potentiaalelektrode N

zodanig te plaatsen dat de afstanden BM, AN en AB groot zijn

t.o.v. AM. De stroomlijnen verlopen nagenoeg volledig in het

water van het boorgat. De weerstand y-— - wordt met hetzelfde

toestel gemeten als de weerstand _ . C
1 s

De resistiviteit van het water in het boorgat wordt

dan bepaald aan de hand van de formule :

p = 0,0314 4.15w Ic

4.5.2.3. De meting

In de meeste boorgaten voorzien van een P .V .C .-f i 1 ter 
met diameter 90 mm werd een elektrische boorgatmeting uitgevoerd. 

In het waddenlandschap werd tweemaal gemeten, namelijk in de 

maand september 1976 en in de maand maart 1977, respektievelijk 

bij een lage en een hoge grondwaterstand.

De sonde werd tot op de bodem van het boorgat n e e r g e ­

laten. Bij het bovenhalen werd om de 25 cm de resistiviteit van 

het omgevende gesteente gemeten.

De gemeten resistiviteit wijkt soms af van de werkelijke 

resistiviteit van het gesteente. Deze afwijkingen treden op als 

gevolg van

1 ° de temperatuursgevoeligheid van het meettoestel

2° het feit dat de afstanden BN, BM en AN niet oneindig groot zijn 

3° het feit dat de stroomlijnen niet in het gesteente alleen v e r ­

lopen.

Hun verloop wordt immers bepaald door de resistiviteit van het

gesteente, p^, de resistiviteit van het P .V . C .-filter en de

resistiviteit van het water in het boorgat, p .w

Ter hoogte van de voegen van twee filterelementen zijn 

er geen openingen waardoor de resistiviteit groter is. Ook is de 

resistiviteit van het filterelement in zoet water op zich zelf 

groter dan dat in zout water. Op sommige plaatsen valt de zoet- 

zoutwater grens in het gesteente niet samen met de overgang van



zout naar zoet water in het boorgat.

Vervolgens wordt de sonde tot op de bodem neergelaten 

waarna bij ophalen de resistiviteit van het water in het boorgat 

op dezelfde diepten bepaald wordt.

Het verloop van de resistiviteit van het gesteente, p^,

en de resistiviteit van het water, p , met het peil wordt in eenw
semi-logaritmisch diagram voorgesteld samen met de verhouding

« V V

4.5.3. INTERPRETATIE VAN DE ELEKTRISCHE BOORGATMETINGEN

4.5.3.1. In de duinen

In de meeste boorgaten werd slechts éénmaal gemeten, h e t ­

zij in september 1976, hetzij in maart 1977. De metingen werden 

uitgevoerd in de putten 117DB10, 117DB9, 117DB6 en 117DB2.

4.5.3.1.1. 117DB10EBM1 (fig. 4.7)

De meting werd uitgevoerd op 8 september 1976. De r e s i s ­

tiviteit van het water in het boorgat vertoont een tamelijk scherpe 

overgang op het peil -18,5. Erboven bedraagt de resistiviteit circa 

30 ftm bij 10° (400 uS/cm bij 18°C); het water eronder heeft een

resistiviteit van +_ 19 firn bij 10°C (630 yS/cm bij 18°C).

De resistiviteit van het gesteente verandert op een g e l i j k ­

aardige manier, zij het minder uitgesproken. Bovenaan varieert de 

resistiviteit van boven naar onder van 80 tot 60 Qm, onderaan van 

60 naar 44 Qm.

De verhouding p^/pw schommelt rond 2,3 voor de schelprijke 

zandlagen en is iets groter, 2,5, voor de middelmatig tot grof m i d ­

delmatige zanden.

4.5.3.1.2. 1 1 7DB2EBM1 (fig. 4.8)

De meting uitgevoerd op 1 maart 1977, vertoont een 

konstante resistiviteit van 21 firn bij 10°C over de ganse diepte. De 

veranderingen van de resistiviteit wordt dus enkel veroorzaakt door 

de litologische variaties.



De resistiviteit van het middelmatig tot fijn middelmatig zand (4) is

begrepen tussen 52 en 58 firn (2,5 < p t/p <2 , 7 ) , die van het fijn

middelmatig zand 49,6 firn (p./p 2,4). Ds middslmatig tot grof
t w

middelmatige zanden met schelpgruis hebben een resistiviteit 

tussen 58 firn en 67 firn ( 2 ,8<pt/p^ < 3 ,8 ) . Van de middelmatig tot 

grof middelmatige zanden (2 ) bedraagt de resistiviteit van het 

gesteente van 50 firn naar 35 firn, waarschijnlijk door een toename 

van de m i n e r a l i s a t i e g r a a d ,

4.5.3.1.3. 117 DB9EBM1 en 117DB9EBM2 (fig. 4.9)

In deze put werd tweemaal gemeten, namelijk op 7 september 

1976 en op 1 maart 1977. Telkens werd hetzelfde profiel opgemeten.

De kleine afwijking is te wijten aan de temperatuursgevoeligheid 

van het meettoestel.

De resistiviteit van het water in het boorgat blijft 

konstant (+_ 15 firn bij 10°C of 800yS/cm bij 18°C) tot op een peil 

-20,75. Vanaf dat peil neemt de resistiviteit van het boorgatwater 

een weinig af tot 12 firn bij 10°C (1000yS/cm bij 18°C).

De resistiviteit van het gesteente verandert weinig 

tussen 40 en 50 firn. De verhouding p^/pw ligt tussen de waarde

2,6 en 3,6.

Voor de middelmatige tot fijn middelmatige zanden (4) 

bedraagt de verhouding p^/p^ 2,7, en voor de middelmatige tot grof 

middelmatige (2) rond 3,3. De lagen met veel schelpen vertonen 

een grotere waarde p ^ / p ^ .

4.5.3.1.4. 1 1 7DB6EBM1 (fig. 4.10)

De meting werd uitgevoerd op 8 maart 1977. De r e s i s t i ­

viteit van het water verandert niet met de diepte (14 firn bij 10°C 

of 850pS/cm bij 18°C) tot op het peil -18,5. Vanaf dat peil neemt 

ze met de diepte geleidelijk af tot een minimumwaarde van 3 firn 

bij 10°C (1560yS/cm bij 18°C). De resistiviteit van het middelmatig 

tot fijn middelmatig zand (4) is groter of gelijk aan 40 firn

( p 7 p  2,9). De resistiviteit van het k l e i - 1 eemkomp lex (3.2) en t w
de verhouding p./p is duidelijk kleiner. De resistiviteit van de t w
middelmatige tot grof middelmatige zanden (2) is groter dan 40 firn

maar neemt vanaf het peil -18,5 af tot 36 firn als gevolg van de

toenemende mineralisatiegraad. De verhouding p,/p van het middel-
t w

matig tot grof middelmatig zand (2) bedraagt ongeveer 3,3.
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De resistiviteit van gesteente en water toont aan dat 

de mineralisatie van het duinwater enigszins toeneemt van noord 

naar zuid om een maximum te bereiken in het zuidelijke deel van 

de waterwinning. De mineralisatie van het duinwater blijft vrij 

stabiel tot het peil -20 waaronder men meestal een kleine t o e ­

name vaststelt.

De resistiviteit van de middelmatige tot fijn m i d d e l ­

matige zanden (4) en van de middelmatige tot gro-f middelmatige 

zanden (2 ) ligt tussen 40 en 80 .Qm. De resistiviteit van het 

klei-leemkomplex (3) is begrepen tussen 20 en 40 firn.

De verhouding p./p bedraagt voor de middelmatige tott w
fijn middelmatige zanden (4) 2,6 en voor de middelmatige tot 

grof middelmatige zanden (2) 3,2.

4.5.3.2. Op het strand, 117DB12EBM1 en 117DB12EBM2 (fig. 4.11)

Het boorgat 117DB12 lag bij de eerste meting, op 8 s e p t e m ­

ber 1976, ten noorden van de vloedlijn bij springtij (peil m a a i ­

veld +4,9). Bij hoge waterstand is waarschijnlijk zeewater in het 

boorgat gedrongen. De resistiviteit van het water varieert tussen 3 

en 5 Qm bij 10°C (geleidbaarheid tussen 4000 en 2400viS/cm bij 18°C).

Daags voor de tweede meting, op 2 maart 1977, werd g e ­

pompt op de put, waarvan de filter zich bevindt tussen de peilen 

-12,3 en -28,3. Al het ingezijpelde zeewater werd aldus verwijderd. 

Door een accumulatie van strandzand op deze plaats was het peil 

van het maaiveld gestegen tot +5,7 zodanig dat men mag aannemen 

dat na de pomping geen zeewater van boven in de put is gedrongen 

of grondwater afkomstig uit hoger gelegen afzettingen dan* de 

filter.

De resistiviteit van het water onder het peil -14 tot 

de bodem van de put varieert tussen 7,6 en 8,2 Œm bij 10°C. Boven 

het peil -14 neemt de resistiviteit van het boorgatwater vlug af 

naar een minimumwaarde van 4,5 firn ter hoogte van het peil -12.

4 . 5 . 3 . 1 . 5 .  B e s l u i t



Uit de resistiviteit van het gesteente en de verhouding

p,/p Kan men afleiden dat bovenaan zout water tot het peil -13 L w
voorKomt, dat de resistiviteit van het poriënwater vrij stabiel 

blijft tussen het peil -13 en -25 en dat onder het peil -25 de 

resistiviteit van het gesteente vlug afneemt, waarschijnlijK 

door een hogere mineralisatie van het poriënwater.

4.5.3.3. In het overdekte waddenlandschap

De boorgatmetingen werden telKens tweemaal uitgevoerd, 

in het begin van de maand september 1976 bij een lage g r o n d w a t e r ­

stand en in het begin van de maand maart 1977 bij een hoge g r o n d ­

waterstand.

4.5.3.3.1. 117DB15EBM1 en 117DB15EBM2 (fig. 4.12)

Op 8 september 1976 was het water in het boorgat 117DB15 

zwak zoet tot het peil -16,5, matig brak tussen de peilen -16,5 

en -18,5, braK tussen de peilen -18,5 en -19,5, zeer brak tussen 

de peilen -20,75 en matig zout onder het peil -20,75.

Op 2 maart 1977 bleek echter het brak, zeer brak en matig 

zout water verdrongen. Men treft zoet water aan tot het peil -20,5, 

daaronder matig brak water.

De seizoenale schommelingen van de stijghoogte in de vier 

filters van de put 117DB16 tonen aan dat op het einde van een droge 

periode de druk in de diepste lagen groter is dan in de bovenste. 

Hieruit blijkt dat in de droge perioden het grondwater een opwaartse 

beweging vertoont. Dit water is verzilt. Op het einde van de aan- 

vullingsperiode, is de stijghoogte het grootst in de bovenste lagen, 

zodat water in het boorgat gedrukt wordt van de bovenste meest d o o r ­

latende lagen van de watervoerende laag. Dit water is hier zwak 

zoet.

Bij vergelijking van de boorgatmetingen van twee v e r ­

schillende tijdstippen stelt men vast dat de resistiviteit van het 

gesteente dezelfde was waar zoet water in het boorgat aanwezig was. 

De resistiviteit van het gesteente vertoont echter een groot v e r ­

schil waar bij de eerste meting brak of zout water aanwezig was, 

terwijl bij de andere meting zoet water aanwezig was. Dit is te 

verklaren doordat de gemeten resistiviteit van de afzetting funktie 

is van de resistiviteit van het boorgatwater en de werkelijke r e ­

sistiviteit van de afzetting.



Uit de resistiviteit van het gesteente blijkt dat het 

water (p^<10 ftm) vanaf het peil -19,5 brak tot zout is.

De verhouding p./p vertoont abnormaal grote of kleine
t w

waarden op de plaats waar de zoet-zoutwaterovergangszone in het 

boorgat schommelt. Waar men in het boorgat zout water aantreft op 

dezelfde hoogte als zoet water in het omgevende gesteente stelt 

men vast dat de verhouding p ^ / p ^  abnormaal groot is. In het o m g e ­

keerde geval is de verhouding p,/p abnormaal klein.
t w

Bij de elektrische boorgatmeting 117DB15EBM1 van 8 s e p ­

tember 1976 is de verhouding p./p abnormaal groot in tegenstelling
t w

met 117DB15EBM2 van 2 maart 1977 waar ze abnormaal klein is. Dit is

te wijten aan het feit dat op het einde van het droge seizoen zout

water vanuit het onderste deel van de watervoerende laag in het

boorgat dringt, terwijl op het einde van het vochtige seizoen

zoet water uit het bovenste deel van de watervoerende laag in het

boorgat sijpelt. Het peil van de zoet-zoutwaterovergangszone in het

boorgat valt dus niet samen met de zoet-zoutwaterovergangszone in de 
a f z e t t i n g .

In een boorgat, voorzien van een filter over de ganse 

dikte van de watervoerende laag, schommelt de zoet-zoutwaterover- 

gangszone in funktie van de seizoenale drukschommelingen op de 

verschillende diepten van de watervoerende lagen en van de permea- 

biliteitsveranderingen in de watervoerende laag. De z o e t - z o u t w a t e r ­

overgangszone in de afzetting zelf vertoont een geringe niet m e e t ­

bare schommeling.

In het resistiviteitsprofiel en in het verloop van de 

verhouding p^/p^ is bij beide metingen een schelprijke middelmatige 

zandlaag goed te merken.

4.5.3.3.2. 1 93DB7EBM1 en 193DB7EBM2 (fig. 4.13)

De resistiviteiten van het boorgatwater bij de meting 

op 3 september 1976 en op 6 maart 1977 worden in onderstaande 

tabel weergegeven.



Ta b e l  4.9 - R e s i s t i v i t e i t e n  van het b o o r g a t w a t e r

1 93DB7EBM1 
(03-09-1976)

193DB7EBM2 
(02-03-1977)

Resistiviteit 
water, pw

van het boorgat- Peil 

van tot

Peil 

van tot

3,75 Jïm <p <7, w 5fim (matig brak) - -4,75

1 ,88fim <p <3* w 75ttm ( brak) -7 -4,75 -8,75

0, 9 4 Bm <p <1 « w 88&m (zeer brak) -7 -12,5 -8.75 -15,15

0, 4 7fim <p < 0,w 94Œm (matig brak) -12,5 -16,5 15,25

p„>°- 47fim (zout) -16,5 -

Uit deze tabel blij kt dat mineralisatie van het water

in het Iboorgat op alle diepten lager is in de tweede m e t i n g .

De resistiviteit van het gesteente neemt regelmatig af 

met de diepte. Vanaf het peil -17,25 blijft het konstant. Hieruit 

volgt dat de mineralisatie van het poriënwater logaritmisch t o e ­

neemt met de diepte tot het peil -17,25 die overeenkomt met de top 

van het klei- 1 e e m k o m p l e x . Het boorgat is langs een afwaterings- 

gracht gelegen.

4.5.3.3.3. 193DB5EBM1 en 193DB5EBM2 (fig. 4.14)

Uit deze meting stelt men eveneens vast dat gedurende 

de aanvullingsperiode, van september 1976 tot maart 1977, het 

brakke water dieper in het boorgat verdrongen isj dat blijkt uit 

de toename van resistiviteit. Ook is de overgang van zoet naar 

zout water in het boorgat op het einde van de droge periode groter 

dan in de a a n v u 1 l i n g s p e r i o d e .

Daar de gemeten resistiviteit van het gesteente op de 

verschillende diepten dezelfde is, met uitzondering van de a f w i j k i n ­

gen ter hoogte van het zout water in het boorgat, ligt de v e r h o u ­

ding P ^ / P w Bön weinig lagBr. Het relatief verloop van deze v e r h o u ­

ding p^/p^ met de diepte is echter gelijk gebleven.

Het leemhoudend middelmatig tot fijn middelmatig zand 

heeft een grotere verhouding dan het middelmatig tot fijn

middelmatig zand met schelpgruis. In de verzilte zone is de v e r ­

houding p^/pw groter. Het klei-leemkomplex (3.1) heeft een verhouding 

P t/P w “ 4, de zandige afzetting onder het klei - 1 eemkomplex een v e r ­

houding p,/p - 5. t w



Ter hoogte van de overgangszone van brak naar zoet water 

is de verhouding P t/Pw Kleiner. In maart 1977 is deze verhouding 

p^/pw er het kleinst. Dit komt doordat minder gemineraliseerd water 

in het boorgat voorkomt op het niveau waar het poriënwater reeds 

sterk gemineraliseerd is. Dat wijst eveneens op het feit dat het 

zoet water uit de bovenste lagen terug het zout water in het b o o r ­

gat naar beneden gedrukt heeft.

4.5.3.3.4. 193DB8EBM1 en 1 93DB8EBM2 (fig. 4.15)

De boorgatmeting 193DB8EBM1, in september 1976 bij een 

lage grondwaterstand, toonde aan dat het water in het boorgat zwak 

zoet was tot op een peil -22,5, matig brak van -22,5 tot -23,5 en 

brak van -23,5 tot het diepste meetpunt -24,75.

Bij de tweede elektrische boorgatmeting 193DB8EBM2 had 

het water bovenaan in het boorgat dezelfde resistiviteit als bij 

de eerste meting. Vanaf het peil -14,5 echter vergrootte de r e s i s ­

tiviteit van het boorgatwater tot maximaal 13 Om bij 10°C om dan 

terug dieper af te nemen naar 10 firn bij 10°C op het diepste punt.

De resistiviteit van het gesteente en de verhouding

P /p vertonen een zelfde verloop met de diepte bij beide metingen, t» w
Bij de verhouding p /p komt een afwijking voor tussen beide metin-t w
gen op de plaats waar bij de ene meting matig brak tot brak water 

in het boorgat voorkwam en bij de andere meting zwak zoet water.

Bij beide metingen is de resistiviteit van het gesteente 

in de zone tussen de peilen -15,25 en -21 kleiner dan de r e s i s t i ­

viteit van het gesteente boven en onder deze zone. In deze zone 

komt bovenaan een bank van middelmatig tot fijn middelmatig zand 

met schelpgruis voor met daaronder een lemig fijnzandige lens. De 

lage resistiviteit van de schelplaag wijst op poriënwater met 

grote mineralisatie.

4.5.3.3.5. Besluiten

Het water in de freatisch watervoerende laag van het o v e r ­

dekte waddenlandschap vertoont, zowel horizontaal als vertikaal 

een sterke wisseling in mineralisatiegraad. Hierbij komt dat de 

resistiviteit van het water in een boorgat, voorzien van een 

filter over de ganse dikte van de watervoerende laag, sterk varieert 

in funktie van de seizoenen. Op het einde van de droge periode is 

de mineralisatie van het water op alle diepte het grootst» De over-



gangszone van zoet naar zout water in het boorgat vertoont seizoe- 

nale schommelingen. Op het einde van het droge seizoen bevindt deze 

overgangszone zich het hoogst in het boorgat terwijl ze dan de 

grootste uitbreiding heeft. Op het einde van het natte seizoen 

is de overgangszone in het boorgat naar beneden gedrukt en is 

eerder gering in uitbreiding zodanig dat een scherpere overgang 

ontstaat tussen het zoete en het zoute water in het boorgat. Deze 

seizoenale schommeling in de zoet-zoutwaterovergangszone is te 

verklaren door de verschillende seizoenale schommelingen van het 

hydraulische peil op verschillende diepten in de watervoerende laag. 

De zoet-zoutwaterovergaggszone is in de watervoerende laag zelf 

eerder s t a b i e l .

4.5.4. SYNTESE

voorkomende

verhouding P^/Pw Uit de verhouding p ^ / p w wordt

Uit de boorgatmetingen blijkt dat de meest 

gelijk is aan 2,7 

de resistiviteit van het gesteente bepaald die poriënwater bevat 

dat tot één der geleidbaarheidsklassen behoort zoals voorgesteld 

door G. DE MOOR & W. DE BREUCK ( 1 9 6 9 ) (tabel 4.10).

Aan de hand van de elektrische boorgatmetingen werd een 

resistiviteitsprofiel opgesteld vanaf het strand, door de duinen 

tot in het waddenlandschap (fig. 4.16).

Tabel 4.10 - Resistiviteit van een verzadigde afzetting voor v e r ­

schillende geleidbaarheidsklassen van het poriënwater

(G. DE MOOR & W. DE 

ding P t /Pw s 2,67

BREUCK, 1969) en voor een verhou-

S y m b o o 1 Resistiviteit, p ,w
van het poriënwater 
(in Qm bij 10°C)

Resistiviteit van 
de afzetting, p , 
(in Sim)

Kwalitatieve
beoordeling

G 6 0< 1 60< zeer zoet
W 60-30 160-80 zoet
V 30-15 80-40 matig zoet
F 15-7,5 40-20 zwak zoet
A 7,5-3,75 2 0 - 1 0 matig brak
B 3,75-1,88 10-5 brak

C 1 ,88-0,94 5-2 , 5 zeer brak

S 0,94-0,47 2,5-1,25 matig zout

Z <0,47 <1 ,25 zout



Het duinwater behoort meestal tot groep 3b en kan als 

een primair water beschouwd worden. Het is geïnfiltreerd r e g e n ­

water. De voedingskoëfficiënt van de watervoerende laag van het 

duingebied van de Westhoek kan op grond van de chemische s a m e n ­

stelling op 0,38 (metode van SCHOELLER) geraamd worden.

Het zoet water in het duingebied rust op het kleisub- 

straat. Het duinwater kan voor het grootste gedeelte bestempeld 

worden als matig zoet met veel a a r d a l k a l i ë n . Het is echter o p ­

vallend rijk aan ijzer en sulfaten, vooral in het bovenste g e ­

deelte van de watervoerende laag en in de omgeving van het water- 

w i n n i n g s g e b i e d . Nabij het kleisubstraat vertoont het duinwater 

een grotere mineralisatie en kan bestempeld worden als zwak 

zoet water. Het bèvat er meer aardalkaliën.

Op het strand is de watervoerende laag bovenaan verzilt.

Ze bevat waters van groep 1 en 2. Ze zijn afkomstig van de zee, 

die het strand periodisch overstroomt, en ze zijn als primaire . 

waters te beschouwen. In het onderste gedeelte van de watervoerende 

laag stroomt het zoete duinwater onder het verzilte water in de 

richting van de zee. Tussen de twee waters bevindt zich een zout- 

zoetwaterovergangszone. De zout-zoetwaterovergangszone blijkt dieper 

te liggen in het oostelijke deel van het studiegebied dan in het 

westelijke. Dit is vermoedelijk te verklaren door de afpomping in 

dit gedeelte van het studiegebied, dat een zeewaartse stroming 

b e p e r k t .

De stroming van de verschillende waters ter hoogte van 

het strand zou als volgt kunnen voorgesteld worden. Het duinwater 

vloeit gedeeltelijk ondergronds af in de richting van de zee. Op 

het strand infiltreert periodisch zeewater. Dat zeewater komt 

ondergronds boven het zoet duinwater te liggen. Door diffusie en 

dispersie ontstaat tussen deze twee primaire waters een zout- 

z o e t w a t e r o v e r g a n g s z o n e , Zowel het zoute water als het water in de 

overgangszone, als het zoet duinwater stromen kontinu in de 

richting van d® zee. De zoutwaterwig, komt waarschijnlijk ver 

b e neden de hoogwater lijn voor.

' 4 , 5 .  Be s l u i t e n  u i t  h e t  h y d r o c h e k i s c h e  o n d e r z o e k



In de windgeulen vindt men water van zeer uiteenlopende 

kwaliteit, die gaat van het matig zoet naar zout.

In het zuidelijke duingebied nabij de waterwinning, 

heeft het water in het bovenste gedeelte van de watervoerende laag 

dezelfde kwaliteit als dat van het ondiepe water in het o v e r ­

dekte waddenlandschap [groep 7b). Op sommige plaatsen in het o v e r ­

dekte wadden 1 a n d s c h a p , o.m. in de nabijheid van afwateringsgrachten, 

komt ondiep reeds matig brak water voor en bestaat er een opwel- 

ving van de zout-zoetwaterovergangszone (193DB6-7). Hieruit volgt 

dat de waters in de diepere lagen van het overdekte w a d d e n l a n d ­

schap een sterke wisseling in mineralisatie vertonen, zowel in 

vertikale als in horizontale zin. Deze verspreiding wordt bepaald 

zowel door litologische als door hydrologische faktoren.

De verspreiding van de verschillende waters is eerder 

stabiel. De beweging in de zoet-zoutwaterovergangszone is zeer 

traag. Alleen een studie over een grote tijdspanne zou een b e w e ­

ging in de zoet-zoutwaterovergangszone kunnen aantonen. J.H. EDELMAN 

[1972) neemt aan dat de beweging van de zoet-zoutwaterovergangs- 

zone in een meerdere vloeistoffen bevattende laag zeer traag g e ­

schiedt in een toestand van niet permanente stroming. De tijd nodig 

om tot permanente stroming te komen is daarom veel groter in een 

meerdere vloeistoffensysteem dan voor een enkele vloeistofsysteem 

onder dezelfde voorwaarden. Deze kan van de orde van tientallen 

jaren zijn of zelfs meer. Grondwaters in kustgebieden bevinden zich 

zelden in een stadium van permanente stroming wanneer een menselijke 

ingreep heeft plaatsgehad.



5. HYDRAULISCHE KENMERKEN VAN DE FREATISCHE LAAG

5.1. I n l e id in g

Een freatische laag is een doorlatende afzetting, die 

rust op een ondoorlatend substraat en slechts gedeeltelijk met 

water gevuld is. De top van de freatische laag wordt gevormd door 

een vrije watertafel, die zich onder atmosferische druk bevindt.

De laag wordt gevoed door insijpelend water.

Fijnkorrelige sedimenten geven meestal niet onmiddellijk 

het poriënwater af wanneer door wateronttrekking het waterpeil 

verlaagd wordt. Er verloopt een tijd vooraleer het water onder 

invloed van de zwaartekracht uit de poriën stroomt. In een d e r ­

gelijk reservoir vormt zich een freatische laag met vertraagde 

a f g i f t e .

Een artesische laag is een volledig verzadigde d o o r ­

latende afzetting die bovenaan en onderaan begrensd is door o n ­

doorlatende lagen. Volledig ondoorlatende lagen bestaan zelden 

in de natuur en daarom komen minder artesische lagen voor dan 

in het algemeen wordt aangenomen.

Een ha 1 f a r t e s i sche laag is een volledig verzadigde 

doorlatende afzetting die bovenaan begrensd wordt door een h a l f ­

doorlatende laag en onderaan door een laag die ofwel ondoorlatend 

is of h a l f d o o r l a t e n d , Een halfdoorlatende laag wordt gedefinieerd 

als een laag met een klein, doch meetbare permeabiliteit. Verlaging 

van de stijghoogte in de doorlatende afzetting zal een vertikale 

stroming doen ontstaan van water van de halfdoorlatende laag naar 

de doorlatende laag. De horizontale stroomkomponente in de h a l f ­

doorlatende laag kan verwaarloosd worden.

Een aantal parameters kenmerken een reservoir.Het zijn 

de permeabiliteit of hydraulische konduktiviteit k, de transmissi- 

viteit kD, de hydraulische weerstand van een halfdoorlatende laag 

c, de lekfaktor van een halfartesische laag met vertraagde afgifte 

B, de specifieke elastische berging S^, de elastische bergingskoëffi- 

ciënt S en de bergingskoëfficiënt nabij de watertafel S .
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5.1.1. PERMEABILITEIT OF HYDRAULISCHE KOMDUKTIVITEIT k

De hydraulische konduktiviteit is de faktor k in de 

wet van DARCY voor de stroming van water door een verzadigde 

bodem

V = -k x i 5.1

waarin V, de stroomsnelheid (L/T),

k, de permeabiliteit of hydraulische konduktiviteit (L/T) 

i, het hydraulische verhang (d i m e n s i e l o o s ).

Hieruit volgt dat wanneer het hydraulische verhang gelijk 

is aan de eenheid, de stroomsnelheid gelijk is aan de p e r m e a b i l i ­

teit k.

De faktor k staat gewoonlijk voor de hydraulische k o n ­

duktiviteit van de verzadigde zone. Deze kan men als o n a f h a n k e ­

lijk van de drukgradiënt beschouwen daar men mag aannemen dat 

water in de poriën zich overal op dezelfde manier gedraagt. In 

onverzadigde voorwaarden daarentegen beïnvloedt de vochtigheids- 

spanning de hydraulische konduktiviteit. De faktor k wordt in 

de onverzadigde zone de kapillaire konduktiviteit genoemd.

De hydraulische konduktiviteit van een gesteente stelt 

de gemiddelde waterdoorlatende eigenschappen voor die hoofdzakelijk 

afhankelijk zijn van het aantal en van de diameter van de poriën. 

Als deze homogeen verspreid zijn wordt het gesteente als homogeen 

beschouwd. Is de hydraulische konduktiviteit in alle richtingen 

dezelfde dan is het gesteente isotroop.

Meestal vertonen de gesteenten een gelaagdheid zodat de 

hydraulische konduktiviteit in één richting groter is dan in een 

andere. Gewoonlijk is de vertikale permeabiliteit kV kleiner dan 

oe horizontale k h . Een gesteente waarin de hydraulische k o n d u k t i ­

viteit niet in alle richtingen dezelfde waarde heeft noemt men 

anisotroop. Verschilt de anisotropie in ieder punt van een laag 

dan heet die laag heterogeen anisotroop. Is de anistropie in ieder 

punt dezelfde dan is de laag homogeen anisotroop.

Buiten de porositeit hangt de hydraulische konduktiviteit 

eveneens af van de viskositeit en van de dichtheid van het proiën- 

water. Dit kan uitgedrukt worden als volgt :

k = K x — —  n 5.2



waarin K, hydraulische konduktiviteit of permeabiliteit (L/T),

K, intrinsieke permeabiliteit onafhankelijk van de d i c h t ­

heid en de viskositeit (L2 ), 

p, massadichtheid van de oplossing (ML 3 ),

g, zwaartekrachtversnelling lLT 2 ),

n, dynamische viskositeit van de oplossing (ML 1T 1 ).

De dichtheid en de viskositeit worden hoofdzakelijk 

beïnvloed door de temperatuur en het zoutgehalte. Men stelt vast 

dat deze faktoren op het veld weinig veranderen, waardoor men 

meestal hiermee weinig of geen rekening moet houden.

De hydraulische konduktiviteit bepaalt men ofwel op 

monsters in het laboratorium ofwel door proeven in situ. In beide 

gevallen veroorzaakt men een stroming en meet men de s t i j g h o o g t e n  

in funktie van de hoeveelheden vloeistof die door het gesteente 

stromen. Men berekent de hydraulische konduktiviteit uit een formule 

die het verband tussen deze laatste, de stromingsvoorwaarden en 

de doorsijpeling aangeeft. Een analytische afleiding van de formule 

is mogelijke omdat de stromingsvoorwaarden in het laboratorium r e ­

latief eenvoudig zijn. Op het veld echter is het veel moeilijker 

om stromingen teweeg te brengen in grond 1 i c h a m e n , waarvan de 

grenzen nauwkeurig vast te stellen zijn.

Op het terrein maakt men van verschillende metoden 

gebruik naargelang men in de onverzadigde of in de verzadigde zone 

metingen uitvoert. In deze studie werden alleen metingen in de 

verzadigde zone uitgevoerd. De meest gebruikte meting in het veld 

is de pompproef. Deze heeft het grote voordeel een waarde voor de 

permeabiliteit op te leveren die een gemiddelde is voor een groot 

volume van de watervoerende laag.

5.1.2. TRANSMISSIVITEIT, kD

De transmissiviteit is de hoeveelheid water die per t i j d s ­

eenheid door een vertikale doorsnede van 1 m breedte over

de ganse dikte, D, van de watervoerende laag stroomt onder een 

piëzometerisch verhang gelijk aan de eenheid (L2/T).

De transmissiviteit van een watervoerende laag kan a f g e ­

leid worden door het uitvoeren van een pompproef op het veld. In 

een gebied onderhevig aan getijden kan men de verhoudingen bergings- 

koëfficiënt, transmissiviteit en transmissiviteit, hydraulische w e e r ­

stand van de halfdoorlatende laag afleiden uit de schommelingen



van het hydraulisch peil op verschillende plaatsen en diepten in 

de watervoerende laag.

Kent men de horizontale permeabiliteit van de verschillende 

horizonten van een watervoerende laag dan Kan men de transmissivi- 

teit van die laag bereKenen door de sommatie van de transmissiviteit 

van de afzonder lijKe horizonten :

n h
KD = E K x D 5.3

i = 1

waarin K^, de horizontale permeabiliteit van een horizont, 

de diKte van deze horizont.

5.1.3. DE HYDRAULISCHE WEERSTAND, C

De weerstand tegen vertiKale stroming in halfdoorlatende 

lagen is de verhouding van de verzadigde diKte van een h a l f d o o r ­

latende laag, D ’, en zijn vertiKale hydraulische KonduKtiviteit

Deze parameter Kan men eveneens afleiden uit bemalings- 

proeven en van de getijschommelingen van de s t ij g h o o g t e n .

Kentmen de vertiKale permeabiliteit van ieder van de 

horizontan die de halfdoorlatende laag vormen dan Kan men de h y d r a u ­

lische weerstand van de ganse laag bereKenen door de som te ma^en 

van de waarden :

n n
c = £ c = E D ' . / K^ 5.4

i = 1 i = 1 1
v

waarin c^, D ’  ̂ en K^ r e s p e k t i e v e l i j K de hydraulische weerstand, 

de diKte, de vertiKale p r e m e a b i 1i teit van één van de horizonten 

van de halfdoorlatende laag voorstellen.

5 . 1 . 4 .  DE L2KFAKT0R L

De leKfaKtor , L = / K D c , is een maat voor het leKKen uit 

de bedeKKende laag in een halfartesische laag. Hij bepaalt de her- 

Komst van het water dat uit een put in de halfartesische w a t e r ­

voerende laag gepompt wordt.

Hoge waarden voor de leKfaKtor wijzen erop dat de stroming 

in de halfdoorlatende laag een veel grotere weerstand ondervindt dan 

in de watervoerende laag zelf. In dit geval is de invloed van het 

leKKen Klein. Als L oneindig groot wordt dan is de watervoerende laag
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artesisch. De lekfaktor heeft de dimensie van een lengte (m).

5.1.5. DE DRAINERINGSFAKTOR B

De d r a i n e r i n g s f a k t o r , B = /(kD/B^S^); van freatische 

lagen met vertraagde afgifte kan men vergelijken met de lekfaktor 

in half-artesische lagen, alhoewel deze op een andere wijze g e ­

definieerd wordt. Grote waarden voor B geven een snelle drainering 

aan. Wordt B oneindig groot dan gebeurt de drainage van de poriën 

onmiddellijk en is er geen vertraagde afgifte. De koëfficiënt,

1/Bq , de vertragingsindex van BOULTON genoemd, is een empirische 

konstante, terwijl S q de bergingskoëfficiënt is nabij de water- 

tafel, bepaald na een lage periode van pompen. De draineringsfaktor 

heeft de dimensie van een lengte (m).

5.1.6. BERGING VAtf EEN FREATISCK WATERVOERENDE LAAG

De waterafgifte van een freatische laag geschiedt door 

drainering onder invloed van de zwaartekracht, door samendrukking 

van de watervoerende laag en door uitzetting van het water wanneer 

de druk in het grondwater verminderd wordt. Dit noemt men de berging 

van de freatische laag.

Het deel van de berging van de watervoerende laag g e ­

leverd door de samendrukking van de watervoerende laag en de uit­

zetting van het water zelf bij een drukafname wordt weergegeven 

door de elastische bergingskoëfficiënt van de watervoerende laag,

S (dime n s i e l o o s) .

De elastische bergingskoëfficiënt, S, is de hoeveelheid 

water die door een volumeëlement met als basis de oppervlakte- 

eenheid en als hoogte de totale dikte van de watervoerende laag 

afgegeven of opgenomen wordt tengvolge van een af- of een toename 

van de stijghoogte met een eenheid.

De specifieke elastische berging, S s> is de hoeveelheid 

water, die door een volumeëenheid van de watervoerende laag a f g e ­

geven of opgeborgen wordt tengevolge van respek t i e v e l i j k een af- 

of een toename van de stijghoogte met een eenheid. De specifieke 

elastische bergingskoëfficiënt, S s , kan als volgt uitgedrukt 

worden [DOMENICO, 1972)

S! = < S . g ( K + a i c )  C L 1 ) 5.5A w s f



waarin < g ,de vertikale samendrukbaarheid van de watervoerende laag

( 1 .L .T 2 )

K^.de samendrukbaarheid van de vloeistof (M ^ L . T 2 ),

a , de porositeit van de watervoerende laag [ d i m e n s i e l o o s) ,

<5 , de dichtheid van de vloeistof (M.L 3)w
g , de zwaart e k r a c h t s vers ne 11i ng (L.T 2 )

Meestal is de bijdrage van de vertikale samendrukbaarheid van de

w atervoerende laag veel groter dan van die van de vloeistof.

De elastische bergingskoëfficiënt van een watervoerende 

laag kan ook als volgt gedefinieerd worden :

n
S = £ S ' . x D . 5.6

1 . 1  A t i

waarbij S' . en D respektievelijk de specifieke elastische berging A l  1
en de dikte van één van de horizonten die de watervoerende laag 

v o r m e n .

In de praktijk bepaalt men de elastische bergingskoëfficiënt 

van een watervoerende laag door middel van b e m a 1i n g s p r o e v e n . Bij 

een freatische laag met vertraagde waterafgifte wordt S afgeleid 

met behulp van het eerste segment van de t i j d - a f p o m p i n g s k u r v e .

De bergingskoëfficiënt nabij de watertafel, S q (dimensie­

loos) geeft een maat van de hoeveelheid water in een freatische 

laag geleverd door z w a a r t e k r a c h t s d r a i n e r i n g . Hiervoor gebruikt men 

ook de term specifiek debiet. De bergingskoëfficiënt nabij de 

watertafel is de hoeveelheid water die opgeborgen of afgegeven wordt 

door een freatische laag per oppervlakte-eenheid voor een daling 

of stijging van de watertafel met de eenheid. De bergingskoëfficiënt 

nabij de watertafel is aldus een parameter die alleen karakteristiek 

is voor de afzetting waarin de watertafel fluktueert en niet voor 

de diepere horizonten van het reservoir.

In het geval van een freatische laag met vertraagde 

afgifte bepaalt men de bergingskoëfficiënt nabij de watertafel uit 

het laatste segment van de t i j d - a f p o m p i n g s k u r v e .

In de landbouwwetenschappen wordt deze term ook omschreven 

als draineerbaar poriënvolume (in percenten), effektieve porositeit, 

aëratieporositeit, n i e t - k a p i 1 laire porositeit, aëratiekapaciteit of 

luchtkapaciteit van een bodem. In de toegepaste wetenschappen 

spreekt men van de ontwateringskoëfficiënt (DE BEER, 1959).



In de bodemkunde wordt deze parameter bepaald door het 

opstellen van de pF-kurve. Het volumepercent aan water gelegen 

tussen de pF-waarde 0 en 2 wordt als draineerbaar poriënvolume a a n ­

geduid (fig. 5.1).

Een pF-kurve geeft het verband aan tussen de bodemvochtig- 

heidsspanning (pF-waarde) en het watergehalte (vol %). Dit verband 

is echter niet enkelvoudig. Bij een gegeven bodemvochtigheidsspan- 

ning bevat een bodem meestal minder vocht wanneer een droge bodem 

bevochtigd wordt dan wanneer deze spanning bereikt wordt door een 

natte bodem te ontwateren. Dit verschijnsel wordt hystérésis genoemd.

5 , 2 ,  De bemalingsproeven

5.2.1. SOORTEN WATERVOERENDE LAGEN

Uit het sedimentologisch onderzoek blijkt dat het freatisch 

reservoir boven het Ieperiaankleisubstraat opgebouwd is uit een 

afwisseling van grof- en fijnkorrelige sedimenten. Onderaan treft 

men middelmatig tot grof middelmatig zand (2 ) aan met schelpen en 

schelpgruis met erboven soms een k l e i - 1e e m k o m p 1 ex (3). In het klei- 

leemkomplex zijn twee facies te onderscheiden : een lemig (3.2) 

tussen de peilen -14 en -18 met een maximale dikte van 4 m en een 

kleiig (3.1) tussen de peilen -17 en -27 met een maximale dikte 

tot 10 m. In het noordelijke deel van het studiegebied ontbreekt 

meestal het klei-leemkomplex. Boven de afzetting (2) en/of (3) komt 

middelmatig tot fijn middelmatig zand (4) voor met lenzen van fijn 

zand dat soms zeer veel leem bevat (4.1, 4.2, 4.3 en 4.4). Tussen 

de peilen +1 en +4 treft men een klei-lemige zandafzetting (5) aan; 

deze vertoont sterke laterale wisselingen in facies gaande van 

middelmatig tot fijn middelmatig zand tot sterk leemhoudend zand 

met dunne klei-leemlagen en veen. Deze laatste afzetting (5) ligt 

in het overdekte waddenlandschap aan het oppervlak; in de duinen is 

ze bedekt door duinzanden.

Meestal fluktueert de watertafel in de klei-lemige 

afzetting (5). Waar klei-, leem- of veenlagen in de klei-lemige 

afzettingen (5) voorkomen kan de stijghoogte plaatselijk boven deze 

laag veel groter zijn dan eronder. Hieruit blijkt dat op die plaatsen 

halfartesische toestanden bestaan. Dit is vooral het geval waar h a l f ­

doorlatende lagen zoals het klei-leemkomplex (3) of de leemhoudende 

fijne zanden (4.4 of 5.3) goed ontwikkeld zijn.



In het grootste gedeelte van het studiegebied is de 

grondwater laag te beschouwen als een freatische laag met v e r t r a a g ­

de afgifte.

5.2.2. BEMALING VAN EEN FREATISCHE LAAG MET VERTRAAGDE AFGIFTE

Pompt men op een freatische laag met vertraagde afgifte 

dan daalt de stijghoogte aanvankelijk minder in de piëzometers 

waarvan de filter in de fijnkorrelige afzettingen zijn aangebracht 

dan in die waarvan de filters in de grovere afzettingen steken. 

Naarmate de afpomping vordert, neemt het verschil in stijghoogte 

af. Wanneer het freatisch oppervlak merkbaar verandert bestaat er 

een horizontale stroomkomponente in die laag.

De interpretatie van een tijd-afpompingskurve van een 

dergelijke laag kan geschieden volgens de metode van BOULTON (1963). 

Deze bestaat erin de afpompingskurve te vergelijken met een 

familie van s t a n d a a r d k u r v e n . Ieder van deze bestaat uit drie s e g ­

menten.

Het eerste segment van de tijd-afpompingskurve geeft 

aan dat de freatische laag aanvankelijk op dezelfde wijze reageert 

als een artesische laag. Door de samendrukking van de watervoerende 

laag en door de uitzetting van het water zelf wordt onmiddellijk 

water afgegeven. Drainering onder invloed van de zwaartekracht is - 

nog niet begonnen. Onder gunstige voorwaarden ken men de transmissi- 

viteit van de watervoerende laag berekenen door de metode van 

THEIS toe te passen op dat eerste segment. Men kan slechts de g e ­

gevens van nabije piëzometers gebruiken omdat de stijghoogtever- 

lagingen in de ver afgelegen piëzometers te klein zijn om ze n a u w ­

keurig te meten. De b e r g i n s k o ë f f i c i ënt berekend uit dat segment 

kan niet aangegeven worden om de verlaging van de grondwatertafel 

op lange termijn te voorspellen.

Het tweede segment van de tijd-afpompingskurve vertoont 

een afname in helling omdat de poriën in de depressietrechter door 

de zwaartekracht water afgeven. Gedurende deze periode heeft men 

een opmerkelijke afwijking tussen de waargenomen tijd-afpompings- 

kurve en de kurve van THEIS voor n i e t -s t a tionaire stromingen.

Het derde segment, dat enkele minuten tot verschillende 

dagen na het begin van de pomping kan aanvangen, streeft opnieuw naar 

een kurve van THEIS. Het derde segment geeft aan dat er een e v e n ­

wicht ontstaat tussen de drainering door de zwaartekracht en de snel-



heid van de w a t e r t a f e l v e r l a g i n g . Hieruit volgt dat de afwijking 

tussen de waargenomen tijd-afpompingskurve en de kurve van THEIS 

kleiner wordt naarmate de pompproef vordert. Uit het laatste 

segment kan men de bergingskoëfficiënt nabij de watertafel, S^, 

b e r e k e n e n .

_ Meestal is S veel groter dan S, zodanig dat de faktor 
S o

y = 1 + —  zeer groot is. Is y ^ Q O  dan verloopt het tweede segment 

ongeveer horizontaal. In dat geval is het eerste gedeelte van 

de kurve volkomen analoog met de kurven voor een h a l f - artesische 

laag berekend door WALTON (BOULTON, 1 9 6 3 ) (fig. 5 . 2 ) .

5.2.3. BEMALINGSPROEF

De bemalingsproef geschiedde op de put 117DB2 en werd 

gevolgd in de piëzometers geplaatst in de putten 117DB1, 117DB3, 

117DB4, 117QB5, 117SB1 en 117SB2. De eerste vier liggen samen met 

de pompput op een rechte lijn en de laatste twee liggen samen met de 

pompput op een andere lijn loodrecht op de eerste (fig. 5.3).

In ieder van de putten 117DB1, 117DB3, 117DB4 en 117DB5

bevinden zich op verschillende diepten filters ieder aangesloten 

op een bronbuis en van elkaar gescheiden door kleistoppen (tab. 5.1). 

•Hierdoor kan men de stijghoogte van het grondwater in verschillende 

horizonten afzonderlijk vaststellen. In de putten 117SB1 en 117SB2 

werd slechts één enkele filter aangebracht.

Aan de put 117DB2 werd een konstant debiet van 8,7 m V u  

onttrokken. Het water werd langs een riolering ver buiten het 

gebied van de bemaling gevoerd. De stijghoogten werden in alle 

piëzometers tot op 1 mm nauwkeurig afgelezen.

5.2.3.1. Schommelingen van de stijghoogten onder invloed van het 

getij

Uit de waterpeilmetingen gedurende en na het pompen 

werden r e s p e k t i e v e 1 ij k de verlaging en de resterende verlaging 

in de verschillende piëzometers berekend (fig. 5.4 tot 5 . 1 1 ) t

Hierbij stelt men vast dat naast de daling van de s t i j g ­

hoogte tengevolge van net pompen en de stijgende beweging na het 

stilleggen van de pomp er zich een periodische schommeling van het 

waterpeil voordoet. Deze periodische beweging werd nauwkeurig o p g e ­

nomen tijdens de derde dag van de pomping en de tweede dag na het 

stilleggen van de pomp.
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Tabel 5.1 - Peilen van de filterelementen van de piëzometers

Nr. piëzometer Peil

1 1 7DB1 F 1 -25,8 tot -26,8

F2 -15,8 tot -16,8

F 3 - 3,8 tot - 4,8

F4 0,7 tot - 0,3

117DB3 F 1 -25,7 tot -26,7

F2 -1 ,4 tot -17,4

F3 - 6,4 tot - 7,4

F4 - 0,8 tot - 1 , 8
1 1 7DB4 F 1 -25,4 tot -26,4

F2 -17,4 tot -18,4

F3 - 5,4 tot - 7,4

F4 + 0,6 tot - 0,4

117DB5 F 1 -25,4 tot -26,4

F2 -16,4 tot -17,4

F 3 - 5,4 tot - 6,4

F4 - 0,4 tot - 1,4

De periode van die beweging bedraagt 745 minuten of 12 

uur 25 minuten. Dit is de periode van het getij. De peilschommelin- 

gen in de verschillende piëzometers vertonen weinig of geen faze- 

verschil. Een kleine fazeverschil is evenwel waar te nemen op de 

punten 117DB4 en 117DB5 tussen de piëzometers F1 en F2 enerzijds 

en F3 en F4 anderzijds. De schommelingen in de piëzometers F1 en F2 

in het onderste grove gedeelte van het reservoir bereiken eerst 

hun maximale en minimale stand. Pas een half uur tot één uur later 

wordt de maximale of minimale stand bereikt in de piëzometers F3 

en F4 .

De amplitude blijkt zowel van de plaats als van de diepte 

afhankelijk te zijn. Zij neemt af van het noorden naar het zuiden. 

Op een zelfde plaats is de amplitude echter groter in de diepe 

piëzometers dan in de ondiepe met uitzondering van 117DB3F3 (tabel 

5.2) .



Tabel 5.2 - Verschil tussen de maximale en minimale g r o n d w a t e r ­

stand van de ritmische peilschommeling*

Piëzometer Verschil tussen maximale en m i n i ­
male grondwaterstand (m)

117DB1 F4 0, 122
1 1 7DB1 F3 0,130

117SB1 F 1 0,118

1 1 7SB2 F 1 0,116

11 7DB3 F4 0,114

117DB3 F 3 0,129

1 1 7DB3 F2 0,1 32

117DB3 F 1 0, 1 30

117DB4 F4 0,103

1 17DB4 F3 0, 108

1 1 7DB4 F2 0,116

1 1 7DB4 F 1 0,118

117DB5 F 4 0,090

1 1 7DB5 F 3 0,092

1 17DB5 F2 0,106

117DB5 F 1 0,099

Uit de gemeten p e i 1s c h o m m e 1ingen werden de best passende 

ritmische beweging afgeleid door middel van een F O U R I E R - a n a l y s e .

Dit gaf de volgende formule :

y = (2, 09 - 1 7, 66 cos X + 3,87 cos 2 X

- 0,67 cos 3 X + 1,27 cos 4X

- 61,33 sin X + 3,26 sin 2X

- 0,12 sin 3 X - 0,43 sin 4X) 5.7

waarin X = 2 tt ( 4 73 , 33 + t )/T ,

A= de amplitude van de p e i 1s c h o m m e 1ing in mm,

y= de stijghoogte van het waterpeil op het tijdstip t

t.o.v. het gemiddelde waterpeil in mm, 

t_ de tijd sinds het aanleggen van de pomp in min.

T_ de periode van de schommeling, 745 min.

Daar de amplitude van de derde en de vierde cosinus- en sinustermen

verwaarloosbaar klein zijn kan men schrijven
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x = —t (2,09-17,66 cos X + 3,87 cos 2XD 5
- 61,33 sin X + 3,26 sin 2X) 5.8

(fig. 5.3). Met behulp van deze formule werd de gemeten verlaging 

en resterende verlagingen verbeterd (fig. 5.5 tot 5.12).

5.2. 3. 2. Hydraulische parameters afgeleid uit de tijd-afpompings-

kurven van de bemalingsproef 117D32BP1 (fig. 5.13 tot 5.16)

De waarden voor de t r a n s m i s s i v i t e i t , kD, de elastische 

bergingskoëfficiënt, S, en de d r a i n a g e f a k t o r , B, vindt men door 

het eerste gedeelte van de tijd-afpompingskurve op bilogaritmisch 

papier te vergelijken met de standaardkurven van WALTON, eveneens 

op bilogaritmisch papier.

Men verschuift de standaardkurven tot één ervan samenvalt 

met het eerste deel van de t i j d - a f p o m p i n g s k u r v e , er zorg voor 

dragend dat de assen evenwijdig blijven. Men kiest één punt waarvan 

men de koördinaten bepaalt op de beide samenvallende grafieken 

(W(u, r/B), 1/u en s (in meters), t (in dagen) samen met de waarde 

(r/B) voor de kurve van WALTON.

Met onderstaande formules leidt men achtereenvolgens de 

draineringsfaktor, de t r a n s m i s s i v i t e i t , en de elastische b e r g i n g s ­

koëf fi ciënt a f .

B = r / (r / B ) (m) 5.9

kD = W (u , r/B) (m2/dag) 5.10
4 t ts

4 k n t
S = ----- x u ( d i m ensieloos) 5.11

r2

waarin r, de afstand tussen de pompput en de waarnemingsput (m)

Q, het opgepompte debiet (m3/dag) van de pompproef voor de 

verschillende piëzometers

De resultaten zijn in tabel 5.3 voorgesteld.

Het laatste gedeelte van de tijd-afpompingskurve geeft 

opnieuw een toename van de verlaging te zien om daarna terug min 

of meer konstant te blijven. Dit verschijnsel is waarschijnlijk 

toe te schrijven aan een litologische verandering. Dit bemoeilijkt 

de interpretatie van het laatste gedeelte van de tijd-afpompingskurvei 

Aldus is het niet mogelijk de bergingskoëfficiënt nabij de watertafel 

te bepalen.
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Tabel 5.3 - Hydraulische parameters berekend uit de tijd-afpompings- 

kurve volgens de B0ULTÛN-WALT0N metode voor de bemalings- 

proef 117DB2BP1

Fi 1ter- 
put 
11 7

Straal
r

in m

s
in m in

t W (u ,r / B ) 
min .

1 /u r/B kD
in
m 2/dag

S B
in m

ÛB3F4 10 0,075 72 1 1 0 0,20 222

CO1O<3-*3* 50

DB3F3 10 0,057 3 1 1 0 0,10 292 2 , 4 . 1 0 ' 3 100

DB3F2 10 0,054 3 1 1 0 0,10 300 2 , 6 . 1 0 ” 3 100

DB3F1 10 0, 049 3,5 1 10 0,10 339 3 , 3 .1 0 " 3 100

SB 1 12,5 0,055 6 1 1 0 0,10 302 3 , 2 . 1 0 ” 3 125

SB2 1 6 0,027 550 0,4 200 0,30 246 7,4. 1 0~3 53

DB1F4 20 0,075 20 1 10 0,30 222 3 , 1 .10~3 67

DB1F3 20 0,075 20 1 1 0 0,30 222 3,1.1 O "3 67

DB4F4 25 0, U70 36 1 1 0 0,40 237 3 , 0 . 1 0 " 3 63

DB4F3 25 0,059 32 1 1 0 0,30 282 4 , 0 . 1 0 ” 3 03

DB4F2 •'2 5 0,0315 4,95 1 10 0,075 527 1 ,2 .1 0 * 3 333

DB4F1 25 0,0375 5 1 1 0 0,10 443 1 ,0.1 0 ~ 3 250

DB5F4 50 0,0635 1 05 1 1 0 0,60 262 3 , 1 . 10~ 3 03

DB5F3 50 0,0393 44 1 10 0,30 423 2 , 1 . 1 0 " 3 167

DB5F2 50 0,0335 1 7 1 1 0 0,20 496 0 , 9 . 1 0 ’ 3 250

DB5F1 50 0,0336 20 1 1 0 0,20 495 1 ,1 . 1  o " 3 250

5.2.3.3. Transmissiviteit uit resterende verlagingskurve (beitialings- 

proef 117DB2BP1)(fig. 5.17 tot 5.20)

Men zet de resterende verlaging, s", tegenover de v e r ­

houding (t/t’)uit op s emi logari tmis ch papier. Hierin is t de tijd 

sinds het aanleggen van de pomp en t ’ de tijd sinds het stilleggen 

van de pomp. De resterende verlaging s" wordt uitgezet op de 

aritmische ordinaat, de verhouding t / t ’ op de logaritmische abscis.

De helling As" (in m) van het rechtlijnig gedeelte van 

de kurve wordt bepaald. Hieruit leidt men de transmissiviteit af 

met de volgende formule

kD = ( m 2/ dag ) 5.12

waarin Q, het opgepompte debiet (m3/dag).



De resultaten van de bemalingsproef 117DB2BP1 zijn in 

onderstaande tabel (5.4) weergegeven.

Tabel 5.4 - Transmissiviteit bekomen bij de analyse van de

resterende verlagingskurve bij bemalingsproef 117DB2BP1

Filterput 
117

afstand r 
in m

As" 
in m

kD
in m 2/dag

DB3F4 10 0,1195 320

DB3F3 10 0,0765 500

DB3F2 10 0,0720 531

DB3F1 1 0 0,0715 535

SB1 12,5 0 , 1 1 1 0 345

SB2 16 0,1115 343

DB1F4 20 0 , 1 1 1 0 345

DB1F3 20 0 , 1 1 1 0 345

DB4F4 2 5 0, 1088 351

DB4F3 25 0,1080 354

DB4F2 25 0,0750 510

DB4F1 25 0,0790 484

DB5F4 50 0,1152 332

DB5F3 50 0,1080 354

DB5F2 50 0,0835 458

DB5F1 50 0,0835 458

5.2.4. Bemalingsproef 19 3D37BP1

Bij de bemalingsproef 193DB7BP1 werd gepompt op de put 

193DB7. Put 193DB7 werd gebruikt voor de waarnemingen. Beide zijn 

25 m van elkaar verwijderd. De filter van 193DB7 (diameter 90 mm) 

snijdt het freatisch reservoir over de ganse dikte aan, nl. van 

-1 ,7 tot -27,9.

De put 193DB6 is van vier piëzometers voorzien : de filter 

F1 bevindt zich in heterogene sedimenten (klei, leem, fijn tot 

grof zand), de filter F2 tussen de peilen -15,7 en -16,7, in een 

laag middelmatig zand met schelpgruis en leembrokken, filter F3 

tussen de peilen -9,2 en -10,2 in een laag fijn middelmatig zand 

met een weinig schelpgruis en tenslotte filter F4 tussen de peilen 

-0,2 en - 1 , 2  in middelmatig zand.



De litologische opbouw (fig. 2.10) hier verschilt d u i d e ­

lijk van die waar de pompproef 117DB2BP1 werd uitgevoerd.

Aan de pompput werd een debiet van 12,ö m 3/dag onttrokken 

gedurende 1420 minuten. Het opgepompte water werd op 40 m in de 

tegenovergestelde richting van de waarnemingsput in een gracht g e ­

loosd.

Gedurende de bemalingsproef werd het waterpeil tot op 

1 mm nauwkeurig afgelezen. Na het stilleggen van de pomp werd de 

stijging van het waterpeil in alle piëzometers gevolgd.

De waarden voor de t r a n s m i s s i v i t e i t , kD, de elastische 

bergingskoëfficiënt, S, en de d r a i n e r i n g s f a k t o r , B, vindt men door 

de vergelijking van de tijd-afpompingskurven (fig. 5.21) met 

standaardkurven van WALTON (tab. 5.5).

Tabel 5.5 - Hydraulische parameters uit de tijd-afpompingskurven van 

de bemalingsproef 193DB7BP1 volgens de metode van 

BOULTON-WALTON

P i ë z o ­
meter

Afstand 
r (m)

Verlaging 
s ( m)

Tijd
t

(m i n .)

W ( u , r/B ) 1 /u r/B kD 
i n 

m 2/dag

S
•

1 93

DB6F4 25 0,10 15 0,8 4 0,30 201 3,3. 10" 3

DB6F3 25 0,10 20 0,8 10 0,40 201 1 » 8. 1 0~ 3

DB6F2 25 0,10 20 0,8 10 0,40 201 1 ,8 .1 0 ~ 3

DB6F1 25 0,24 950 1 20 0,30 1 05 2 ,2 .1 0 ” 3

De waarden van de transmissiviteit werden ook bepaald uit 

de resterende verlagingskurven (fig. 5.22) (tabel 5.6).

Tabel 5.6 - Bemalingsproef 193DB7BP1 : transmissiviteit uit de

resterende verlagingskurven

Piëzometer As" kD afstand r
(m) (m2/dag) (m)

193DB6F4 0,152 370 25

193DB6F3 0,165 341 25

193DB6F2 0,165 341 25

193DB6F1 0,345 121 25



De put 117DB15 voorzien van een filter (diameter 90 mm) 

over de ganse dikte van het freatisch reservoir, nl. van + 1 , 2  tot 

-23,3, werd gebruikt als pompput.

In de waarnemingsput 117DB16 bevinden zich vier piëzometers 

filter F1 tussen de peilen -23,2 tot -24,2 bevindt zich middelmatig 

tot grof middelmatige zanden met schelpen en schelpgruis, filter F2, 

tussen de peilen -17,2 tot -16,2, in middelmatig tot fijn m i d d e l ­

matig zand evenals filters F3 en F4, die resp e k tie v e 1i j k voorkomen 

tussen de peilen -8,7 tot -9,7 en -0,7 tot -1,7.

De zone bemalen door 117DB15 ligt niet ver van die van

193DB7. In deze laatste treft men tussen de peilen -17,2 en -27,2 

een klei-leemkomplex aan daar waar ter hoogte van 117DB15 tussen 

die peilen middelmatig tot grof middelmatig zand voorkomt.

Verder werden in die zone nog vier piëzometers geplaatst.

De filter (diameter 60 mm) bevindt zich tussen de peilen -1 en -5.

Deze piëzometers liggen volgens een lijn op 3,6, 12 en 50 m van

de pompput. De evolutie van het waterpeil tengevolge van het aan- en 

stilleggen van de pomp werd in piëzometers gevolgd met z e l f r e g i s t r e ­

rende peilschalen.

Een eerste maal werd gepompt aan een debiet van 13,1 m 3/dag 

gedurende 2820 minuten. De verlaging werd in de piëzometers gemeten. 

Daarna werd de pomp 276 minuten stilgelegd en de stijging genoteerd. 

Een tweede maal werd gepompt gedurende 27 00 minuten en de verlaging 

gemeten. Het opgepompte water werd op 40 m in tegenovergestelde 

richting van de waarnemingsputten in een gracht geloosd.

De eerste tijd-afpompingskurven met uitzondering van die 

van 117SB9F1 vallen nagenoeg samen met één enkele standaardkurve 

(fig. 5.21).

Het was niet mogelijk de tijd-afpompingskurve van de 

piëzometer 117SB6F1 met één van de standaardkurven te laten s a m e n ­

vallen. Ofwel vielen de laatste ofwel de eerste punten op één van 

de standaardkurven terwijl de andere punten er telkens sterk van af­

weken. Hieruit mag men besluiten dat de tijd-afpompingskurve uit twee 

standaardkurven bestaat. De transmissiviteit, de elastische bergings- 

koëfficiënt en de draineringsfaktor werden telkens bepaald uit het 

samenvallend eerste deel van de tijd-afpompingskurve met een s t a n ­

daardkurve en uit het tweede deel met een andere standaardkurve 

(tabel 5.7).

5 . 2 . 5 .  BEMALINGSPROEF 117DB15BP1
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Tabel 5.7 - Hydraulische parameters uit de tijd-afpompingskurve 

van de berna 1ingsproef 117DB15BP1 volgens de metode 

van BOULTON-WALTON

Piëzo-
meter

A f ­
stand 
r (m)

V e r ­
laging 
s ( m)

Tijd
t

(m i n .)

W ( u ,r / B ) 1 /u r/B KD 
in 

m /dag

S B
in m

117
SB5F1 3 0, 9 21 8 2 . 1 0 3 0,015 223 0,7x10" 3 200

SB6F1
(1 ste) 6 0,55 40 4 3 . 1 O2 0,10 183 2 x 1 0 " 3 60

(2de) 6 0.1 900 1 2 . 10lf 0,025 251 0, 9 x 1 0~ 3 240

SB7F1 12 0.34 200 3
2

3.10 0,075 221 2 , 8x 1 0~ 3 160

0B16F4 25 0.46 200 6 1 . 1 O2 0,075 327 2 ,9x1 o" 3 333

D B 16 F 3 25 0. 06 90 0,8 8.1 0 * 0,1 334 1 ,7x10" 3 250

DB16F2 25 0. 148 65 2 6,5 . 1 0 1 0,075 338 1 ,0x 1 O" 3 333

DB16F1 25 0. 05 30 0,8 3 . 1 0 1 0,1 397 0,9x1o" 3 250

SB8F1 50 0,15 120 2 2 . 1 01 0,20 335 2 .2 x 1 0“ 3 250

resterende 

KD bepaald

Tabel 5.8

Uit de helling As" van het rechtlijnige gedeelte van de 

verlagingsKurven (fig. 5.24) werd de transmissiviteit

•

- Transmissiviteit uit de resterende verlaging van de 

bemalingsproef 117DB15BP1

Filterput A s ” KD r
11 7 in m in m 2/dag in m

SB5 0.248 233 3

S B6 0,247 234 6
SB7 0,247 2 34 12
DB16F4 0,178 325 25

DB16F3 0, 172 336 25

DB16F2 0,157 368 25

DB16F1 0,117 494 25

S B8 0, 139 415 50



5.2.6. HYDRAULISCHE PARAMETERS UIT DE TWEEDE REEKS TIJD-APPOMPIWGS- 

KURVEN 117D316BF2 (fig. 5.25)

De pomp werd voor een tweede maal aangelegd gedurende 

2700 minuten. De verlaging werd opgetekend door een ze 1f régi s t r e - 

rende peilschrijver op de piëzometers 117SB5F1, 117SB6F1, 117SB7F1 

en 117SB8F1 op respektievelijk 3, 6, 12 en 50 m van de pompput.

De tijd-afpompingskurven verschillen van die van de eerste b e m a l i n g s ­

proef : ze bestaan elk uit twee verschillende standaardkurven. De 

transmissiviteit, de elastische bergingskoëfficiënt en de drainerings- 

faktor werden hier telkens bepaald uit het samenvallend eerste deel 

van de tijd-afpompingskurve met een standaardkurva an uit het tweede 

deel met een andere standaardkurve (tabel 5.9).

Tabel 5.9 - Hydraulische parameters uit de tijd-afpompingskurve van 

de bemalingsproef 117DB15BP2 volgens de metode van 

BOULTON-WALTON

Filter- Straal s
put r (m) in m
11 7

t W (u ,r / B ) 1 /u
in min.

r/B kD 
i n
m 2/dag

B
in m

SB5
(1 ste)
(2de)

S B6
(1 ste)
(2de)

3

3

6
6

1 , 08 20 8 1x 1 0 3 0 , 050

0, 90 1000 8 6 x 1 0 3 0, 010

0,485 21,8 4 2x102 o , 10

1 , 08 700 10 2 x 1 0 3 0, 025

186 1 ,1 .1 0~3 60 

223 11 , 5.1 O ” 3300

207 1 , 7 . 1 0~3 60

232 3, 1.10 _ 3240

SB7
(1 ste)
(2de)

12
12

0,36

0,70

44

460

3 1x102 0,20

6 4 x1O2 0, 050

209 1,8.10” 3 60

215 4 , 8 . 1 0 _3240

S B8
(1 ste)
( 2 d e )

50

5 0

0,075

0 , 1 8 0

60

2 1 0

,'3,1 8 0,60 335 2,8.10 J62,!

2 8 0,30 279 8 . 1  O " 3 1 67



Uit de pompproeven leidt men af dat de waarde van de 

permeabiliteit van de middelmatig tot fijn middelmatige zanden 

varieert tussen de 9 è 12 m/dag. De permeabiliteit van de grof 

middelmatige zanden schommelt tussen 14 en 18 m/dag.

Uit de pompproeven blijkt dat zowel in de piëzometers 

in de grof- als in die van de fijnkorrelige laag de transmissivi- 

teit toeneemt met de afstand van de pompput. Men stelt eveneens 

vast dat de elastische bergingskoëfficiënt afneemt met de afstand 

van de pompput.

De draineringsfaktor schommelt meestal tussen 160 en 

330 m. Twee kort opeenvolgende bemalingsproeven op dezelfde p o m p ­

put gaven een opmerkelijk resultaat. De draineringsfaktor bepaald 

uit het eerste gedeelte van de tweede tijd-afpompingskurve leverde 

een waarde van 60 m op. Het tweede gedeelte van dezelfde kurve wees 

op een waarde zoals gevonden uit de eerste bemalingsproef.

Dit zou aanwijzen dat aanvankelijk de drainering trager 

verliep dan in de eerste bemalingsproef. Men kan dat toeschrijven 

aan hystérésis. Tijdens de eerste bemalingsproef is de afpompings- 

trechter slechts gedeeltelijk ontwaterd, zodat bij het stilleggen 

van de pomp de stijghoogte vrij vlug de ruststand weer bereikt. De 

verzadiging van de poriën gebeurt echter niet even snel zodat twee 

dagen na het stilleggen van de pomp niet alle poriën volledig met 

water gevuld zijn. Bij de tweede bemalingsproef kan bijgevolg niet 

evenveel water uit de opnieuw gevormde pomptrechter gedraineerd 

worden, waardoor de drainering schijnbaar trager geschiedt en een 

kleinere 8-waarde oplevert.

5 ,3 , Flu k t u a t ie s  van het w a te r p e il  onder in vlo ed  van de g e tijw e r k in g

5.3.1. WAARNEMINGEN

Tijdens de bemalingsproef 117DB2BP1 werd voor het eerst 

vastgesteld dat onder invloed van de getijwerking het waterpeil 

fluktueert.

In juli 1975 werd in 40 piëzometers de stand van het 

waterpeil om het uur opgemeten. Figuur 5.28 geeft de ligging aan 

waarin de fluktuaties opgemeten werden, hierop wordt ook de ver- 

tragingsfaktor a vermeld en desgevallend de amplitude A. De p i ë ­

zometers waarin de schommelingen werden waargenomen liggen niet 

noodzakelijk het dichtst bij de zee. In de noordelijke panne en op

5.2.7. BESLUITEN
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het noordflank van de centrale duinrug meet men de grootste fluktu- 

aties. Het is hier dat het piëzometrisch vlak het laagst ligt 

(fig. 6.4 tot 6.31). In de piëzometer op de duinreep en in de wind- 

geulen nabij de zee meet men geen schommelingen.

Ten einde het verschijnsel nader te bestuderen werden 

er vier piëzometers in een lijn geplaatst : 117DB10F1, 117DB2F1, 

117DB9F1, op r e s p ektievelij k 360 m, 635 m, 600 m van de piëzometer 

117DB 1 2 F 1 , die het dichtst bij de zee gelegen is. Deze piëzometers 

zijn voorzien van bronbuizen en filters van grote diameter. De 

filters werden aangebracht in de middelmatige tot grof middelmatige 

zanden met schelpen en schelpgruis (fig. 3.13) en geheel of g e d e e l ­

telijk in de middelmatige tot fijn middelmatige zandafzettingen 

(fig. 3.15). De p e i 1veranderingen werden gelijktijdig opgetekend 

door een zelfregistrerende p e i 1 s c h r i j v e r .

De peilschommelingen werden ook gevolgd in twee piëzometers 

ter hoogte van de piëzometer 117DB10F1. De filter van deze laatste 

bevindt zich tussen de peilen -11 en -25 in de middelmatige tot grof 

middelmatige zanden met schelpen en schelpgruis en in het onderste 

gedeelte van de middelmatige tot fijn middelmatige afzettingen. De 

filter van piëzometer 117DB11F1 strekt zich uit tussen de peilen 

-5 en -7,5 in het leemhoudend fijn zand (4.4). De filter van 117SB4F1 

bevindt zich tussen de peilen +2 en - 2 in de middelmatig tot fijn 

middelmatige zanden boven de leemhoudende fijne zanden.

5*3.2» HYDRAULISCHE PRINCIPES

Uit het sedimentologische onderzoek is gebleken dat het 

freatisch reservoir sterk gestratifieerd is. Vereenvoudigd kan men 

deze voorstellen als bestaande uit een grofkorrelige afzetting op 

een ondoorlatend substraat. Boven de grofkorrelige afzetting treft 

men een fijnkorrelige afzetting aan, waarin leemhoudende fijne 

zanden kunnen voorkomen (fig. 5.26).

Bij een lange rechte kustlijn, zoals in het studiegebied 

het geval is, kan men één koördinaatrichting evenwijdig met de k u s t ­

lijn kiezen (de y-richting) zodat de stroming tengevolge van de 

getijwerking in de y-richting te verwaarlozen is.

Als de vertikale verliezen in energie in de grofkorrelige 

afzetting te verwaarlozen zijn en tevens de horizontale stromingen 

in de fijnkorrelige afzetting tengevolge van de getijwerking kan men 

stellen dat :
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kv
k h n ^  =  — f 'V - f  ) 5 132 2 âT? S 8t D 1 (Ÿ2 V  5 *13

waarin S, de elastische bergingskoëfficiënt is

x, de koordinaat loodrecht op de kustlijn 

t, de tijd

de andere symbolen worden weergegeven in fig. 5.26.

De bovenstaande formule houdt geen rekening met de 

elasticiteit noch met het principe van de vertraagde afgifte.

De oplossing van deze differentiaal vergelijking kan 

als volgt worden voorgesteld.

= Ÿ2 x B 0 .e a X . sin(ü). t-b) x) 5.14

» 0 x
Ÿ ̂  = '*'ix - Q ,e . sin ( u. t-b . x-<x ) 5.15

n = o n * e 6X •s i n (w . t - b .x - B ) 5.16

' ix -O '  '*,2x = 0 ‘ C0S “ 5 - 17

q 0 '  Ÿ2 x = Q . / S . u . K 2 D2 * c o s  a 5 . 1 B

waarin y ̂  , stijghoogte in de fijnkorrelige afzetting nabij de 

watertafel

» stijghoogte in de grofkorrelige afzetting,

q, horizontale stroming in de grofkorrelige afzetting over 

een breedte van de watervoerende laag gelijk aan de 

lengte-eenheid.

Uit bovenstaande formules vclgt dat de amplitude van de 

s tijghoogtefluktuatie in de grofkorrelige afzetting exponentieel 

afneemt met de afstand van de zee. De horizontale d e m p i n g s f aktor,

a, kan men bepalen uit de waarnemingen van de piëzometers 117D812F1, 

117DB10F1, 117DB2F1 en 117DB9F1. Ook de tijdsvertragingsfaktor b

kan men afleiden uit de opeenvolgende f a z e v e r s c h i 1 len in de stijg- 

hoogtefluktuaties in deze piëzometers.

De stijghoogtefluktuatie in de fijnkorrelige afzetting 

nabij de watertafel is kleiner dan die in de grofkorrelige a f z e t ­

ting. De vertikale dempingsfaktor is gelijk aan cos a; tevens is 

er een fazevertraging a tussen deze twee.



De horizontale stroming in de grofkorrelige laag gebeurt 

volgens een sinusfunktie. Dit betekent dat in ieder doorsnede van 

de grofkorrelige laag de waterbeweging afwisselend zee- en landwaarts 

gericht is. zodat de resulterende stroming nul is. Is er een n a ­

tuurlijke stroming in het gebied aanwezig, zoals de zoetwaterbewe- 

ging van de duinen naar de zee, dan wordt deze uiteindelijk door

die beweging op langere termijn niet beïnvloed.

Het verband tussen de hydraulische parameters van de

watervoerende laag (^2 ^2 ' k 1̂ *"*1 ̂  en ^ a ^^o r e n ' ^ie c*8 v o o r t ­
planting van de fluktuaties bepalen, kunnen uit de bovenstaande 

formulen afgeleid worden (J.H. STEGGEWENTZ, 1933; J.H. EDELMAN,

1972; G.S. VAN DER KAMP, 1973).

Deze verbanden zijn

S / k 2D2 = (a2 + b2 )2/2wab 5.19

S . D V k !  = (a2 + _b2 ) /2ü)ab 5.201 1

k2D2 ’D 1 / k 1 " (a2 " fa2)/(a2 + b 2 ) 2 5 - 2 1

k 1 / D 1 9
t g (- 2 3) = co t g ( + a ) = -i-- = — ----  5.22

S,ü> a 2-b 2

5.3.3. VERWERKING VAN DE WAARNEMINGEN

De periode van de getijden bedraagt ongeveer 12u30. Daarom 

werd gedurende een tijdspanne van 25 uur tweemaal eb en tweemaal 

vloed waargenomen. Om het uur werd het waterpeil afgeleid uit de 

hydrografische registraties (tabel 5.10). De waterpeilen zijn 

dus h(t) voor t = 1 tot 25. De gevonden waarden werden aan een

FOURIER-analyse onderworpen waarbij de amplitude en de fazeverschui-

ving berekend werden van de acht eerste harmonische funkties.

De FOURIER-analyse leidt tot de volgende funktie :

2 5  h f f l  8
f(t) = £ + E p ( i ) sin ( w. i ♦ F ( i ) ) 5.23

t=i 25 i-i

waarin p(i) : amplitude van de i-de.harmonische

F(i) : de fazeverschuiving van de i-de harmonische

De amplitude en de fazeverschuiving van ieder harmonische 

werden uit de volgende formules afgeleid.



Ali) = J e- E h ( t ) . c o s ~ | ^  5.24
t= 1 
25

B ( i ) = —  Z h ( t ) . c o s ^ p -  5.26
4. -1 “t = 1

p ( i ) = /A2 ( i ) + B 2 ( i ) 5.26

25

F ( i ) = arctan 5.27

Tabel 5.10 - Waterpeilen in de piëzometers 117DB12F1, 117DB10F1, 

117DB2F1, 117 D B 9 F 1 , 117DB11F1 en 117SB4F1 (x=0 uur)

is ;gelijk aan 1 8u35 op 27. 10.76

X
(uur)

117DB12F1 117DB10F1 117DB2F1 117DB9F1 1 1 7DB11F1 1 1 7SB4F1

0 0 0,896 0,496 0, 360 0,620 0, 744
1 -0,364 0, 736 0, 492 0, 362 0, 603 0,744
2 -0,664 0,672 0,478 0,360 0,583 0, 736
3 -0,894 0,560 0,442 0,349 0,564 0,731
4 -1,036 0,470 0,412 à,331 0, 547 0, 726
5 -1,065 0,422 0,386 0,309 0,533 0,721
6 -0,974 0,404 0,368 0,300 0, 528 0, 71 7
7 -0,720 0,422 0, 359 0, 293 0,528 0,715
8 +0,232 0,584 0,361 0,294 0,548 0, 722
9 +0,780 0, 796 0,395 0,299 0,580 0,725

10 +0,780 0,912 0,437 0,320 0, 600 0,731
1 1 +0,616 0,936 0,463 0,340 0,608 0, 735
12 +0,255 0,896 0,478 0,350 0,607 0, 735
13 -0,098 0, 802 0,478 0,352 0,600 0,734
14 -0,414 0,684 0,471 0, 350 0,583 0,734
15 -0,672 0,580 0,442 0,348 0,566 0,731
16 -0,874 0,488 0,416 0, 330 0,548 0,724
1 7 -1,005 0,432 0,387 0,316 0,533 0,721
18 -1,042 0,400 0,368 0,300 0,526 0, 717
19 -0,925 0,400 0,351 0,288 0, 522 0,715
20 -0,480 0,500 0, 348 0,284 0,540 0,716
21 +0,580 0, 694 0,375 0,264 0,561 0,722
22 +0,825 0,858 0,411 0, 302 0,589 0, 727
23 +0,780 0,920 0,452 0,326 0, 602 0,732
24 +0,520 0,920 0,468 0, 340 0, 608 0, 732

De resultaten van de FOURIE^-analyse werden in o n d e r ­
staande tabel 5.11 en in fig. 5.27 voorgesteld.
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Tabel 5 . 1 1 . “ Resultaten van de F O U R I E R - a n a l y s e , de amplitude p(i) 

en de fazeverschuiving van de eerste acht harmonische

Piëzometer i = 1 i =2 i = 3

<3-II•H

p ( i ) 117DB12F1 0, 0287 0 , 936 0,0462 0,236

a m p l i ­ 1 17DB10F1 0,0124 0,273 0,00947 0,0395

tude 1 17DB2F1 0,00718 0,0672 0,00210 0, 00407

in 117DB9F1 0,00483 0,0362 0,00251 0,00166

m 1 1 7DB11F1 0,00389 0,0437 0,00194 0,00340

117SB4F1 0,00217 0 , 0 1 1 2 0,00141 0,000570

Piëzometer i a 5 i = 6 i = 7 i =8

p ( i ) 1 1 7DB12F1 0,0182 0,0825 0,00347 0,0637

a m p l i ­ 117DB10F1 0,00516 0,0176 0,000468 0,8835

tude 117 D B 2 F 1 0,00186 0,00401 0,000757 0,00109

in 117DB9F1 0,000754 0,00203 0,001090 0,000519

m 117DB11F1 0,00182 0,00263 0,000476 0,00153

117SB4F1 0,000995 0,00117 0,00133 0,000236

*
Piëzometer i = 1 i = 2 i-3 i *4

F ( i ) * 117DB12F1 4,2500 2 , 1 0 0 1 1,9414 3,5498

Ftize 1 17DB10F1 0,7787 1,6091 -0,5277 2 , 9388

verschui - 1 1 7 D B 2 F 1 0,4314 0,8562 -0,3229 1 , 9235

1 ving 117DB9F1 0,0023 0,5374 -0,0852 1,6256

in 1 1 7 D B 1 1 F 1 0,6488 1,3545 -0,351 2,9562

r a d . 1 17SB4F1 0,5954 0,9388 -0,1128 4 , 3759

Piëzometer i = 5 i = 6 i = 7 i -8
X

F ( i ) 1 17DB12F1 2,9373 -0,7948 4, 5333 1 ,2307

Faze 117DB10F1 -0,4436 -1 , 2824 1 ,2754 0,3237

verschui - 117DB2F1 -1 ,2105 -2,2738 -01816 -1,3798

ving 1 17DB9F1 -1,8879 -3,9859 -0, 9459 -1,8140

in 117 D B 1 1 F 1 -0,0264 -1,0967 -0,1259 -0,5270

r a d . 1 1 7 S B 4 F 1 -0,4200 -1,1542 -1 ,1304 -2,3513

%
F C i 3 is slechts één oplossing; alle mogelijke oplossingen kunnen 

alsvolgt geformuleerd worden F(i)+ 2irk waarbij k = 0, 1., 2, .....  °°



5.3.4. HYDRAULISCHE PARAMETERS AFGELEID UIT DE STIJGHOOGTFFLUKTUATIES 

IN DE GROFKORRELIGE AFZETTINGEN

Uit tabel 5.11 blijkt dat de tweede en vierde harmonische 

de grootste amplituden vertonen. Uit hun amplituden en fazeverschil- 

len leidt men telkens de dempingsfaktor a en de tijdsvertragings- 

faktor b af tussen twee opeenvolgende piëzometers en ook tussen de 

dichtste en de verste verwijderde piëzometer van de kustlijn 

[tabBl 5.12).

Tabel 5.12 - De dempingsfaktor a en de tijdsvertragingsfaktor b 

afgeleid uit de tweede en vierde harmonische van de 

stijghoogtsfluktuaties in de vier opeenvolgende 

piëzometers geplaatst in de grofkorre lige afzettingen

Tussen de piëzometers Af- Periode 12u30 Periode 6u15
stand
tussen
piëzo- a b a b
meter

117DB12-117 D B 1 0 360 m 3,4. 10~ 3 1, 4 . 10" 3 5 , 0 . 1 0 ~ 3 1 , 7 . 1 0~ 3

117DB10-117D92 275 m 5 , 1 . 1 0 ~ 3 2 ,7. 1 0 " 3 8,3. 10" 3 3,7.1 O" 3

11 7 D B 2 - 117DB9 165 m 3 , 7 . 1 0 " 3 1 , 9 . 10~ 3 5 , 4 . 10" 3 1 ,8. 10 3

117 D B 1 2 - 1 1 7DB9 eoo m 4 , 1 .10" 3 2 ,0.1 0 ~ 3 6,2 .1 0~ 3 2,4.10 3

Aan de hand van formules 5.19, 5.20 en 5.21 leidt men 

volgende verhouding af tussen de hydraulische parameters (tabel 5.13).

Tabel 5.13 - Verhoudingen S/k^D^, S.D^/k^, k^D^-D^/k^ afgeleid uit

de dempingsfaktor a en de tijdsvertragingsfaktor b van 

de stijghoogtefkultuaties in de grofkorrelige afzettingen

Tussen de p i ë z o ­
meters

Periode S / K ! >2 S. D./kV 1 1 K2D2 -D 1 / k ï

1 17DB12-117DB10 1 2u30 1 , 5 9 . 1 0~6 4 , 1 8 . 1 0"2 2,63. 1 0 14
1 17DB10-117DB2 3 , 3 4 . 10" 6 5 , 6 3 . 1 0 ~ 2 1,69.10*

1 1 7 D B 2 - 117DB9 1 , 7 6.10~ 6 5 , 9 4 . 1 0 "2 3,37. 10,f

1 1 7 D B 1 2 - 1 1 7DB9 2 , 1 9 . 1 0 " 6 6 , 4 7 . 1 0 "2 2 ,96.10*

1 1 7DB12 - 1 1 7 D B 1 0 6u1 5 1 ,90.10’ 6 5 , 3 7 . 10~2 2,64.10*

117DB10-117DB2 4 , 6 0 . 10"6 3 , 7 2 . 10"2 0,81.10*

11 7 D B 2 - 1 1 7DB9 2,24. 1 0~6 5 , 5 3 . 1 0 "2 2,47.10*

117ÜB12-117DB9 2 , 7 2 . 1 0 ” 6 4 , 5 5 . 1 O "2 1,67.10*



5.3.5. HYDRAULISCHE PARAMETERS BEPAALD UIT DE STIJGHOOGTEFLUKTUATIES 

IÜ DE FIJNKORRELIGE AFZETTINGEN

De stijghoogtefluktuaties zijn minder groot in de f i j n k o r ­

relige afzettingen dan in de grofkorrelige. Tevens vertonen ze een 

f a z e v e r s c h i 1 .

Ter hoogte van piëzometer 117DB10F1 in de grofkorrelige 

afzettingen werd de piëzometer 117DB11F1 in de lsemhoudende fijne 

zanden (5.4) geplaatst. Op een nog hoger niveau, in de middelmatige 

tot fijn middelmatige zanden (4 en 5.3), werd de piëzometer 117SB4F1 

geplaatst.

Uit tabel 5.11 leidt men af dat de amplitude van de tweede 

harmonische van de waterpeilfluktuaties in piëzometer 117SB4F1 de 

enige bstekenisvolle is. Door vergelijking van deze amplitude met 

die van de tweede harmonische van de waterpielfluktuatie van p i ë z o ­

meter 117DB10F1 kan men de faktor, cos a, afleiden.

Ÿ (2)117SB4 0,0112 n „„„„ r „ D
cos “ ' f ü n Ï T Ó &T o ‘ ° - 0410 5 ' 28

Hieruit volgt dat

cotga * 0,0411 = —5---   * 1/S . o). ( D / k ”) 5.290(4)
K 1 / n i „v.

Uit de analyse van de stijghoogtefluktuaties in de g r o f ­

korrelige afzettingen werd een hydraulische weerstand van 60 dagen 

vastgesteld. Uit bovenstaande vergelijking leiden we een bergings- 

koëfficiënt S af gelijk aan 0,034.

De fazeverschuiving van de tweede harmonische van de 

w aterpeilfluktuaties in piëzometers 117SB4F1 t.o.v. piëzometer 

117DB10F1 bedraagt 0,6703 rad.

Hieruit volgt 

k 1 / D 1
co tg 0, 6703 = — --- - = 1/60.12, 06 .S = 1,2614 5.30

Sb)

S = 1, 1 .10~ 3 5.31

Deze vertikale fazeverschuiving zou overeenkomen met een 

vertikale demping van de amplitude gelijk aan cos a - cos 0,6703 =

0,7836.



Uit de pompproef 117DB2BP1 blijkt dat in het gebied 

onderhevig aan fluktuaties de transmissiviteit 500 m 2/dag bedraagt. 

Neemt men aan dat de transmissiviteit konstant blijft tussen de 

putten 117DB2 en 117DB9 dan kan men uit tabel 5.13 de waarden 

voor de bergingskoëfficiënt S en de hydraulische weerstand D^/k^ 

van de fijnkorrelige laag bepalen (tabel 5.14).

Tabel 5.14 - De bergingskoëfficiënt S en de hydraulische weerstand 

D ^ / k^ van de fijnkorrelige laag bepaald uit de v o o r t ­

planting van de hydraulische peilfluktuaties in de 

grofkorrelige afzettingen

S bepaald met 
nische met

= 12u30

de harmo- 
periode

= 6 u 1 5

D^/k^ bepaald met de h a r ­
monische met p e r i o ­
de in dagen 

= 12u30 = 6 u 15

117DB12-117DB10 0 , 8 0 x 1 0 ~ 3 0, 9 5 x 1 0 " 3 52,6 56,8

1 17DB10-117DB2 1 , 6 7 x 1 0 " 3 2,30x1 O ”3 33,8 16,2

117DB2-117DB9 0,88x 1 0 " 3 1 ,1 2x 1 0~ 3 67,4 49,4

1 17DB12-117DB9 1 , 1 0x 10 3 1 , 3 6 x1 0 ” 3 59,2 33,4

De bergingskoëfficiënt S die met deze werkwijze afgeleid

wordt is zeer klein. Deze bedraagt gemiddeld 1x10 3 . Waar de leem­

houdende fijne zanden ontbreken heeft hij een waarde van 2 x 10 3 .

De hydraulische weerstand D^/k^ is in het gebied, waar 

de leemhoudende fijne zanden voorkomen, gelijk aan 60 dagen, in het 

gebied w a ar de leemhoudende fijne zanden ontbreken is de h y d r a u ­

lische weerstand gereduceerd tot 20 dagen. De hydraulische weerstand 

van de leemhoudende laag is echter veel groter. Dit kan verklaard 

worden door het feit dat bij het opstellen van de formule de e l a s ­

ticiteit van het water en de watervoerende laag verwaarloosd werd. 

Tevens werd geen rekening gehouden met het feit van de vertraagde 

afgifte of dat de bergingskoëfficiënt nabij de watertafel afhankelijk 

is van de snelheid van het dalen of het stijgen van het hydraulisch 

peil nabij de watertafel.



5.3.6. BESLUITEN UIT DE STIJGHOOGTEFLUKTUATIES ONDER INVLOED VAN DE 

GETIJWERKING

Uit de horizontale dempingsfaktor en de tij dvertragings- 

faktor die de stijghoogtefluktuaties in de grofkorrelige afzettingen 

beschrijven kan men berekenen dat de bergingskoëfficiënt S 1.10 3 
bedraagt en de hydraulische weerstand van 60 dagen indien men aanneemt 

dat voor die laag de transmissiviteit gelijk is aan 500 m 2/dag.

Waar het leemhoudend fijn zand niet voorkomt bedraagt de 

hydraulische weerstand 20 dagen en de bergingskoëfficiënt S 2.10 3 . 

Deze laatste waarde stemt goed overeen met deze bepaald door de 

pompproef 1170B2BP1.

Uit de fazeverschuiving van de stijghoogtefluktuaties 

nabij de watertafel in de fijnkorrelige afzetting leidt men analoge 

resultaten af. De dempingsfaktor, cosa, van de stijghoogtefluktuaties 

nabij de watertafel in de fijnkorrelige afzetting wijst op een veel 

grotere bergingskoëfficiënt nabij de watertafel S ( = 0,034).

De piëzometers in het gebied waar de grondwatertafel een 

geringe stijghoogte heeft, vertonen een kleine vertikale vertragings- 

faktor a (fig. 5.28). Deze geringe vertikale vertragingsfaktor a 

wijst op een geringe hydraulische weerstand van de fijnkorrelige 

afzetting. Dit is waarschijnlijk te wijten aan het ontbreken van de 

leemhoudende fijn zandlens (5.4) in dit gebied.



6, HYDROGEOLOGIE

In de huidige ontwikkeling van het hydrogeologisch 

onderzoek neemt de komputer een steeds grotere plaats in. Als 

experimentele wetenschap steunt de hydrologie op een zo ruim m o g e ­

lijke reeks waarnemingen. Met de komputer kunnen matematische m o d e l ­

len opgesteld worden, waarin de hydrometeorologische veranderlijken, 

zoals neerslag, temperatuur, luchtvochtigheid, windsnelheid en 

straling evenals de hydrogeologische gegevens, als de vertikale en 

de horizontale permeabiliteit, de berging, de winning of de lozing 

van water en de stijghoogtekonfiguratie op een bepaald ogenblik 

als onafhankelijke veranderlijken ingevoerd worden (i n p u t - g e g e v e n s ). 

De ondergrondse in- en/of uitvloei samen met de stijghoogte op de 

verschillende diepten en plaatsen worden als afhankelijke v e r a n d e r ­

lijken berekend (output).

Wanneer de berekende output overeenstemt met de w a a r n e ­

mingen, kan het model als bruikbaar beschouwd worden. Men kan immers 

de hydrometeorologische gegevens van een lange waarnemingsperiode 

aanwenden om lange output- reeksen te berekenen. Men kan ook k u n stma­

tige ingrepen simuleren.

Het hydrogeologische systeem van het studiegebied wordt 

hier in twee subsystemen onderverdeeld. In het eerste subsysteem 

worden de hydrometeorologische veranderlijken en enkele bodemkarak- 

teristieken als onafhankelijke veranderlijken ingevoerd. De a f h a n ­

kelijke veranderlijke van het eerste subsysteem, nl. de aanvulling 

van het freatische reservoir door infiltratie, wordt samen met de 

hydrogeologische gegevens als de onafhankelijke veranderlijken in 

het tweede subsysteem gevoerd.

In het eerste subsysteem werd de metode van PENMAN aan­

gewend om de potentiële evapotranspiratie te bepalen. Daarna wordt 

de balans van de waterhuishouding van de onverzadigde zone berekend. 

In het tweede subsysteem werd op grond van de wet van DARCY en de 

wet van kontinuïteit een waterbalans van de verzadigde zone berekend 

(fig. 6.1 ).

S . l ,  .HET EERSTE SUBSYSTEEM : DE WATERHUISHOUDING VAM DE ONVERZADIGDE 

ZONE

In het eerste subsysteem worden de hydrometeorologische 

gegevens en enkele bodemkarakteristieken als onafhankelijkelijke 

veranderlijken ingevoerd. In eerste instantie wordt de potentiële



evapotranspiratie volgens de PEINMAN-metode berekend. De afhankelijke 

veranderlijken zijn de werkelijke evapotranspiratie, de berging 

van de bodem, het deficit en de aanvulling van het grondwater. Deze 

laatste worden in een balans van de waterhuishouding van de onver- 

zadigde zone berekend.

6.1.1. DE POTENTIELE EVAPOTRANSPIRATIE VOLGENS PENMAN

De evaporatie van een wateroppervlak t.o.v. de atmosfeer 

wordt berekend door middel van een energiebalans. De energie a a n g e ­

voerd op een horizontaal vlak wordt op verschillende wijzen omgezet, 

namelijk door absorptie, door terugkaatsing, door opwarming van 

de atmosfeer (konduktie en konvektie) en door evaporatie (latente 

verdampingswarmte) .

De nettostraling R = R (1-a ) - R, 6.1n c s b

waarin R , globale inkomende straling op het oppervlak c
a , albedo van het oppervlak : fraktie van de inkomende s

straling die teruggekaatst wordt 

R fa, tegenstraling (kort- en l a n g g o 1v i g e ).

De nettostralingsenergie wordt verder verbruikt

R = S + A + R + R + R . + L.E 6.2n s p i

de termische energie uitwisseling met de bodem, 

de termische energie uitwisseling met de atmosfeer, 

de warmte in de watermassa opgeslagen, 

de energie van de fotosynthese,

de energie die in de watermassa komt of uit de w a t e r ­

massa verdwijnt door het in- of uitvloeien van een 

volume water zoals in het geval van een meer

de energie verbruikt door de verdamping (positief) of

de energie die vrijkomt bij kondensatie (negatief) 

waarin L, de latente verdampingswarmte en E de e v a p o ­

ratie (f i g • 8.2 ).

waarin S, 

A,

L.E,

Deze berekeningen werden uitgevoerd door Dr. C. VERNEMMEN
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Voor een open wateroppervlak wordt na weglating van de

te verwaarlozen termen R , R . R.s p 1

R (1-a ) - R, = S + A + L.E 6.3
e s  b

S is eveneens te verwaarlozen na een voldoende lage periode zodat

R = A + L.E 6.4
n

De BOWEIMverhouding 3 is de verhouding tussen de energie 

nodig voor de evaporatie en de energie nodig voor de opwarming van 

de atmosfeer :

r A . K c v V T2
L.E d e r e2

waarin T en de temperaturen op de hoogten, z^ en z ^ ,  boven

het wateroppervlak gemeten,

e^ en e^> de dampdrukken op de hoogten, z^ en z0 , boven het

wateroppervlak gemeten,

K. en K ,, de turbulente diffusiekoëfficiënt r e s p e k t i e v e l i j k c d
voor het warmtetransport en voor het waterdamp- 

t r a n s p o r t , 

y, de psychrometrische konstante is.

Hen neemt aan dat de turbulente diffusiekoëfficiënten 

gelijk zijn ni. K = K . Verder wordt geen onoerscheid gemaakt
O U

tussen de dunne laminaire grenslaag en de turbulente laag erboven 

voor wat betreft de diffusieprocessen in een normale atmosfeer. 

Stelt men T^ = T ^ , oppervlaktetemperatuur van het water,

= T , temperatuur in de termometerhut,

81 = ew s ’ dampdruk aan het wateroppervlak, aangenomen als 

de verzadigde dampdruk bij de o p p e r v l a k t e ­

temperatuur T s> 

e^ = e, dampdruk van de atmosfeer in de termometerhut.

Men heeft dus

T -T
= y . ■s-- 6.6L.E 1 e -e ws



Anderzijds geeft de wet van DALTON de verdamping, E, 

boven een wateroppervlak :

E - Ce - a ) .f(V) 6.7ws

waarin f(V) een funktie is van de windsnelheid.

De term T g is zeer moeilijk te meten en daardoor is de 

t8rm ews moeilijk te bepalen» daarom tracht men deze term te 

e l i m i n e r e n .

Het evaporatievermogen van de lucht E is de hoeveelheid0
water die een wateroppervlak zou verdampen indien de temperatuur 

gelijk is aan de temperatuur van de lucht

E = (e -e).f(V) 6.8a w

waarin e ^ ,  de maximale waterdampdruk is bij de heersende lucht­

temperatuur.

Uit de betrekking (PENMAN, 1952) voor de potentiële 

evapotranspiratie

PET = (e .-e).f(V).S.D. 6.9s t

en 6.7 volgt de verhouding

£ 4 1  . f j L L l  . S.D. 6.10
F e - e c ws

De verhoudingsfaktor tussen de potentiële e v a p o t r a n s p i ­

ratie en de evaporatie boven een wateroppervlak is dus funktie 

van drie faktoren
B a*-e

1 De dampdrukfaktor e - e ws

waarin e ^  de verzadigde dampdruk is bij de heersende t e m p e r a ­

tuur van een blad van het vegetatiedek

2° De stomale faktor, S = L /(L +L ) 6.11s a s

waarin L de effektieve lengte van de atmosfeer is (weerstand 0
van de atmosfeer t.o.v. diffusie). Ze wordt, berekend 

aan de hand van volgende formule :

L = 0 , 6 5 / ( l+V /100) 6.12a 2
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waarin de windsnelheid op 2 m hoogte [in mijlen/dag),

L +L , de effektieve lengte van een bladoppervlak, 
a s

L , een faktor afhankelijk van het percent van de s
bladoppervlakte ingenornen door huidmondjes van het 

aantal stomata per m m 2 en van de dikte van de 

e p i d e r m i s .

Bij de berekening wordt aangenomen dat L̂ , = 0,16.

3° De daglengtefaktor D die ingevoerd Is om rekening te houden met

het gedeelte van de dag dat de huidmondjes toe zijn. D is a f ­

hankelijk van de duur van de belichting, van de droogte van de

atmosfeer en van de temperatuursvariaties tijdens de dag

N . 1 fT MAx"T riIN, , nD = --r ♦ -rr l --7----- ) . sin Ntt/24 6.13
24 2 T - T DP

waarin N, de duur van het daglicht of teoretische zonneschijnduur,

T . , de maximale temperatuur in °C,
rin X

T ri IN , m ^ n ^m a -le temperatuur in °C,
T^p, het dauwpunt in °C,

T, de gemiddelde temperatuur.

De netto-straling kan analoog als in 6.4 geschreven worden

R
R = A + PET.L of - p -  = t  * PET 6.14n L L

uit 3.6 en 6.7 volgt £  = y • f tV } . (.T -T ) 6.15

of 4  = y . f C V ).(— |t---6.16
L T

G "0de lim i Ae lim i st w „ .daar F . . . - A T + o | _ _  6.17
s t

Nu kan de betrekking 6.16 ook geschreven worden als volgt :

A Y . f ( V Ï . ( e t -e) y . f l V J . I e - e )

L = F ’ ”
T T

6.18

Rekening houdend met de betrekkingen 6.8 en 6.9 herleidt betrekking 

6.18 zich tot :

A _ y.PET y . Ea 6.19
L F ’t .S.D F ’t



1 0 2 .  -

Nu 15 r 1 ■ f^ ; L d. - * pet e-20
R Y.E

of ^  * PET. (1+y / F ’ :S.D. ) - -r-r-^ 6.21
T

en tenslotte is de

R __ . _n . F + y . E 
—  T a

PET = ---------------  6.22
F T +_ L _

S.D

6 . 1 . 2 .  FYSISCHE EN METEOROLOGISCHE GEGEVENS

Voor water bedraagt de latente verdampingswarmte, L,

59 c a l / c m2 per mm evaporatie.

De nettostraling R is volgens BRUNT :n

R = R . ( 1 - a ).(0,18+0,62^) - cjT 11 ( 0 , 5 6 - 0 , 0 8 /e ) . [ 0 , 1 0 + 0 , 9o£) 6.23n g s H H

waarin R^, de globale straling aan het oppervlak van de atmosfeer 

(c al/cm2 ),

a s> het albedo van het verdampend oppervlak (fraktie van 1 ),

h, de reële zonneschijnduur (uren),

H, de teoretisch astronomisch maximaal mogelijke zonneschijn- 

duur (uren),

o, de konstante van STEFAN-BOLTZMANN * 1,19.10 7 ( c a l / c m2/dag/°K) 
T , de luchttemperatuur (in °K),

lx

e, waterdampdruk in de meteokooi (in mb).

Het evaporatievermogen E van de lucht volgens DALTON is0

E = (e -e).f(V) 6.24a w

waarbij f(V) experimenteel gevonden werd als zijnde

f(V) = 0,26.( 1 + 0 , 4V) 6.25

De windsnelheid wordt op 10 m boven het verdampend oppervlak gemeten 

in m/sec.



De maximale waterdampdruk wordt berekend uit volgende formules

e boven water : w

log e = -7,90298((T /T„)-1) + 5,02808 log (T /T„)W S K S l\

-1 , 3 8 1 B . 1 0 ’ 7 .C10ll» 3l*‘f M " (TK/ T s n - 1 )

+ 8 , 1 S 2 8 . 1 0 " 3 . M O *3 ' 1*911*9 ( (Ts/ T K ] " 1 ]-1 ) + log e bs 6.26

e^ boven ijs : 

log e i = -9. 09718 C(T /T Î-1 ) - 3,56654 log C T q/T r )

+ 0 , 8 7 6 7 9 3 ( 1 - (T„/T )) + log e. 6.27l\ O is

waarin T^, de temperatuur (in °K) is waarbij de waterdampdruk ew of

e^ berekend wordt 

T « de temperatuur van het kookpunt van water (373,16°K),

T , de temperatuur van het vriespunt van water (273,16°K),
0

eb s , de verzadigingsdruk van zuiver vloeibaar water bij 

het kookpunt (1 standaardatmosfeer ■ 1013,246 mb), 

e. , de verzadigingsdruk van zuiver ijs bij het vriespunt1 5
(0,0060273 standaardatmosfeer = 6,1071 m b )

F ’ .j. in de betrekking 6.22 zijn de afgeleiden naar T van bovenstaande 

vergelijkingen voor ew en e^ :

de e _ 0 * 0 30itT K
— £  = —  . (6790, 5 - 5, 02808 T„ * 4916,8.10 ‘ï 2
Ö i ^2 ^ K

K + 1 74209. 1 O" 1 3 0 2 ’80/ T K) 6.28

de e
— pi = —  (5721,9 + 3,56654 T „ - 0,0073908 T 2 ) 6.29
dl 2 ^ ^

K.

Y, is de psychrometrische konstante bij 1015 m b , nl. : 0,65 mb/°C

Voor de albedo, die afhankelijk is van de aard van het 

weerkaatsend oppervlak, wordt 0,25 gebruikt in het geval van een 

duinbegroeiing.

In bovenstaande uiteenzetting van de metode van PENMAN werd

enkel e beschouwd, e. wordt gebruikt w a n n e e r T „  <273, 1 6°K w i l\
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6.1.3. DE WERKELIJKE EVAPOTRANSPIRATIE, DE BERGING VAN DE BODEM,

HET DEFICIT e n  DE AANVULLING VAN HET GRONDMATER

Uit de maandelijkse gemiddelden van de temperatuur, 

van de maximale temperatuur, minimale temperatuur, dauwpunt, 

dampspanning en windsnelheid op 2 en 10 m en de maandelijkse 

gegevens van de n e t t o s t r a l i n g , zonneschijnduur van een maand- 

periode wordt de PET van deze maand berekend.

De waterbalans van de bodem wordt maand na maand b i j g e ­

houden. De PET, berekend volgens de metode van PENMAN, vergelijkt 

men met de maandelijkse neerslag om de werkelijke evapotranspiratie 

AET, de berging van water in de bodem en ofwel het deficit van 

de bodem ofwel de aanvulling van het grondwater te bepalen.

Hierbij kan men twee gevallen onderscheiden.

1° De PET is groter dan de neerslag.

Dan is de werkelijke evapotranspiratie AET = Neerslag + Aberging 

(positief genomen). De A berging van de bodem of de verandering 

van de berging van de bodem is de hoeveelheid water die door de 

wortels in een deficitperiode uit de waterreserve van de bodem 

geput wordt om aan de vraag van de PET te voldoen. De berging van 

de bodem t.o.v. de geaccumuleerde tekorten (APWL) verloopt volgens 

een exponentiële funktie :

APWL
PAP

Berging van bodem = CAP.e 6.30

waarin CAP, de kapaciteit van de bodem (hier 100 mm) is d.i. 

de maximale berging (= voorhanden zijnde water in de bodem voor 

het e v a p o t r a n s p i r a t i e p r o c e s )

APWL = geaccumuleerde potentiële deficiten.

Het deficit w o r dt berekend door DEF = PET-AET

2° De PET is kleiner dan de neerslag.

Dan is de AET gelijk aan de PET en het DEF gelijk aan nul. De 

aanvulling van het grondwater of SUR = neerslag - AET - Aberging. 

Hier is de Aberging de aanvulling van de bodemberging tot het 

maximum, nl. de kapaciteit van de bodem.
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6.1.4. DE VERWERKING VAN DE METEOROLOGISCHE GEGEVENS

Er werd gebruik gemaakt van vroeger verwerkte gegevens 

van de luchtmachtbasis van Koksijde voor de periode 1956 tot 1972 

[LEBBE, L . . 1973).

Enkele wijzigingen werden echter aangebracht in de 

verwerking van deze meteorologische gegevens wat betreft de 

windsnelheid en de globale straling.

De gegevens van de windsnelheden op 2 m en op 10 m hoogte 

voor de periode van januari 1973 tot maart 1977 werden t e r u g g e v o n ­

den en werden rechtstreeks bij de berekeningen betrokken. Voor de 

voorafgaande periode zijn slechts gegevens van de windsnelheid 

voorhanden voor hetzij 2 m hoogte, hetzij 10 m hoogte. Uit de g e ­

gevens van de periode 1973 tot maart 1977 was tussen deze twee 

windsnelheden het volgende verband afgeleid :

V10 ■ v2 X <fiï> ' 1 / 2 ' 95 6.31

De straling wordt te Koksijde niet gemeten. Voor het 

kustgebied wordt de straling opgemeten te De Haan.

Tussen de verhouding van de gemeten globale straling te

De Haan in % t.o.v. de globale straling aan het oppervlak van de

atmosfeer, nl. RS en de zonneschijnduur in % t.o.v. de maximaal

mogelijke zonneschijnduur van Koksijde S, werd een lineair verband

opgezocht. „ „ . „
RS = B.S + A 6.32

Waarin B, de richtingskoëfficiënt en A het stuk op de RS-as is.

De regressierechte werd bepaald zowel voor iedere maand afzonderlijk 

als voor alle gegevens van de globale periode (tab. 6.1). Bij 

iedere regressierechte werden naast de parameters A en B ook de 

wortel van gemiddelde fout in het kwadraat, ERMS, bepaald.

Dit gebeurde met onderstaande formule (A.M. MOOD & F.A. 

GRAYBILL, 1961).

. i n  n n n
lij, RS? - 2A . E . RS. 2 A B J E <1 R S , . S + n A 2 + B 2 . E , R S 2

ERMS - V i Ü ------- i ----------- Ü ! ------- 1— ------ i i J -------i— l--------  ------- IZl— L  6 . 3 3
\ n - 2

waarbij n, het aantal punten is waartussen de linaire regressie 

uitgevoerd werd.



Tabel 6.1 - Lineair verband tussen de zon neschijnduur S(%) en de 

straling RS ( % )

Maand Aantal 
p t n .

Korrelatie- 
koëfficiënt

Richtings- 
koëfficiënt B

Stuk op 
R S - a s , A

ERMS

januari 6 0,8035 0,4534 17,0732 1 ,5604

februari 7 0,7945 0,7592 12,2706 2,9741

maart 7 0,8928 0,5320 21 , 5298 2,6338

april 7 0,8690 0,3994 28,4108 3,2543

mei 7 0,5426 0,5646 23,8828 2,4997

juni 7 0,9444 0,4950 25,7141 1 , 6472

juli 7 0,9704 0,5895 21,3263 1,2103

aug. 7 0,8645 0,5468 20,0795 2,4743

sept. 7 0,9783 0,6394 14,3235 1,2156

o k t . 7 0,9654 0,4970 19,2147 1,8110

n o v e m b . 7 0,8597 0,7461 1 1 ,2444 2 , 5765

d e c e m b . 7 0,8575 0,5910 14,4090 1 , 695

Alle
gegevens 83 0,9380 0,6916 14,7142 3,2604

Uit tabel 6.1 leist men af dat de ERMS voor het liniair 

verband van iedere maand afzonderlijk kleiner is dan de ERMS van 

alle gegevens. De globale straling wordt uit de zonneschijnduur

S berekend met de liniaire verbanden voor elke maand afzonderlijk.

6.1.5. RESULTATEN VAN DE BODEMWATERBALA N S

In tabel 6.2 worden de meteorologische gegevens voorgesteld 

en de hieruit afgeleide afhankelijke veranderlijken, zoals het 

overschot (SUR) dat als onafhankelijke veranderlijke, in het 

tweede subsysteem aangewend wordt. De jaarlijkse hoeveelheden van 

neerslag en overschot alsook de totale hoeveelheid van de o n d e r ­

zochte periode van 20 jaar (1957-1977) worden in onderstaande tabel 

6.3 voorgesteld. Uit deze laatste waarden kan men de voedingskoëffi- 

cient afleiden of de verhouding van de totale hoeveelheid overschot 

t.o.v. de totale hoeveelheid neerslag. Aldus bekomt men een v o e ­

dingskoëf ficiënt van 0,40. Deze waarde benadert sterk deze van de 

voedingskoëfficiënt afgeleid volgens de metode van SCHOELLER, die 

steunt op een vergelijking van de gemiddelde chemische s a m e n s t e l ­

ling van het regenwater en van het duinwater.
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T a b e l  6 .

JR

M

T (C) 

TMIN(C) 

TMAX(C) 

TDP(C) 

V(M/S)

E (MB)

RG(CAL) 

RNET 

S ( % )

R ( MM ) 

PET(MM) 

RMP(MM) 

ST(MM) 

DST(MM) 

AET(MM) 

DEF(MM) 

SIJR (MM)

- Onafhankelijke en afhankelijke veranderlijke van het 

eerste subsysteem, waterbalans van de onverzadigde zone

j aar 

maand

maandelijkse gemiddelde temperatuur (°C) 

maandelijkse gemiddelde minimumtemperatuur (°C) 

maandelijkse gemiddelde maximumtemperatuur (°C) 

maandelijkse gemiddelde dauwpunt (°C) 

maandelijkse gemiddelde windsnelheid in m/sec 

maandelijkse gemiddelde dampspanning in millibar 

globale straling in cal. 

nettostraling in cal.

zonneschijnduur in % t.o.v. teoretisch mogelijke 
zonneschijnduur

neerslag in mm

potentiële evapotranspiratie in mm 

neerslag-potentiële evapotranspiratie in mm 

berging van water in de bodem in mm 

verandering van de berging in mm 

werkelijke evapotranspiratie in mm 

deficit aan water in mm

overschot of infiltratie aan water in mm
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. 4  2 . 7  6 .3  2 4 9 . 5  6 2 . 2
. 4  3 . C  7 . 8  3 6 2 . 4  1 4 2 . 4
. 6  2 . 6  1 1 . 2  4 3 5 . 3  2 1 9 . 6
. 0  2 . 6  1 3 .1  4 5 2 . 0  2 4 0 . 3
.1 1 . 9  1 5 .1  4 4 9 .2  2 3 6 . 3
.1 2 .1  16 .1 2 8 6 .1  1 4 6 . 9
. 2  2 . 3  15 .2  2 ir509 1JÜ .5
. 4  2 . 7  11 .8 131 . 5  2 9 . 2
.7___ 1 . 4  8 . 5  5 3 . 8  « 1 0 . 0
. 2  2 . 2  8 . 2  3 5 . 8  - 1 4 . 2

.6  3 . 5  6 . 4  5 9 . 2  - 2 7 . 5

.6  1 .5  6 .4  1 1 7 . 8  3 . 5

. 0  2 . 1  8 .7  2 1 8 . 9  6 7 .Cl

. 2  2 . 6  9 . 5  3 2 2 . 4  1 4 3 . 7

.4  2 . 9  11 .0  4 9 3 . 4  2 3 7 . 4

. 0  2 . 2  1 2 . 3  5 4 3 . 7  265 . 8
09 2 02 1 4 . 9  57 t  . 8 283 «1
.8 1 09 15 .8 4 2 7 . 2  1 9 2 .8
.2  2 . 8 1 2 . 4  3 7 6 . 8  1 1 3 . 4
.6 2 .6  1 0 . 4  1 8 5 . 6  1 0 . 5
. 6  3 02 8 .5 6 4 . 3  - 1 3 . 6
.9  3 . 5  8 .1  33 .8  - 1 2 . 1

„1 2 . 8  7 .1  5 6 . 3  - 2 2 . 5
.6  1 . 7  6 . 9  1 2 5 . 0
.7  2 . 5  8 . 0  1 9 8 . 0  6 7 . 2
.5  3 o ) 9 .Û 3 2 8 . 5  1 4 4 . 9
.0  1 .6 11 .5 3 9 6 . 9  2 0 6 . 6
.8  1 09 13 .8  5 0 7 . 9  2 6 1 . 5
. 9  2 . 5  13 .4  4 2 4 . 4  2 1 9 . 9
. 9  1 .8  1 4 . 9  351 . 7  1 6 5 . 3
.3  2 . 1  13 . 4  2 1 3 .2  7 9 .1
. 9  2 . 3  11 .4  1 2 4 . 6  2 8 . 8
.3  3 . 1  9 . 5  5 6 . 9  - 1 1 . 2
.5  3 .3 7 . 3  3 2 . 7  =11 . 2
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9
5
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2
3
0
3
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13

9
4
4

0
Q
5
é
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7
4
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2
1
3
5
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8
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(%) (MM) (MM) (MM) (MM) (MM) (MM) (MM) (MM)
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3 0 . 9  
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/  f| /
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1 0 . 7
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3 . 3
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U o u
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0 . D
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U o U  
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6 . 5
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1 0 0 . 0  
1 nn n

O.Û 
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L Ç
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1 **fc 1 o5

3 4 . U
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35 .4
4o5

27 04
en c

I oJ
8 0 0
0 7
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u • u
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27 .4 
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u.u
0 . 0

n

l*3
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Q 7

51 .8
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8 5 . 6

0.5
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1 UU oU
4 5 . 6

u 0 y
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3 Ü. 3
61 .5

*s0 u 
2 4 .1

Ö ..7 
0 . 0

5 7.5 1 9 . 9 9 9 . 3 - 7 9 . 4 2 0 . 6 - 2 5 . 0 4 4 . 9 5 4 . 4 ’.o
64.0
m a 62.1 7 •* r\

115 .1
O ’l O

- 5 3 . û» O
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n (i57 0 4 

7 0 . 5
3 3 o0 

2 .1
Ot 0
6 3 . 7
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- 6 1 . 6

7 0 4
4 . 0

•4 07
- 3 . 4

37o >
5 . 5

44.3
5 8 .1

U.U
0 . 0

4 9 . 0 8 3 . 5 2 7 . 6 5 5 . 9 5 9 . 9 5 5 . 9 27 .6 0 . 0 0 . 0
1 7 . 9

6 . 3
46.9

^ 2 . 9
6.0
6 . 7

4 0 . 9
1 0 6 .2

1 0 0 . 0
1 0 0 . 0

4 0 .1
0 . 0

6 . 0
6 . 7
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0 . 0
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n n
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1 UU 0u
1 0 0 . 0*• 7 ©
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0 . 0
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2 5 . 5
/ 7 C
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0 . 0
t

3 3 .  f
2 0 . 7A n3 5 . 8  

3 3 . 2
1 7 . 3
6 5 . 4

4 7 . 7
7 3 . 4
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6 8 .1■* <* A

“ 2 6 . 2
- 5 . 7

43 .5  
71 .1
A O 4

4 . 2
2 . 3

0
0 . 0  
n n5 0 o3 

3 8 . 5
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6 6 . 2

91 08 
8 7 . 0/ r 0
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- 2 0 . 8r 4 rt

3 7 01 
3 0 . ?0 4 A

- 3 1 . 0  
- 7 . 0

6 2 0 *
7 3 . 2— ’j'g- jr -

y 0 7 
1 3 . 8

U.U
0 .0
e\ f\41 .1

3 0 . 6
116 . 8  
1 1 9 . 9

6 5 . 8
3 6 . 2

5 1 . 0
8 3 . 7

8 1 . 1
1 0 0 . 0

5 1 . 0
1 8 . 9

6 5 . 0
3 6 . 2

0 . 0
0 . 0

□ •U
6 4 . 8

2 Ö .8 1 0 0 . 0 1 7 .9 8 2 .1 1 0 0 . 3 0 . 0 1 7 . 9 0 . 0 8 2 . 1
1 4 . 5

5 . 4
1 7 1 . 3

8 3 . 7
8 . 9
4 . 9

1 6 2 . 4
7 8 . 8

1G 0 .0
1 0 0 . 0

0 . 0
0 . 0

8 . 9
4 . 9

0 . 0
0 . 0

1 6 2 . 4
7 8 . 8
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S R PET RMP ST DST AE T  OEF SUR
(%) (MM) (MM) (MM) (MM) (MM) (MM) (KM) (MM)

1 9 6 1
1 9 6 1

1 3 . 3 1 . 2
3 , 3
3 . 6  
6  - 9

5 . 5
1 0 . 0
1 2 . " !
1 5 -G

1 . 5
5 . 1  
4 . 6  
8  „ 4

3 . 0
2 . 7
2 . 4

6 . 8  
8 «8

5 7 . 4  
9  4 - 3

- 2 2 . 9
5 1

1 8 . 9  
1 9 08

8 8 . 1
5 3  . 6

4 o 1
9 „ 9

8 4 . 0  
4 3  o 7

1 0 0 . 0
1 oDbU i

0 . 0
n „ o

4 . 1
9 o 9

0 . 0
0 . 0

8 4 . 0  
4 3  « 7t  r  0  i

1 9 6 1
1 9 6 1

3
4

U OU
7 . 6  

1 ) 3
8 . 5

1 1 - 0

7 “  O
2 7 4 . 7
2 9 5 - 6

O *
6 7 . 7

1 4 7 - 1
5 2 . 4  
2 5  «.3

1 6 .  2
5 T - 9

/ O 7

2 9 . 5  
5* -1

”  —̂ O *
- 1 3 . 3

3 . 8
8 7 , 6  
9 1  «,4

O M
- 1 2 . 4

3 =8

^ O r 
2 8 . 6  
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w o y  
0 . 8  
0 . 0

“  —/ O * 
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0 . 0—T T  U I

1 9 6 1
1 9 6 1

_ _ _

6

I J o KJ
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V o /
7 . 0
9  „ 6

1 Ow
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1 0  - 9

C o *
2 . 9  
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1 1 O V 
1 0 . 1  
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5 0 4 . 9
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• “  1 O »
2 3 9 ^ r
2 6 4 - 0

5 3  . 8  
5 3  « 7

---K V  O •
2 6 . 9  
5 3  . 3

-*• - O »
8 0 . 7  
9 3  „ 2

- 5 3 . 8
- 3 9 « 9

✓ » O “
5 3 . 3  
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•f OW
- 3 8 . 1  
_ 1  7  „5

✓ O 1
6 5 . 0  
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2 2  «3

0 . 0
OoO1 F W 1
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- — - 
7
Q

I T O '
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1 A ^

/  O v*
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1 ÜP

• 7 O - 
. .
? Î

1 Li o f 
1 2 . 0
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î  "K
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1 4 . 0  
1 4  S

*» o7
4 3 1 T T  
^ 7  1

4. v *t o
2 2 4 . 5
1 SR 9

j  o i

3 9 . 6  
3 7 - 8

9 7 . 4
3 6 - 0

7 m/ O —
8 6 . 6  
71  7

1 0 . 8  
o 1! ?  ?

4 6 . 6
ft

1 o
1 0 . 8  

„ 1  7 O

1 . OW
8 6 . 6  
4 9  ft

fc fc O v 
0 . 0  

? 1  &

o -
0 . 0  
n  nITO 1

1 9 6 1
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*
1

I O o —
1 6 . 4
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a n
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1  ^ Q

I fc O J
1 4 . 0

C
2 . 1

r T

1 *r aJ

1 6  i ö
r o •

2 2 6 . 0  
-4  CO X

1 ^  O o '
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A

«/ f Ov
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«r W O J
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1 1 0  7

f » O -
41 . 8
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J  ^ o c
- 1 5 . 9
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-C o O
2 7 „ 9

1 DÛ ü

1 J oC
- 4 . 8  
7? 1

HV oO
3 0 . 7
2 0  9

e » o4* 
1 1 . 1

0  Û

Ov-
0 . 0  

? 6  - 71 T O I
1 9 6 1
1 9 6 1

I U
I I  
1 2

1 1 Ou 
6 . 1
2  .£-

Q o U
3 . 3

- 0 . 3
8 . 6
5 . 8

7 o-?
4 . 3
0 . 8

cL o '
3 . 0
2 . 9

I I  o V
8 . 3
6 . 5

i y y
5 4 . 3
5 5 . 5

CC O ' 
- 1 1 . 1

J f o 1
1 3 . 0  
2 6 . G

1 1 7 o 1 
6 6 . 0  

^ 5 , 5

C U o 7
7 . 0
2 . 4

y c o O
5 9 . 0
6 8 . 1

1 WVo 
1 0 0 . 0  
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0 . Û

fc WO'
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2 . 4
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0 . 0
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1 9 6 2 i 4 . 4
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1 q
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7 | î  1

5 8 . 9
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3 o1
11  X

5 5 . 8 1 0 0 . 0  
1  n n  n
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n  n

3 . 1
1 1  7

O o û
n  n

5 5  08
i  y o c
1 9 6 2
1  QA7

&
3
/

H • !
2 . 9

I - ->

i  i

O • .

6 . 4
44  4

1 m f

0 . 5
Ç 4

H • -
? o O 
7 /

o  •  y  
6 . 3
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C m t

6 3 . 9  
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a u » l
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5 1 . 9
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U • L
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— 1 1 7
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A 7  y

U m U
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D O ofc
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n  nI TO£.
1 9 6 2

S
5
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1 *7* A

4  oÓ 
< . 6
o A

1 I o 1
1 3 . 5
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O 7

•/
3 . 1
O C

Ü qO
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j 1 y o-^
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C 7 /  n

I o  I
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3 4 . 3
Ç c: x
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4 3 . 7

A t

O *
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O T Q

ö Ö a f
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ü  o ü  
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n  ni  y o c  
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7
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ö o ^
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* f •  T
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3 . 0
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4 /  Ç 2
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— 1 7  1
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2 2 . 1  
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“ HU • 0
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5 8 . 5
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2 4 . 8
1 7  A
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0 , 0
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1 OA~>

9
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4 4 f
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1 fc O • 
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û  n

:—J f t U
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2 5 4 . 6
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H fc o*-
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/  n 1
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5 9 . 4
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0 7
4 1 . 9
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• ( Q I
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a h  1

I O ou
3 6 . 1
7  A 9

1 7 . 5
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0  f  o J

4 1 . 9
1 7  5

! ù o 0

0 . 0
n  n

U qU
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n  ni  y o c  

1 9 6 2
1  O A o

I Ü
I I  
1

I 1 j
5 . 4
PI O

(  o * * 
3 o ..

1 QmJ

7  A

7 ©U
4 . 3

— t /

t  . u  
2  04
7 4

I I mJ

8 . 3
C O

1 OO •  1
4 5 . 6
Ç 4 Q

tt mJ
- 7 . 3

_/ 4 Ô

TU# 1
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Ç 7  Q
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u  • u 
4 0 . 8
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1 9 6 3  
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1 9 6 3  
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=4.1
- 2,2

5 . 6  
8 .3

1 1 05 
14.4
15.6 
1 5 o1 
14,1
1 0 . 6
5 .6

“ Jo2

=*6.7
- 5 . 3
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4 , 5
6.4 
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1 0 . 9  
1 1 . 3  
10  *9
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: 069 04
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2 0 . 3
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?o J 14 o1 
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»2,9 2.5

6.0 
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11 o9
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11 .9
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1 .8  
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35.8
35.6 
31 .8
23.2
22.2

11.7
11.7 
3 9-1 
52.2
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2 9 . 8
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1
2
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-a. 8 
1 .9 
0.7

3.9
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4
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491 04 
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13.2

89.6
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0.0
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“T O O
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9.6
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20.7
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I I  
1 2
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5.1
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13.1 
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2 .6

1 .9 
t. o4
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1 0 . 1
9.9
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7C.8 
45 06
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17.1

116.9
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14.4 
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1 03 o



T TMIN TM A X TDP V £ RG R N ET
(C) (C) (C) (C) (M/S) (MB) (CAL) (CAL)

1965  1 3o8 1 . 4  6 . 0  2 . 2  3 „1 7 . 2  5 8 . 3  - 2 3  . 7
1965 2 2 . 8  0 . 8  5 . 2  G . 7 2 . 4  6 . 4  1 0 6 . 7  1 . 0
1965 3 5 . 0  1 . 3  9 . 5  3 . 3  2 .3  7 . 7  2 1 8 . 9  6 7 . 5
1965 4 7 03 4 . 4  11 . 7  5 . 4  2 . 4  9 . 0  3 1 3 . 2  1 4 5 .1
1965 5 11 . 7  7 . 4  1 5 . 8  8 . 2  2 . 6  1 0 . 9  4 4 4 . 7  221 .9
1965 6 1 4 .3  1 0 . 0  1 8 . 9  11 . 2  2 .1 13 . 3  4 5 5 . 8  2 4 2 . 0
1965 7 1 4 . 9  11 .3  1 8 . 6  11 .8  2 .4  1 3 . 8  3 9 U .6  2 0 8 . 6
1965 3 1 5 . 7  1 1 . 2  2 U .2  1 2 . 5  2 . 0  1 4 .5  3 7 t  . 6  1 7 0 . 7
1965 9 1 3 . 2  9 . 3  1 7 . 9  1 0 . 6  2 . 1  1 2 . 8  2 5 1 .3  8 7 . 9
1965 10 1 0 . 6  5 . 7  1 6 . 2  8 . 7  1 .8  1 0 .5  1 9 5 . 4  1 0 . 0
1965 1 1 4 . 5  1 .1 7 . 3  2 . 4  2 .6 7 .3 91 .3  - 2 6 . 4
1965 12 6 .  ; 3 . 4  8 . 1  3 . 5  3 . 7  7 . 9  3 9 . 6  - 1 9 . 9

1966 1 0 . 7  - 2 . 1  3 . 5  - 0 . 3  2 . 4  6 . 0  5 7 . 5  - 2 3  . 4
1966 2 6 . 4  3 . 3  9 .1  5 .3  3 . 2  8 . 9  7 7 . 0  8 . 5
1966  3 6 .5  3 . 2  9 . 7  3 . 6 __ 3 . 0 _____ 7 „9 2 . j6 . ' )  6 5 . 5
1966 4 8 . 5  4 .Ó  1 2 . 3  6 . 4  2 . 2  9 . 6  3 0 0 . 8  1 4 5 . 0
1966  5 1 1 , 6  6.8 1 5 . 9  8 . 5  2 . 5  1 1 .1  4 5 4 . 2  2 2 6 . 2
1 9 6 6  6  1 5 . 6  1Ö .9  2  i . 1  13 . 1  1 . 8  1 5 . 0  4 7 6 .5  2 5 4 . 6
1966 7  1 5 . 0  1 0 . 8  1 9 .1  1 2 . 6  2 .1  1 4 . 6  3 8 2 . 5  2 0 7 . 8
1966 8 1 5 . 6  1 1 .1  2 0 . 0  1 2 . 6  2 . 3  1 4 . 6  4 1 0 . 9  1 8 4 . 9
1 9 66  9 1 3 . 8  9 . 3  1 8 . 6  11 .5  2 . 2  13 .6 2 8 6 .7  1 0 0 . 2
1 9 6 6  1 1 1 . 2  7 o 3  1 4 . 4  9 . 8  1 . 9  1 2 .1  1 3 9 . 9  2 8 . 5
1966 1 1 5 . 0  2 . 4  7 . 7  3_.4___ 2 . 7  7 . 8  6 4 . 6  - 1 4 . 9
1966  12 5 . 5  2 . 9  7 . 3  3 .0  3 . 4  7 . 9  3 8 . 3  - 1 7 . 7

1 9 6 7  1 3 . 9  1 . 4  6 03 2 . 4  3 . 0  7 . 3  6 1 . 9  - 2 9 . 4
1 9 6 7  ? 5 . 2  2 . 2  8 . 6  3 .2  3 . 7  7 . 7  1 2 7 .3  3 . 7
1967  3 7 . 3  3 .6  1 0 , 7  3 .7  4 . 0  8 . 0  2 3 2 . 6  6 4 . 1
196 7  4 7 . 8  3 . B  11 . 4  4 . 2  2 . 2  8 . 2  3 4 4 .3  141 . 9
1 9 6 7  5 1 1 . 3  6 0 >  1 6 . 7  3 . 3  1 . 9  1Ü .9  4 1 7 . 7  2 1 2 .1
1967  6 1 4 .2  10 01 1 8 . 6  11 .0 1 .8  1 3 .1  4 8 0 . 3  2 5 0 . 0
1 96 7  7 1 7 . 7  1 1 . 3  2 2 . 9  1 4 . 2  1 . 6  1 6 . 2  5 2 2 . 9  2 7 0 . 5
1967 8 1 6 .5  1 1 . 5  2 1 . 3  1 3 . 2  1 . 7  1 5 . 2  3 6 0 .8  1 6 9 . 7
1 9 6 7  1 4 . 5  1*1.2 1 8 . 3  12 .4  1 . 7  1 4 . 4  2 2 3 . 2  65 .2
1967  10 1 2 . 2  8 . 7  1 5 . 5  1 0 . 2  2 . 8  1 2 . 4  151 . 0  2 6 . 9
196 7  1 1 5 . 3  2 . 2  8 . 2  4 . 2  1 .9  8 . 2  6 9 .1  = 1 5 . 2
1967  12 4 . 4  1 . 5  7 . 1  2 . 9  2 . 4  7 . 5  4 4 . 5  - 2 5  .3

1 9 6 84 a /  n
1 3 . 9 0 . 9  

-  J . 1  
2 . /  
■** - 1

6 . 4 2 . 6
0 . 5

3 . 2
f  0ÊL-
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3
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4~ a C  
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1 0 . 1
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û
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5

O  o 7
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2 . 7

8 08
1 0 . 6  
jk à «4
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4 0 9 . 5
j  f  a*

1 4 5  0 7  

2 1 0 . 3
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I 9 6 0

6
7

1 4  a B  
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9  o 7 
1 1 . 1
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2  3 . 2

1 2  . 1
1 2 . 9
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2 . 5

1 4  o  •

1 4 . 9

4 3  5  o ?  

4 0 4  . 0

237 o*-
2 1 6 . 7

1 968  
1968

3

9

1 6 . 7

1 4 . 8

1 ó  o  5  

1
2 0 . 2
1 8 . 8

1 4  o 7

1 2 . 6
2  o 5  

2 . 6
1 6  . 7  

1 4 . 6

2 9 9 . 3

2 4 0 . 9

1 >2  o 9  

8 9 . 6

1 968  
1968  
1968

1 0  
1 1 
1 2

1 3 . 0

5 . 6

1 . 5

1 0 . 0  
2 . 7  

-1  . 6

1 6  o  ;

3 o0 
3 . 7

11 . 5  

4 . 4

0 . 3

2 . 5  

2 . 2  

1  . 3

1 3  . 6  

8 . 4

6 . 2

1 2 2 .1
6 2 . 1

3 6 . 0

3 2 . 9

- 1 3 . 6

- 1 5 . 8

S R PET RMP ST P S T A E T  DEF SUR
(%) (MM) (MM) (MM) (MM) (MM) (MM) (MM) ( MM)

1 9 . 8

2 4 . 5

3 3 . 6  

3 ?  „ 7

5 0 . 3  

9 . 8

5 6 . 5

6 2 . 1

4 9 . 4  

4 3 - 0  -

3 . 6  

7 . 1  

2 4 . 7  

4 4  2

4 6 . 7

r . 7
3 1  . 8
1  7  _ 9

1 0 0 . 0  
1 0 0 . 0  
1 0 0 . 0  
1 00  „0

O . ü

0 . 0
0 . 0
n . n

3 . 6

7 . 1

2 4 . 7

4 4

0 . 0
0  0
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0 . 0  
n  _  n

C •  f

3 1  . 8  
1 7 - 9«  u  C t
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3 9 . 8

*T *T Q C

7 5 . 6  

R 4  1

1 » O 7 

- 2 6 . 2  

- 4 1  1

1 W W o  t - -

7 6 . 9  

5 1  n

w  O w'

- 2 3 . 1
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À R  q

w  o  U
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§~ -f O 7  

0 ^ )  
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4 5
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7 7 . 0

A R  A

H  1 .  1
2 7 . 2  

4 3  2
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7  8 . 2

1 00  0

<- .  T

2 7 . 2  

2 1  _8

Ü O  •  7

7 7 . 0

68  _6
0 . 0
f i n

0 . 0  
2 1  « 5H  J  O l ”

3 9 . 9  

5 4  ■’Ç

I l  i O O

1 0 3 . 4  

1 ?  £

O C  o O

3 8  0 7  

1 Q  R

o L

6 4 . 7  

- 7  4

» M U  q  v  

1 0 0 . 0
— fc- ■ * e  H  
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- 7  1

u n  o w

3 8 . 7

1 Q *5

v o U  
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n  7

Cm 1 X>J

6 4 . 7  
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3 2 . ?  

1 1  6

■ ■ f - f c  ■  t 1 
6 5 . 2

1 7 ■ O

4 o 6
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1 1 1
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1 0 0 . 0
1  D û  f i
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7 . 1
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1 7  •  J

4 . 6

R  ^

V a  J  

0 . 0  
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1 1 1  01 > O  o D I 1 1 0 7 o U O o J U  o  u i »  i  o  y
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/ L O ^

0 . 4
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4 0 . 0
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1 0 0 . 0  
i n n  n

0 . 0
n  n

0 . 4
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0 . 0
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4 0 . 0
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- 3 . 6
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V o U

- 3 . 6

Ö

2 6 . 8
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0 . 0
2 7 . 2 5 9 . 3 4 5 . 8 1 3 . 5 1 0 0 . 0 3 . 6 4 5  . 8 0 . 0 1 0 . 0
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2 7 . 2  
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7 7 . 1
o n  ^

- 4 9 . 9 6 0 . 7
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1 0 . 6
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JR H T TH IN TMAX TDP V E RG RNEÎ
(C) (C) (C) (C) (M/S) (MB) (CAL) (CAL)

1 9 6 9
1 9 6 9

1
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3 . 3
— A .l3

4 . 2 3  0 1 
3  «1

8 . 3  
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4 8 . 5
o  n  _ n
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*1 'A A

1 2  o 9
4  A  C —
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1 4  08
1 ?  7

J  j o  •  <
2 9 5  . 7
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I D J  ■ 1
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I I  
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3 —J
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1 ) o  J 
1 0 . 6  
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-  . 3

I

3 . 8
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1 t~ o f

8 . 7
6 . 2

I O  ■ o  I

6 4 . 1
3 5 . 1

C £  o 3

- 1 4 . 7
- 1 4 . 4

1 9 7 0 1 3 . e  1 „3 5 „9
197 0  2 3 . 7  0o8 6 . 4
1970  3 . 9  0 , 8  6 , 9
197  : 4 ó . 3  4 o . 9o6
1970 5 1 2 . 6  7 o? 16 09
197 0  ^  1 6 .3  1 0 . 3  2 1 . 7
1970  7 _ _  1 5 . 9  11 .7 1 9 . 9
1 9 7 0  3 1Ó .4  1 1 , 4  2 1 . 2
1 9 7 0__ 9 15 ,2  10 .2  2 0 .2
1 9 7 0  m i  11 09 8o1 1 5 05
1970  11 8 . 5 5 . ?  1 1 . 5
1970  12 3 . 5  Q .2  5 . 9

2 .7  2 . 6  7 . 4  4 9 . 7  - 1 1 . 3
0 . 9  3 . 7  6 « 5  1 2 8 . 5  1 . 3
1 . 5  3 . 6  6 , 8  2 0 3 , 8  6 4 . 7
4 . 6  4 . 8  8 . 5  2 9 9 . 5  1 4 3 .1
8 . 9  2 . 4  11 . 4  4 1 1 . 3  2 1 0 . 9

11 . 7  2 . 2  13 .8 5 3 6 .3  2e>9.5
1 2 . 5  3 . 1  1 4 , 4  4 2 0 ,5  222 .1
13 - 5  2 . 6  1 5 . 4  3 7 2 . 3  1 7 4 . 7
11 o? 2 . 7  1 3 .8  2 7 4 . 2  95 . 7

9 . 4  3 . 6  11 .8 1 4 2 .3  2 6 . 2
6 , 2  3 . 9  9 . 5  6 4 . 8  - 1 3 . 5
2 * 2  2 . 3  7 . 2  4 6 . 8  - 2 8 . 3

1971 1 3 . 4  n  o ó  6 . 2  2 . 5  4 . 0  7 . 3  5 3 .1  - 1 6 . 5
1971 2 4 . 9  1 . 5  7 . 3  2 . 7  2 . 5  7 . 4  101 . 0  4 , 8
1971 3 4 . 2  0 . 3  7 . 9  1 . 5  4 . 2  6 . 8  2 2 2 . 0  6 3 . 7
1971 4 7 . 3  4 e? 1 1 . 4  4 . 9  2 . 7  8 . 6  3 2 6 .1  1 4 3 . 2
1971 5 37 8 . 6  1 7 . 3  9 . 6  2 . 7  11 .9  4 6 2 . 3  231 .1
1971 6 13 .5  9 . 4  1 7 . 2  1 0 . 5  2 . 6  1 2 . 7  43C .5  2 3 1 . 7
1971 7 1 7 . 6  1 2 . 7  22.2 1 4 . 0  2 . 5  1 6 . 0  5 0 4 . 0  2 6 1 . 7
1971 I  1 7 . 2  12 o? 2 2 . 3  1 3 . 6  2 . 5  1 5 . 6  3 3 4 . 2  161 . 6
1971 9 1 4 . :  f.5 1 9 . 7  1 0 . 6  2.6 12 .7  3 1 5 . 4  1 0 3 . 4
1971 1 1 0 . 6  5.2 1 6 , 6  8 . 2  2.5 1 0 . 8  1 8 0 .1  16.7
1971 11 ö a 7  3 . 4  9 . 8  4 . 8  2 . 2  8 .6  8 0 . 5  - 1 9 . 5
1971 12 5 . 9  3 o2 3 .1  4 . 8  2 . 3  8  .5 4t  . 3  - 1 9 . 2

1972 1
2
3

2.4
4.0
6.3

- . 1
U
1.5

4.9
7.3

11.9

1 , 1 2.7 6.6 54.6 -19.8
1972
1972

2 o«# 
2 . 8

c, o O
3.U

7 .3 
7.5

102 o 2
252 „3

8 o 4 
65.0

1 972 
1972

4
5y

S o5 
1 1 a34 •> -T»

5 o7
7,4A —*

11 .5 
15,5

5 o1 
8,4

4 o 1
3.3

3 .9 
11 .0

317.0
409,7

144 .4
2 1 0 . 8  « 1» j1 972 

1972 7— éfc rr:

1 - O i
1 O o J 4 c ~y

8 o 3 
12.7

16.7
19.34 A A

9 .9 
13.7

2 .4 
2.3

12.3 
15 .8

43 4 „6
3 6 3 . j

232 06 
201 .9

» 972 
1972

O
9A

1 5 o *
12*7

11 Ok
8.4r

19 .9 
16.9

12 .3 
9.6

2 o4 
1 .8

1 4 o4 
1 2 . 0

3 5 3 o 3 
264.0

11>4 06 
87,9

1 972 
1972 
1972

1 V 
1 1 
1 2

1 ■
7.2
4.3

5 .
4.5 
1 .7

14 o 7
9.7
7.0

7 .2
4.7
2.7

2 .2 
3.9 
1 .8

1 0 o2
3.5
7.4

16 5.9
62.3
49.3

15 .9 
-14.6 
-31 .6

S R PET RMP ST DST A E T  DEF
(%) (HM) (MM ) (MM) (MM) (MM) (MM) (MM)

1 0 . 1  3 9 . 1  5 . 5  3 3 . 6  1 0 0 . 0  0 , 0  5 , 5  0 , 0
1 8 . 2  8 2 . 4  7 . 7  7 4 . 7  1 0 0 . 0  ö .L  7 . 7  C.O
2 4 . 9  7 0 . 3  2 2 . 9  4 7 . 4  1 0 0 . 0  0 . 0  2 2 . 9  0 . 0
5 3 . 7  4 6 . 5  5 0 . 4  - 3 . 9  9 6 . 2  - 3 . 8  5 0 . 3  0 . 1
3 6 . 1  122 .5^  7 5 . 2  4 7 . 3  1 0 0 . 0  3 . 8  7 5 . 2  0 . 0
5 2 . 6  7 5 . 0  9 0 . 8  - 1 5 . 8  8 5 . 4  - 1 4 . 6  8 9 . 6  1 . 2
3 6 . 5  4 3 . 8  8 8 . 6  - 4 4 . 8  5 4 . 5  - 3 0 . 8  7 4 . 6  1 4 . 0
3 8 . 0  1 4 6 . 7  7 1 . 2  7 5 . 5  1 0 0 . 0  4 5 . 5  71 . 2  0 . 0
5 0 . 9  4 . 8  4 6 . 9  “ 4 2 .1  6 5 . 6  - 3 4 . 4  3 9 . 2  7 . 7
4 0 . 8  1 3 . 9  21 .7  - 7 . 8  6 0 . 7  - 4 . 9  1 8 . 8  2 . 9
1 8 .1  1 0 8 . 2  1 0 . 6  9 7 . 6  1 0 0 . 0  3 9 . 3  1 0 . 6  0 . 0

7 . 5  8 0 . 9  2 . 0  7 8 . 9  1 0 0 . 0  0 , 0  2 . 0  C.O

11 .5 51 . 6  2 . 7  4 8 . 9  1 0 0 . 0  0 . 0  2 . 7  0 . 0
31 o3 5 7 . 7  11 . 8  4 5 . 9  1 0 0 . 3  0 . 0  1 1 . 8  Ü.O
2 8 . 7  4 6 . 0  2 3 . 2  2 2 . 8  1 0 0 . 0  0 . 0  2 3 . 2  0 . 0
2 6 . 8  23 . 0  41 .3  = 1 8 .3  8 3 . 3  = 1 6 . 7  3 9 . 7  1 . 6
3 6 . 0  1 0 . 3  7 5 . 9  - 6 5 . 6  4 3 . 2  - 4 0 . 1  5 0 . 4  2 5 . 5
5 6 . 0  3 0 . 3  1Q1 . 8  -71  . 5  21 .1 -22  .1 52 .4  4 9 . 4
3 7 . 7  6 5 . 5  8 7 . 0  - 2 1 . 5  1 7 . 1 - 4 . 1 __ 6 9 . 6 __1 7 . 4
4 5 . 4  2 4 . 3  7 3 . 8  “ 4 9 . 5  1 0 . 4  - 6 . 7  31 . 0  4 2 . 8
4 5 . 4  7 7 . 3  4 8 . 1  2 9 . 2  3 9 . 6  2 9 . 2  4 8 . 1  0 . 0
2 8 . 8  5 4 . 5  2 4 .1  3 0 . 4  7Ö.D 3 0 . 4  2 4 .1  0 . 0
1 8 . 3  8 4 . 0  1 1 ,1  7 2 . 9  1 0 0 . 0  3 0 , 0  1 1 , 1  0 , 0
18 .1  5 P .5  t .6  5 1 . 9  1 0 0 . 0  0 . 0  0 . 6  0 . 0

15.Ö
21 .3
35.1 “» i» ^

46.7
24.7
33.5
29.5
59.5

3 .3 
9.3 

26.6

43.4
15.4
6.94 / A

1 00 .0 
100.0 
1 0 Ö.Ü 

86.1  
69.74 n n r»

n.ii
0.0
OoO

3.3
9.3 

26.6 / ■» /

0.0
0.0
0.0
1 . 1
4.7
n a

> o 7
45.97 t —»

4 4 04
80.7 
78,5 

1 0 2 .9

-1 4.9
-2 1 . 2—» A

" 1 3 o 
-16.5 
30,3 

=5 9.1

43 .4 
76.0
78.5
72.6

34.7
52.3

132.4
13.5

53,9
=89.4

1 DO, 0 
40.9

0. 0
30.3

3 6 .9 
55.3

<L 9 o3 
2 2 . 2

71 .9 
5Ü.4

-42 .6 
- 28.2

26 .7
20.2

“*14 o 2
-6 06y *»

43 .5 
23.3

2 8 o 4 
21 .6

0,0
0.0 
A A

46 . 4 
26.3

26,9
99.1

20,6
4.8

: 6 , 3 
94.3

26,4
100.0

Ó m 3 
73.6

20.6
4.8

12 .2 7 .8 2 o? 5.6 100 .0 0 .0 2 o2 0 .0

16.7 I A Q . 2 2,3 37,9 100,0 OoO 2.3 0.0
20 .3 
44 .8

42 04 
24.5

8 .5 
30.7

33 o9 
-6.2

100 .0 
93.9

Ü o Ö 
-6 . 1

3 o5 
30 oó

0.0
0.2
A A3 2 o 0 

35.6
52 o 0 
6 2.8

45 o2
71 .0
76.1
74.4 / ̂  •*

6 08 
-8,2

100 .0 
92,1

6.1
-7.9M A

4.c 02 
7 0 . 7

-j O *
0 . 3M A3 5 .5  

2 7 . 7
63 .0  

100.3
—8. 1
2 5 . 9

8 4 o i
1 0 0 . 0

° 7  .2
1 5 .1  

- 3 8 . 1
3 8 .1> y

7 5 o 2
7 4 . 4
5 7 . 4  
3 8 . 9  
2 0 . 1

8 . 9
2 . 2

. 9
0 . 0
9 . 9
0 , 0
0 . 2
0 . 0
0 . 0

41 o 6 
43,2
§  M

1 9 o 3 
7 9 . 5

67 o 3 
3 8 , 9  
2 0 . 4  

8 . 9  
2 . 2

- 4 8 . 0
4 0 , 6

61 o 9 
1 0 0 . 0

4 0 . 6
1 7 . 3
2 0 . 5

1 3 .5 
5 7 . 5  
4 3 . 7

- 6  09
4 8 . 6
4 1 . 5

93 04
1 0 0 . 0
1 0 0 . 0

—6 o6
6 .6
0 . 0

SUR
(MM)

3 3 . 6
7 4 . 7
4 7 . 4  

0 .0
43.5 

0.0 
0.0

30.0
0,0
0 .0

5 8 . 3
7 8 . 9

4 8 . 9
4 5 . 9  
22.8

0,0 
0.0 
0 .0  
0.0 
0.0 
0.0 
0.0 

42 .9  
51 . 9

4 3 . 4
1 5 . 4

6 , 9
0 .0
0.0

2 3 . 6  
n 0ü 
0.0  
0.0 
0.0

2 0 . 7  
5 .6

3 7 . 9
3 3 . 9  
0.0 
0 .8  
0,0 
0.0

1 0 . 9  
0.0 
2 , 4  
' .'i

4 2 . 0
41 „5



JR M T TM IN T K A X  T D P  V E RG RNET
(C) (C) (C) (C) (H/S) (MB) (CAL) (CAL)

1973 1 3 , 7  1»4 5 , 9  2 , 2  2 .1 7 „3 49 „7 ~ 1 1 . 3
1973 £ 4 o1 1 . 7  6 06 1 .8  3 . 5  7 . 1  9 4 . 0  2 „9
1973  3 5 . 7  'o5 1 0 o5 2 . 6  2 04 7 . 4  2 5 9 . Ü 6 5 . 1
1973 4 7 . 0  3 . 1  1 0 . 5  3 . 6  3 . 5  8 .1  3 1 7 . 6  142„7
1973 11 o9 6 o9 16 07 8 a4 2 06 1 1 .?  4 J 6 .2  2 0 9 .3
1973 6 15„2  9 „8 1 9 . 8  1 1 . 4  1 „9 1 3 . 7  5 2 5 .5  2 6 7 . 2
1973 7 1 6 . 3  1 2 , 0  2 J.3 1 2 . 5  2 „4 1 4 07 411 . 2  2 1 8 . 6
1973 8 1 7 . 7  1 2 . 2  2 3 . 4  1 3 . 6  2 . 0  1 5 .8  3 9 2 . 2  1 8 0 . 9
1973 9 15 oö 10 04 2i)«u 11 .5  2 . 4  13 .9  261 . 2  92 .6
1973 1ö 1 0 .1  6 oO 14 „4 7 „5 2 . 2  1C .6  1 5 7 . 9  2 0 . 2
1973 1 1 6 07 3 o7 9 . 7  3 .2 3 . 8  8 .1  8 4 .5  - 2 3 . 4
1973 12 4 . 5  1 .7  7 .3  2 .6  3 . 6  7 . 6  4 8 .0  - 2 9 . 6

1974 1 6 . 3  3 . 9  8 . 6  4 .2  4 . 2  8 . 4  59 .1  - 2 4 . 0
1974 2 5 . 4  2 03 8 .3 3 .3 3 . 8  7 . 9  111 .8  5 05
1974  3 3 . 7  2 . 4  9 .1  3 .7  2^4 8 .1  189 ,3  6 6 . 9
1974 4 8 . 7  4 . 6  1 3 .3  4 . 5  2 . 5  8 .5  371 .1 1 4 3 . 0
1974 5 11 .2  ó .~  1 5 .9  6 . 7  2 , 4  1 0 .0  4 4 2 .7  2 1 7 .7
1974 6  1 4 .3  0 . 7  1 8 .3  1 0 .9  2 . 5  13 .3  4 6 8 .9  2 4 6 .6
1974 7 _  1 5 .5  1 1 .3  1 9 . 4  12 .3  3 .2  1 4 .5  42Ü.7 2 2 2 .8
1974 8 1 6 .2  1 0 .9  2 1 .3  1 2 .8  2 .3  1 5 .0  3 8 6 .9  1 7 8 . 0
1974 |  13 .Ü  3 . 9  1 6 . 9  1 . 3 . 1  1 2 .7  22 7 . 7  8 2 , 0
1974 10 8 .2  5 . 5  1 0 .7  6 .1  3 . 3  9 . 5  1 2 5 .3  2 7 .0
1974 11 7 . 4  4 , 4  9 . 9  5 . 4  3 , 7  9 . 2  5 8 .9  - 1 1 . 4
1974 12 8 .5  5 . 9  1 0 .5  5 . 6  5 .2  9 .3  4 0 .6  - 1 9 . 8

1975
1975
1^75

1
2
3
4
5

7 .2
3 . 7
5 .5
7 . 9

1 0 .5
4  /

4 . 7  
0 . 0  
2 .7  
4 C4 
7 . 3

9 , 5  
8 . 1  
7 . 8  

11 .5 
14.1

5 . 0  
1 .8 
3 . 2
5.1  
7 . 5

* . 2  
1 . 8
2 . 8

—  Jij-.. -A

8 .8 
7 .1  
7 .8

4 8 .9
1 5 7 ^
1 7 ^ .7
3 0 2 .5
4 0 2 .9

- 1 0 , 2  
1 .7  

6 5 . 6  
1 4 3 .5  
2 0 7 . 0

i 9 (  5 
1975

2 q6 
2 . 6

9
1 0 .5

1975
1975
4  r

6
7

——-o»-----

1 4 a3
1 ^
•f O  (*

9 .4  
1 2 . 8

1 8 .5  
21 . 5

11 .3 
1 5 .0

2 .5
2 .5  
1 .8 
2 .7  
1 .9
2 . 6  
2 .3

13 .6
1 7 .2

312.9
4 5 6 .8

263 .6  
247 . 0

1975  
1975« ft *jr

8 
9 

1 6 
1 1 
1 1

1 OoO
1 5 .2

I o 3
I I  .3

23 a4 
1 9 .3

15 .4  
1 2 .4

17 08 
14 .5

41 4 03
23 5 .8

1 97 .2 
8 8 .4

1 975 
1975  
1975

9 o7 
6 .0  
4 .  j

6 o
2 . 7  
1 □ 4

1? Ou
9 . 0
6 . 3

7 .2  
4 . 4  
2 .3

1 0 .4
8 06
7 .3

1 U 7  . 7
6 0 .2  
46 .4

23 .  3 
- 1 1 . 9  
- 2 7 . 9

19764 A*7/ 1 5 j  L 
3 .5  
4 . Ci•7 *■>

3 .6“T f t
7 . 8
/  A

2 . 7  
— ^  ■■

4 . 6  
2 .3
2 . 6

7 .4 5 7 .4
4  O

- 2 4 . 7  
7 .6  

63 o0
1976 
1976

2
3

— S- -

3 oJ
0 e1— »  m

6 o3 
8 .4

1 o7 
04

6 . 9
6 .3

105 .o  
2 3 7 .5

197o 
1976

4
5

7 . 2
1 2 ,5

3 . 5
7 . 5

1 1 O
18 .4

3 o') 
8 . 4

2 .5 
2 .7

- 7 . 6-- 
1 1 . 0

375 .8  
48 3 .7

1 41 08 
2 3 5 .4
• ^ 0  7  r1 976 

1976
M O  “ f  f

ó
7ft 1 9 .  G

1 1 .7  
14 02

2 3 . 2  
24 .U

13.1
13 .6

2 . 1
2 . 2

15 .1  
15 .6

559 .3  
5 1 8 .7

£ B 3 O
263 .1

1 976 
1976
4  f t  *7  J

8
9

4  ^

18.1
1 4 .4
4  4  f

1 3 .1
1 0 . 8

2 3 . 0
1 8 .9

I i - .  7
I I  .3

2 . 1  
1 . 9

14 .7  
13 .4

*f67 .1
2 2 8 .0

1 98 o4
82 02

1 976  
1976 
1976

10  
1 1  
1 2

- f t  o 4 
7 .2  
1 .9

8  o5 
4 . 7  

!-0 .é

1 4 .9
9 . 7
4 . 6

9 .5  
5 . 4
0 . 0

2 o  5 
2 .8  
2 . 6

1 1  .8 
8 . 9  
6 . 1

1 2 0 . 8
51 .3
4 8 .2

3 0 .3  
- 9  „7 

- 3 1 . 7

S R PET R H P  ST D S T  A E T  D E F SUR
(%) (HM) (MM) (MM) (MM) (MM) (MM) (MM) (MM)

1 1 .4  
1 9 „7

2 7 .3
34„7

2.8
8 .3

2 7 .7

2 4 .5
2 6 -4

1 0 0 .0
10C„0

0 . 0  
0 «0

2 .8  
8 o3

0 . 0
0 ,0

2 4 .5
2 6 -41 '  .  f

4 7 .2
“  o  1 

1 1 .2 - 1 6 . 5
* * *■» o  ■**

8 4 .8
i ’ o *

- 1 5 . 2 2 6 .4
• O  v

1 .3
fa. W  O  f  

0 .0
3 2 .5 6 0 . 7 42 .4 1 8 .3 1 0 0 .0 1 5 .2 42 o  4 G.O 3„1
: . 
5 3 .8

7 2 . 0
1 9 .0

73
9 4 ,9

- 1 . 4
- 7 5 , 9

9 8 .6
46 .1

- 1 . 4  
-5 2 ,4

7 3 .4
7 1 .4

0 . 0
2 3 ,5

0 .0
0 , 0

3 6 .1  61 .6  82 .5  - 2 0 . 9  3 7 .5  - 8 . 7  7 0 .3  1 2 .2  0 . 0
4 9 .9  1 5 .7  78 .8  - 6 3 . 1  1 9 .9  - 1 7 . 5  3 3 .2  4 5 .6  0 .0
4 2 . 3  9 5 . 2  4 3 .6  5 1 .6  7 1 .5  5 1 .6  4 3 .6  0 . 0  0 . 0
3 6 .4  7 3 . 7  1 7 .0  5 6 . 7  1 0 0 .0  2 8 .5  1 7 .0  0 . 0  2 8 . 2
28 06 31 . 4  8 .2  2 3 .2  1 0 0 .0  0 . 0  8 . 2  0 . 0  2 3 .2
1 9 .2  3 2 . 0  1 .8 3 0 .2  1 0 0 . 0  0 . 0  1 .8  0 .0  3 0 .2

2 0 .8  5 5 .1  5 .0  50 .1  1 0 0 . 0  0 . 0  5 . 0  0 . 0  5 0 .1
2 5 .2  3 9 . 7  9.1  3 0 .6  1 0 0 . 0  0 . 0  9 .1  O.Ü 3 0 . 6
2 3 .8  2 6 .6  2 2 .4  4 .2  1 0 0 .0  0 . 0  2 2 .4  0 .0  4 .2
5 0 .2  8 .8  5U.2 = 4 1 .4  6 6 .1  -33 .9  42 .7  7 .5  0 .0
4 2 . 0  3 5 . 0  7 5 .2  - 4 0 . 2  4 4 .2  -21 . 9  5 6 .9  1 8 .3  0 .0
4 2 . 5  44 „3 84 .9  - 4 0 . 6  2 9 .5  - 1 4 . 8  59 .1  2 5 .8  0 . 0
3 7 . 7  6 0 .3  8 0 .7  - 2 0 . 4  2 4 . 0  - 5 . 4  6 5 .7  1 4 .9  0 .0
4 8 . 7  91 .1 74 .2  1 6 .9  41 .0  1 6 .9  7 4 .2  0 . 0  0 . 0
3 3 . 9  1 1 5 .2  3 7 .4  7 7 .8  1 0 0 .0  5 9 . 0  3 7 .4  0 .0  1 8 .8
2 0 .7  2 1 8 .1  16 .7  2 0 1 .4  100.Ü  0 . 0  1 6 .7  Ü.O 2 0 1 .4
1 5 .3  1 4 1 .3  7 . 0  1 3 4 .3  1 0 0 . 0  0 . 0  7 . 0  0 . 0  134 .3
1 2 .5  4 3 . 6  11.2  3 2 . 4  1 0 0 .0  0 . 0  1 1 .2  0 . 0  3 2 .4

1 0
/. *>

. 9
/

6 9 , 0 8 . 3 6 0 . 2  
C C

1 0 0 ,  
1 nn

. 0
n

0 . 0  
p n

8 . 8  
7 1

Uo0
n n

6 0 . 2  
f t  ÇH t

1 7
• H
. 6

f f

I !> »6

8 3 . 8 _
f • I

2 2 . 0  
/  ■> 7

O m J

6 1 . 8
—-C

I u u  «
1 0 0 ,  
i  nn

• u
. 0
n

u .u

0 . 0
n n

» o I
2 2 . 0  
L O  7

Ueu
0 . 0  
n n

O O?

61 . 8
Ç LÉO

3 4
C 4

oU
. 5

T

H ü b  1

4 0 . 9
~  C7 **>

g (
6 7 . 6

!> oH

- 2 6 . 7
_T O 4

* UU «
7 6 ,
Ç *}

»u
.5

x

Ü ow

- 2 3 . 5
H t  o f
6 4 . 4

U oU

3 . 3
4 7 O

J  oH

0 . 0  
o n-> 1 

44 . 0
ZO .  2
4 5 . 6
« 4 a

9 » •  «5 
9 4 . 3f* A ■ ifc—

= 4 8 . 7
^  C «
3 2 ,
n a

1J

,1r» - 2 0 . 2  
7 O

f  f  «3
6 5 . 8
"7 C A

1 J • 9
2 8 . 6  
7 ft

u • u
0 . 0

A54
35
*7

o5
. 7
a

7 1  o8
9ó  ©6n O 4

32 o c. 
41 . 7

"  1 K
5 4 . 9
«V - *9 -

2 9 .
8 3 ,

• 0
,9

—3  o 2

5 4 . 9
4 A 7

7 5 . 0  
41 . 7
4 7 /

7 o 2
0 . 0  
A n

UoÜ
o . n
a n3 1 

15  
1 7

.1

.8
o7

2? . 1  
1 3 8 .4  

3 6 . 0

1 7 .4
4 .2
1 . 8

1 0 .  7 
1 3 4 .2  

3 4 .2

.o
1 0 0 . 0
1 0 0 . 0

i 0. 7 
5 .4
0.0

1 7 .4  
4 .2  
1 .8

O.U
0 . 0
0 .0

C .0 
1 2 8 .8  

3 4 .2

1 9 .5  2 9 .9  9 .9  2 0 .0  1 0 0 .0  0 . 0  9 . 9  0 . 0  2 0 .0
2 1 .6  2 8 . 6  7 .6  2 1 .0  1 0 0 . 0  0 . 0  7 . 6  0 . 0  2 1 . 0
3 9 . 6  2 0 . 7  2 6 .9  - 6 . 2  9 4 .0  - 6 . 0  2 6 .7  0 .2  0 .0
51 .2  6 .1  49.1  - 4 3 . 0  61 .1 - 3 2 . 8  3 8 .9  1 0 .2  0 . 0
4 9 .6  1 0 .3  8 6 .2  - 7 5 . 9  2 8 .6  - 3 2 . 5  4 2 .8  4 3 . 4  0 . 0
6 0.6  1 2 . 0  
55 .0  2 4 .1

1 J9.6
113 .4

ft

- 9 7 . 6
- 8 9 . 3

A 4  /

1 0 . 8
4 . 4
ft ft

-1 7 „8 
- 6 . 4  
- 2 . 5  
8 8 .0  
1 0 . 0  

0 . 0

2 9 .8
3 0 .5
4  7  f t

7 9 .7
8 2 .9
79 .1

0.0
0 . 0
0 . 0

0 .0
0.0
0 . 0
0 .0

2 6 .4
1 0 0 .6

66 o7 1 1 o4 
3 4 .3  1 2 6 .8

9 3 © ö 
38 08

-81 06
8 8 .0

2 .0  
9 0 .0

13 o9 
3 8 .8  
19 .3I 9 .0  55 o7

I I  .5 1 0 7 .6
19.3

7 .0
3 6 .4

1 0 0 . 6
1 0 0 . 0  
1 0 0 . 0

1 9 .4  3 6 .1  2 .7  3 3 . 4  1 0 0 .0  0 . 0  2 .7  0 . 0  3 3 . 4



JR M T T M I N  TMAX TDP V E RG RN ET
(C) (C) (C) (C) C M / S ) (MB) (CAL) (CAL)

1977 1 3 „4 1 . 2  5 .8 2 Q1 3 B1 7 . 1  5 7 , 8
197 7  2 5 02 2 05 3 . 5  3 0 2 3 D3 7 07 104=8
1977 3 7 03 3o9  11 . 0  4 06 3 „1 8 * 4  2 0 3 o5

= 22.6 
2 .7  

6 6 09

S R PET RMP ST DST AET DEF SUR
(%) (MM) (MM) (MM) (MM) (MM) (MM) (MM) (MM)

19 03 84 07 2 .1  8 2 . 6  1 0 0 . 0  0 . 0  0 . 0  8 2 .6
2 3 . 8  6 1 . 0  9 . 9  5 1 .1  1 0 0 . 0  0 . 0  9 . 9  0 . 0  5 1 .1
28 04 5 9 . 2  28 05 3 0 . 7  1 0 0 . 0  0 . 0  2 8 . 5  j . O  3 0 . 7



Tabel 6.3 - Jaarlijkse hoeveelheden aan neerslag (R) en overschot 

(SUR) (in mm) voor de periode 1957-1976

1957 1958 1 959 1960 1961 1 962 1963 .,19 64 1965 1966

R

SUR

654,4 

224, 5

850,8 

391 , 7

556,8

207,4

926, 2 

503,3

707, 5 

281 , 5

583,2

217,7

605,2 

194, 1

664, 9 

265, 9

788,3

350,7

859 ,1 

398,0

1967 1 968 1 969 1970 1971 1972 1973 1 974 1975 1 976

S

SUR

577,1

188,0

665,2 

242, 0

834, 1 

366,4

577,0

212,4

525, 1 

115,6

603, 7 

169,4

534 , 5 

135,6

879.1

471,8

7 27,1 

298,8

469,3 

201 , 3

Totale neerslag in periode 1957-1976 : 13588,6 mm

Jaargemiddelde : 679,4 mm

Totale overschot in periode 1957-1976 : 5436,2 mm

Jaargemiddelde : 271,8 mm
SUR

Voedingsko efficiënt : = 0,40

Door het vergelijken van de maandelijkse gegevens van de 

neerslag van de periode waarin de veldwaarnemingen plaatsvonden en 

de m a a n d g e m i d d e 1 de van deze waarde voor de 20-jaar periode kan men 

afleiden in welke mate de seizoenen regenrijk of -arm waren. Door 

hetzelfde te doen met de potentiële evaporatie, de berging van de 

bodem, de werkelijke evaporatie, het deficit en het overschot kan 

men afleiden in hoeverre de bestudeerde periode normaal of abnormaal 

droog was (tabel 6.4).
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Tabel 6.4 - Maandelijkse gemiddelden van R, PET, S T , AET, DEF en

SUR voor de periode 1957-1976 en de overeenkomende w a a r ­

den gemeten tijdens de veldwaarnemingen

Neerslag R (in mm) Potentiële ievapotranspiratie 
(in mm)

G e m i d ­
delde

1 974 1975 1 976 1 977 Gemid- 
de 1 de

1974 1975 1976 1977

J 47,7 55,1 69,0 29,9 84, 7 4,0 5,0 8 , 8 9, 9 2 , 1

F 39,0 39,7 15,6 28, 6 61 , 0 8,1 9,1 7,1 7,6 9,0

M 39, 7 2 6,6 83,8 20,7 59,2 26,2 22,4 2 2 , 0 26,9 28, 5

A 43,2 8,8 48,1 6,1 46,5 50,2 42,7 49, 1

M 45,5 35,0 40,9 19,3 75,8 75,2 67 , 6 86,2

J 51,4 44, 3 53,2 1 2 ,0 91 , 6 84, 9 91 , 3 109,6

J 62, 8 60,3 45,6 24, 1 90,3 80,7 94,3 113,4

A 61 , 7 91 , 1 71,8 11,4 72,2 74,2 82,2 93,0

S 66, 6 115,2 96,6 126,8 42,8 37,4 41 , 7 38,8

0 70,0 218,1 28,1 55, 7 19,1 16,7 17,4 19,3

N 85,8 141,3 138,4 107,6 6,0 7,0 4,2 7,0

D 59,4 43,6 36,0 36,1 2,8 1 1 , 2 1 , 8 2,7

Berging van bodemvocht 
ST (in mm) (max. 100 mm)

Werkelijke 
AET (in mm)

evapotranspiratie

G e m i d ­
delde

1974 1975 1 976 1 977 G e m i d ­
delde

1974 1 975 1976 1977

J 100,0 100,0 100, 0 1 00,0 100,0 4,0 5,0 8 , 8 9,9 2 , 1
F 100,0 100,0 100,0 100,0 100,0 8,1 9,1 7,1 7,6 9,9

n 97,8 100,0 100,0 94 , 0 100,0 26, 1 22, 4 2 2 , 0 26, 7 28 , 5

A 90,5 66,1 100,0 61 , 1 45, 1 42, 7 42,7 38, 9

M 67,7 44,2 76,5 28 , 6 66, 1 56,9 64,4 42,8

J 50, 9 29,5 52,3 10,8 67 , 0 59,1 77,5 29,8

J 43,1 24,0 32, 1 4,4 69,7 65,7 65,8 30, 5

A 44,9 41,0 29,0 2,0 55,4 74,2 75,0 13,9

S 67,6 100,0 83,9 90,0 37,7 37,4 41,7 38,8

0 88,7 100,0 94,6 100,0 19,0 16,7 17,4 19,3

N 100,0 100,0 100,0 100,0 6,0 7,0 4,2 7,0

D 100,0 100,0 100,0 100,0 2,8 1 1 , 2 1 , 8 2,7



T a b e l  6.4 - v e r v o l g

Deficit DEF (in mm) Overschot SUR (in mm)

G e m i d ­
delde

1974 1975 1 97 6 1977 G e m i d ­
delde

1974 1975 1976 1977

J 0,0 0,0 0,0 0,0 0,0 43, 6 50, 1 60,2 20,0 82,6

F 0,0 0,0 0,0 0,0 0,0 36,7 30,6 8,5 21 , 0 51 , 1

M 0,1 0,0 0,0 0,2 0,0 15,8 4,2 61 , 8 0,0 30,7

A 1,4 7,5 0,0 1 0 , 2 3,2 0,0 5,4 0,0
M 9,8 18,3 3,3 43,4 2 , 2 0,0 0,0 0,0
J 23,5 25,8 13, 9 79,7 1 , 2 0,0 0,0 0,0
J 20,6 14,9 28,6 82,9 0,8 0,0 0,0 0,0
A 16,8 0,0 7,2 79,1 4,6 0,0 0,0 0,0
S 5,1 0,0 0,0 0,0 9,5 18,8 0,0 0,0
0 0, 1 0,0 0,0 0,0 29, 9 201 ,4 0,0 25,3

N 0 0,0 0,0 0,0 68 , 6 134,3 128,0 100,6
D 0 0 , 0 0,0 0,0 56,6 32,4 34,2 33,4

Hieruit leidt men af dat de heropvullingsperiode 1 974- 

1975 een abnormaal groot overschot vertoont. Het is in die periode 

dat de veldwaarnemingen werden aangevat. De grondwatertafelstand 

vertoonde er een zeer hoge stand. Het is ook de meest regenrijke 

periode in de bestudeerde 20 jaar (wellicht ook sinds de aanvang 

van de waarnemingen te Ukkel, circa 150 jaar geleden). De hierop- 

volgende afvloeiperiode kan als normaal bestempeld worden, alhoewel 

ze iets langer duurt dan normaal zoals af te leiden is uit de v e r ­

gelijking met de gemiddelde waarde van het overschot.

Tijdens de maanden september en oktober 1975 had nog geen 

infiltratie naar de g r o n d w a t e r t a f e 1 toe plaatsgehad. Pas in november

1975 ving de heropvullingsperiode 1975-1976 aan. Tijdens de maand 

november was er een aanzienlijk overschot. Van december 1975 tot 

maart 1976 lag het overschot ver onder het gemiddelde. Vanaf maart

1976 begon reeds de afvloeiperiode die bleef duren tot oktober

1976. De bereikte in deze periode een absoluut

minimum en het een absoluut maximum voor de 20 jaar periode.

De heropvullingsperiode 1976-1977 was vochtiger dan n o r ­

maal. Vooral van november 1976 tot maart 1977 was het overschot 

groter dan het gemiddelde.
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6.2. Het tweede subsysteem : de waterhuishouding van de verzadigde
ZONE

In het tweede subsysteem wordt de aanvulling van het 

grondwater, verkregen als afhankelijke veranderlijke uit het 

eerste subsysteem, samen met de hydrogeologische gegevens i n g e ­

voerd als onafhankelijke veranderlijken. Hierbij wordt de 

freatische laag in een aantal cellen onderverdeeld. Aan iedere 

cel worden hydrogeologische parameters toegekend. Deze zijn de 

aanvangsstijghoogte, de gemiddelde horizontale en de vertikale 

permeabiliteit tussen de centra van de cellen, de berging en de 

winning of de lozing van water.

Door toepassing van de wet van DARCY en de kontinuïteits- 

wet worden de afhankelijke veranderlijken bepaald. Deze zijn de 

ondergrondse in- en/of uitstroming in een bepaalde periode en de 

stijghoogte in de centra van de verschillende cellen op het einde 

van de beschouwde periode.

Wanneer de berekende stijghoogten overeenstemmen met 

de waarnemingen op het veld kan het model als bruikbaar beschouwd 

worden. Iedere kunstmatige ingreep op de grondwaterstroming kan 

met dat model gesimuleerd worden.

6.2.1. BASISPRINCIPEN VAN HET TWEEDE SUBSYSTEEM

6.2.1.1. Potentiaal

Een d r i e - d i m e n s i o n a a 1 grondwater s t ro m i n g s s y s t e e m  houdt 

het bestaan in van een driedimensionaal p o t e n t i a a l v e l d . Het veld 

is in dat geval het g r o n d w a t e r b e k k e n .

De potentiaal is de hydraulische potentiaal (HUBBERT,

1 940)

$ = g. z + 1P 6.34
P o p

Voor vloeistoffen wordt de potentiaal

P - P0
$ = g.z + -- ----- 6.35

waarin $, de hydraulische potentiaal in ieder punt van hét veld, 

g, de z w a a r t e k r a c h t v e r s n e l l i n g ,

z, de hoogte van een gegeven punt boven een horizontaal 

referentievlak,
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p, de druk in dat punt,

Pq , de atmosferische druk, 

p, de dichtheid is van het water.

De grootheid \jj = $/g is gekend als de stijghoogte en 

wordt gemeten in meters water boven een horizontaal r e f e r e n t i e v l a k . 

Daar ^ gelijk is aan de hydraulische potentiaal gedeeld door een 

konstante, g, is dit eveneens een potentiaal en gehoorzaamt daarom 

ook aan alle wetten van de potentiaaltheorie. Hij wordt gemeten in 

een eenvoudige eenheid die een geometrische betekenis heeft in 

een regionale grondwaterstroming. Daar zal 1 in het verloop van 

deze studie gebruikt worden als de p o t e n t i a a lfu n k t i e .

In ieder punt van de watertafel is de druk atmosferisch 

zodat de tweede term in 6.35 wegvalt en daarom $ = g.z of in termen 

van stijghoogte \p = z. De stijghoogte (of p o t e n t i a a l f un k t i e ) in 

ieder punt van de watertafel is dus gelijk aan de hoogte van dat 

punt boven het r e f e n t i e v l a k .

6.2.1.2. Vereenvoudigde voorstelling van de watervoerende laag

Men kan een freatische laag voorstellen als een ruimte- 

rooster van punten, waarvan de eenheidcel een vierkante basis 

heeft met een zijde Z en een hoogte H. Meestal is H kleiner dan Z 

omdat deze vorm van cel het meest geschikt is voor lateraal uitge­

strekte .maar ondiepe grondwaterbekkens (fig. 6.3). In het ruimte- 

rooster of in de ruimtematrix onderscheidt men rijen in de x - 

richting, rijen in de y-richting en kolommen in de z-richting die 

r e s p e k t i e v e l i j k met het symbool I, K en J aangeduid worden. Daarom 

kan men ook spreken van de I-rij, de K-rij en de J-kolom.

Men stelt dat in een I-rij i punten voorkomen, nl. van 

1 tot i tellende van links naar rechts, in een K.-rij k punten, 

nl. ven 1 tot k tellende van achter naar voor en in een J-kolom 

j-punten, nl. van 1 tot j tellende van onder naar boven zodat het 

j-de punt het bovenste punt is van de kolom.

Algemeen kan men stellen dat het midden van een volume- 

element de volgende koördinaten heeft : x = I.Z, y = K.Z en 

z = J.H. Ieder middelpunt van een dergelijk v o 1urne-e1ement kan 

dan ook door de dimensieloze koördinaten (I,K,J) aangeduid worden. 

Men zal nu in ieder roosterpunt, centrum van iedere éénheidscel, 

het hydraulische peil \p, berekenen nl. ^(I,K,J) in het punt 

( I > K , J ) .
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De middelpunten van de zijvlakken van de volume-elementen 

komen overeen met

(1^1/2).Z, K.Z, J.H in de x-richting,

I.Z, (KjM/2).Z, J.H in de y-richting,

I.Z, K.Z, (J+J/2).H in de z-richting.

In het ruimterooster onderscheidt men, wat betreft de 

hydrogeologie, twee soorten eenheidscellen en roosterpunten. De 

eenheidscellen die bovenaan begrensd zijn door de watertafel en 

degene, die niet begrensd zijn door de watertafel. De eerste cellen 

hebben een veranderlijk volume, nl. een constant grondvlak Z 2 en 

een variërende hoogte. De hoogte is afhankelijk van de watertafel.

Als referentievlak kiezen we het vlak gevormd door de grondvlakken

van de bovenste eenheids ce 1l e n . Zo is de hoogte van de e e n h e i d s ­

cel op ieder ogenblik gelijk aan de stijghoogte op dat ogenblik 

in de eenheidscel. De eenheids ce 1 len die bovenaan niet door de 

watertafel begrensd zijn hebben een constant volume nl. Z 2 .H.

6.2.1.3. WET VAN DARCY

De wet van DARCY voor de stroming in de x-richting in een 

x,y,z koördinatensysteem in een niet homogeen medium luidt

v x = - k h (x,y,z) 3<J»/3x 6.36

waarin v^, de stroomsnelheid (flux) is in de positieve x-richting 

(im/dag ) ,

k h (x,y,z), de horizontale permeabiliteit in het punt (x,y,z) 

(m/dag),

\l>, de stijghoogte (potentiaal in deze studie) (m)

Een gelijkaardige uitdrukking kan geschreven worden voor 

de stroming in de y-richting, nl.

Vy ■ - k h (x,y,z) 9i(j/3y 6.37

In deze studie wordt aangenomen dat de horizontale p e r m e a ­

biliteit in alle richtingen dezelfde is.

De vertikale permeabiliteit kV verschilt echter van de 

horizontale. Daarom schrijft men de uitdrukking voor de stroming in 

de vertikale richting als volgt

v = - k V (x,y,z) 3^/3z 6.35
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6.2.1.4.1. Principe

Het principe van kontinuïteit vereist dat geen water 

in een element geschapen, noch vernietigd wordt. Naargelang van 

het soort eenheidscel moeten verschillende formules gebruikt 

worden om aan de wet van de kontinuïteit te voldoen.

6.2.1.4.2. Formules

Een eenheidscel, die niet begrensd wordt door de w a t e r ­

tafel, heeft een konstant volume Z 2H.

Bij niet-permanente stroming van een samendrukbare 

vloeistof in een elastische watervoerende laag geldt voor een 

dergelijke cel de volgende betrekking :

9 v 3 v 8 v
Z?H -r-r1 + Z?H -T— ^  + Z?H -T— ^ = -Z ?H + W 6.393x 3y 3z A 3t

waarin S ’^, de specifieke elastische bergingskoëfficiënt Cm 1),

v x , Vy.en v z , de snelheden (fluxen) in respek t i e v e l i j k de x-, 

y- en z-richting (m/dag), 

i|i, de stijghoogte (m), 

t, de tijd (dagen),

W, het debiet dat kunstmatig ingébracht wordt (positief) 

of kunstmatig verwijderd wordt (negatief) (m3/dag).

Bij niet-permanente stroming van een samendrukbare 

vloeistof in een elastische watervoerende laag geldt voor een 

eenheidscel die door de watertafel begrensd is de volgende b e t r e k ­

king

v 3 v 3v
Z ?— r— — + Z?-—   Z 2 ( v - 5 -r-2-) - Z?N = -Z? U - S * + S  ).-U + W 6.403x dy z 2 3z A o 3t

Hierin gelden dezelfde symbolen als hierboven; is de

bergingskoëfficiënt nabij de watertafel (dimensie 1o o s ) en N de

infiltratie (m/dag), d.i. de hoeveelheid water die per tijdseenheid
2(m /dag) door de horizontale eenheidsoppervlakte (m ) naar de grond- 

watertafel toestroomt.

6.2.1.4. K O N T I N U I T E I T S W E T
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Deze betrekkingen qteunen op het fundamenteel principe 

van behoud van de massa. Men stelt dat de algebraïsche som van de 

debieten die een gesloten volume-element van een poreus milieu 

binnen- en buitenstromen gelijk is aan de hoeveelheid water per 

eenheid van tijd die door het beschouwde volume opgeborgen of 

afgegeven wordt.

Beschouwen we eerst het geval van de eenheidscel, die 

niet door de watertafel begrensd wordt, dus met konstant volume 

Z 2 . H.

Het debiet in de positieve x-richting doorheen het zijvlak 

met x-koördinaten gelijk aan 1 +1 / 2  kan als volgt voorgesteld worden :

Z 9vxZ.H (v ) Tj_A/n  „ , of bij benadering Z.H (v +—  *t — ) T 7x 1 +1/2,K,J x 2 dx I ,K ,J

(De positieve x-richting is de naar buiten gerichte normaal op 

dit zijvlak).

Het debiet in de positieve x-richting dat doorheen het 

zijvlak met x-koördinaten gelijk aan 1 - 1 / 2  vloeit kan als volgt 

voorgesteld worden :

7 9 v
Z -H ' V l  1 / 2 .K.J biJ benadering Z.H [V)< 5

(De positieve x-richting is de naar binnen gerichte normaal op 

dit zijvlak).

Het verschil tussen deze twee debieten is dus bij benade-
9 9vxring gelijk aan Z .H.(-=-- )T „ .. Een positief verschil wijst opU X  X f IN t J

een wegstromen van water naar buiten in de x-richting. Bij een

negatief verschil geeft de absolute waarde het nettodebiet aan

dat naar binnen volgens de x-richting stroomt. Het verschil
•> 9vxZ . H .  (-r-- )_ . kan als de negatieve " t o e n a m e ” van het water in

o  X  X f  t «J

het volume-element in de x-richting beschouwd worden.

Hetzelfde principe wordt toegepast in de y- en de z-richtine 
. 3 v x 3 Vy 3v z ,

zodanig dat we (Z2 .H.(--r—  + — r̂ - + — r— ) T „ • ) of Z 2 .H. (div "t/)T 73x 3y 3 z I , K , J  I,K,J
kunnen beschouwen als de negatieve " t o e n a m e ” van het water of het

negatieve nettodebiet van buiten naar binnen in het volume-element.

Dat betekent dus ook dat bij een positief verschil het volume-

element water afgeeft en dat bij negatief verschil water opgenomen

wordt. Men kan ook stellen dat - Z2 .H. (div v ) T ,, , de verandering
1 9 IN f  J

6. 2 . 1. 4. 3. V e r k l a r i n g



is van de hoeveelheid water in het volume-element per eenheid van 

tijd door stroming waarbij een positief getal een toename voor- 

stelt en een negatief getal een afname*

Stelt men dat W het debiet is dat Kunstmatig ingébracht 

wordt in het volume-element (W is positief) of kunstmatig verwij-
Oderd wordt (W is negatief) dan is W-Z .H.div v gelijK aan de v e r ­

andering van de hoeveelheid water in het volume-element per t i j d s ­

eenheid door stroming en door Kunstmatige ingreep. Een positieve
o

waarde van W-Z .H. div v beteKent een toename aan water in het 

volume-element, een negatieve waarde een afname aan water in het 

volume-element.

Een netto toename aan water in het volume-element gaat 

gepaard met een toename van de druK en bijgevolg van de stijghoogte 

in de tijd.

De specifieKe elastische bergingsKoëfficiënt S' Kan 

men definiëren als de hoeveelheid water die per volume-eenheid 

van het volume-element vrijgegeven of opgeborgen wordt tengevolge 

van r e s p e K t i e v e l i j K een daling of een stijging van de stijghoogte 

met een eenheid. De specifieKe elastische b e r g i n g s k o ë f f i c i ënt S'^ 

kan als een som worden voorgesteld (DOMENICO, 1972) :

S. = p .g (k +n< ) (L M  6.41A w s f

waarin < , de vertikale samendrukbaarheid van de watervoerende s
laag fl 1 . L .T2 )

k .̂, de s a mendrukbaarheid van de vloeistof (M ^ L . T 2 )»

n, de porositeit van de watervoerende laag Cdimensie l o o s )

p , de dichtheid van de vloeistof (M.L 3 ),w
g, de zwaartekrachtsversnelling (L.T2 ) voorstelt.

De verandering van de hoeveelheid water in het volume-element per

tijdseenheid is dan ook gelijk aan Z 2 .H. S . e n  kan men dus
• a I A o t

stellen dat W - Z 2 .H.div v = Z 2 .H. S. .
A  d t

Hieruit leidt men de bovenstaande formule af, nl.

3v 9v 3v

* if * â î - >  - w‘ z 2 - h - V s !  6-39

waarin alle grootheden betrekking hebben op het punt (I,K,J).



Beschouwen we het geval van de eenheidcel die bovenaan 

begrensd is door de watertafel.

Het debiet in de positieve x-richting doorheen het 

zijvlak met x-koördinaten gelijk aan 1 + 1 / 2  is hier :

7
Z - ‘* v x )I*1/2,K.J of blJ benadering 3x~^I,K,J

(De positieve x-richting is de naar buiten gerichte normaal op 

dit z i j v l a k ) .

Het debiet in de positieve x-richting doorheen het z i j ­

vlak met x - koördinaten gelijk aan 1 - 1 / 2  is :

7 3 ifiv
of blJ benadering Z . ( * » x -

(De positieve x-richting is de naar binnen gerichte normaal op 

dit z i j v l a k ) .

Het verschil tussen deze twee debieten is bij benadering 
3ÿvx . 3ifivx

gelijk aan -Z2 (— r )_ .. Het verschil - Z 2 (—   )T „ , kan als
d X 1 f l\ > J d X 1 i l\ i J

de negatieve "toename" van het water in het volume-element beschouwd 

worden in de x-richting.

Hetzelfde principe wordt toegepast in de y-richting
9 3 i J >vx  3lJ>Vy

zodanig dat -Z*(— r- + — r— '-)T „ , kan beschouwd worden als de3x 3y I , K , J
negatieve "toename" van het water in het volume-element in de

x- en y-richting.

Het debiet in de positieve z-richting nabij de w a t e r ­

tafel is - Z 2 . INI. Het debiet in de positieve z-richting doorheen 

het horizontaal vlak met z-koördinaten gelijk aan J-1/2 is

ZZ V l . K .  J-1/2 0f blJ benadering Z 2 ( V z I , K , J * Het ''e r 3 c h “
tussen deze twee laatste debieten is bij benadering gelijk aan 

H 3 v z
Z 2 iv -•=■ -r-— )T •• + Z 2N en kan als de negatieve "toename" van het

Z £ d Z 1 i l\ f J
water in het volume-element in de z-richting beschouwd worden.

Uit het bovenstaande volgt dat

.3ÿv 3i//v ij 3v
W - 2 2 (----- + ---+ z 2N + Z 2 (v - —  --------------)

3x 3y I.K.J z 2 3z I.K.J

gelijk is aan de verandering van de hoeveelheid water in het 

volume-element per tijdseenheid door stroming en door kunstmatige 

i n g r e e p .



Een netto toename van water in een eenheidscel die 

bovenaan begoensd wordt door de watertafel heeft enerzijds een 

algemene drukstijging in het volume-element tot gevolg en a n d e r ­

zijds een stijging van de watertafel. De verandering van de h o e v e e l ­

heid water per tijdseenheid in het volume-element moet dan ook als

een som van twee termen voorgesteld worden. De term Z2 .\p.S .A o t
stelt de toename voor van de hoeveelheid water per tijdseenheid in

het volume-element tengevolge van de algemene drukstijging of

-daling en de samendrukbaarheid van het water en de watervoerende

laag. De term Z2 .S . geeft de toename aan van de hoeveelheid water
O du

per tijdseenheid in het volume-element tengevolge van de stijging 

of de daling van de grondwatertafel. Hierbij is S q de bergingskoëffi- 

ciënt nabij de watertafel en kan gedefinieerd worden als de h o e v e e l ­

heid water die per oppervlakte-eenheid vrijgegeven of opgeborgen 

wordt tengevolge van r e s p e k t i e v e 1 i j k een daling of een stijging van 

de watertafel met een eenheid. Het laatste stemt overeen met een 

toename van de stijghoogte met een eenheid in het beschouwde volume- 

e l e m e n t .

De verandering van de hoeveelheid water in de eenheidscel 

die bovenaan begrensd wordt door de grondwatertafel is enerzijds 

gelijk aan w - Z * . ( ^ *  . * Z 2 .<vz - £ ^ § > i>KjJ * Z 2 .N

en anderzijds gelijk aan Z 2 .(ÿS + S ) waardoor
A O d t

3<J/v 3ipv u 3v , . ,
W - Z ^ - j T - ^  + — aTT^r K ^ + z 2 ( v  ■ 7  — T k i + z2n = Z 2 t*S.+S )3x 3y I , K., J z 2 3z I,K,J A o 3t

Hieruit leidt men de volgende betrekking af :

3ÿv 31|>\' u  3v .  ,

Z2( 3 x + 3 y ^ 3I,K,J " z 2 ( v z " 2 '3z“ )I,K,J " Z2n = W_z2 ( *S A * S o ) ’ 31

6.40
w a a r b i j 3 H e  grootheden betrekking hebben op het punt ( I , K , J ) .

6.2 .1.5. Differentie-approximatie

Bij de differentie-approximatie wordt de afgeleide v e r ­

vangen door de waarden van het differentie-kwotiënt van de funktie 

in gescheiden diskrete punten.
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-, A x . r . Ax,
i Axr ■> f(X+—:r) “ f CX---)df ( x ) . Af ( x ; 2 2 c /i— -----— -------- = -------- --------------  D.'tZ

dx Ax Ax

of

.r Ax , ., Ax ,- | , , ... , ^(x+— =-,y,z) -  lp C X— =r,y,zJ3^(x,y, z) ^  A if» ( x , y , z ) = 2 _______________2 6.43
3x Ax Ax

Deze differentie-approximatie Kan men ooK toepassen in 

de bovengenoemde kontinuïteitswetten. De kontinuïteitswet voor 

een volume-element dat niet begrensd wordt door de watertafel kan 

eveneens als volgt worden neergeschreven

'z2 ,H*t-3 x Ck (X,ï,zl3i) + "aÿtk tx,y*z J 3 y 3 * T z tK tx'y ' 2 )T z J) I ,K, J

■ 6‘ 44 

Toepassing van de differentie-approximatie in het linkerlid van 

de kontinuïteitswet.

Eerste diskretisatie 

r 3 , , h(j j CK *

k 11+1/2,K , J ) !♦1/2,K , J .T*1 “ k tI" 1 /2 •K 'J 1 ' ïx 1 1-1/2,K , J . T » 1! 6.45

Tweede diskretisatie

rjL&i -► »tI*1,K,J,T+1) - i|)(I.K,J,T+1 ) 6.46
l3x 1+1/2,K.J.T+1 Z

3 ip 1 ip(I,K,J,T+1) - i|)(I-1,K.J,T+1) 6.47
l3x 1-1/2.K.J.T+1 * Z

Hieruit volgt dat

(|-(kh (x,y,z)|^) ) -*■ 4 r ^ h fI+‘'/2,K, J) . (*(I+1.K,J.T+1)-*(I.K.J,T+1)
o X o X L

-k^(I-1/2,K,J) . Cip(I,K,J)—lpt1 — 1,K,J) ) ) 6.48

Toepassing van de differentie-approximatie in het rechterlid van 

de kontinuïteitswet

,3 <i, . tp(I,K,J,T + 1 ) - ^|»(I,K,J,T) „
Tt I , K , J , T+ 1 * -------------CT 6,49

waarbij i|> ( I . K . J . T + 1 ) de stijghoogte is op het tijdstip aangeduid

door T + 1 en ip(I.K.J.T) de stijghoogte op het tijdstip aangeduid 

door T in het punt Cl,K,J ) .De getallen T en T + 1 zijn onbenoemd. De 

tijd die met deze onbenoemde getallen overeenkomt is respektievelij k 

C T .T en CT.(T+1) waarbij CT het tijdsinterval voorstelt tussen twee



opeenvolgende tijdstippen en uitgedrukt wordt in dagen.

In vergelijking 6.44 kunnen de vergelijkingen 6.48 

en de gelijkaardige voor de y- en z-richting geplaatst worden. 

Vergelijking 6.49 wordt eveneens in vergelijking 6.44 geplaatst 

waarbij W vervangen wordt door het symbool W(I,K,J,T+1) dat het 

debiet (m3/dag) voorstelt die kunstmatig in de eenheidscel g e ­

bracht wordt (positief) of kunstmatig verwijderd wordt gedurende 

de periode begrepen tussen de tijdstippen aangeduid door T en T+1 

in het volume-element met het centrum (I,K,J).

Om niet gehele getallen in de indices van de permeabili

teiten te vermijden wordt gesteld dat s

k h (I+1/2,K,J) = XK(I.K.J) en kh (I-1/2, K. J ) = XK (I - 1 ,K, J )

kh (I,K+ 1 /2 ,J) = YKII.K.J) en k (I.K-1/2,J) = YK ( I • K- 1 , J )

kV (I.K,J+1/2) » ZK(I.K.J) en k V ( I , K , J - 1 /2 ) = Z K ( I ,K, J-1 )

XK wordt een matrix waarbij I varieert van 1 tot i +1
K varieert van 1 tot k

J varieert van 1 tot J
YK wordt een matrix waarbij I varieert van 1 tot i

K varieert van 1 tot k+ 1
J varieert van 1 tot j

ZK wordt een matrix waarbij I varieert van 1 tot i

K varieert van 1 tot k

J varieert van 1 tot j
Vergelijking 6.44 wordt dan

XK(I,K,J).(ÿ(I + 1,K,J,T + 1)-iJ>(I,K,J,T+1)) 

-XK(I-1.K,J).(<|i(I,K.J.T+1)-i|>(I-1,K.J,T+in 

+YK(I,K,J) . (ij»(I»K+1,J,T/1)-ij>(I,K,J,T + 1 ))

-YK(I,K-1jJ) . (^)(I,K,J,T + 1 )-^(I,K-1,J,T + 1 ) )
Z2

(ZK(I,K,J).(ip(I,K,J + 1,T + 1)-<|;(I,K,J,T+1))

- Z K ( I . K , J - 1 ï . ( * ( I . K . J fT+1)-*(I.K,J-1.T/1)))

-, 2 n ’ *(I.K.J,T+1) - ÿ(I,K,J,T) W ( I , K , J , T + 1 ) 6.50
A* CT H

Voor de eenheidscellen die bovenaan begrensd zijn door

de watertafel kan men de kontinuïteitswet voorgesteld door formule

6.40 ook als volgt neerschrijven :
3v

Z.ip(I-1/2,K. j). (v +^-^.Z) - Z.i|)(I+1/2,K, j) .v
x 3x 3v x

+ Z.^(I,K-1/2#1) .(v +-r— Z)-Z.^(I,K+1/2,j) .v +Z 2 . v -Z2NJ y 3y y z
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Passen we terug de differentie-approximatie toe en houdt 

men rekening met de konventies voorgesteld in fig. 6.2 wat 

betreft de permeabiliteiten dan kan terug de wet van DARCY t o e g e ­

past worden.

v x = XK(I, K,j). C*(I + 1 , K . J ) - * ( I » K , j n / Z  6.52

3 v

V x + 3 l T ,Z = 6.53

vy = YKCI.K,j).(*(I,K+1.J)-*(I,K.JÏ)/Z 6.54

3 v
Vy + 9 ÿ ^ * Z = t + C ï . K . J J - Ÿ C ï . K - ^ J ) ) / 2 6 . 5 5

v z ■ Z K ( I , K , j - 1 ) . [ * ( I , K , j ) - * C I . K . j - 1 ) ) / H  6 . 5 6

Verder kan men stellen dat

<|i(I + 1/2,K,j) = . J.3 6<57

♦ II- 1 / 2 .K.J) - 6.58

*(I,K+1/2.j) = ÿi.1 * '.J .l+yi 1 '.is./ II 6.59

♦ CI.K-1/2.J) « — 1 » 1). 6.60

Om te voorkomen dat de onbekende termen deels in k w a d r a ­

ten, deels zonder machtsverheffing voorkomen worden de laatste 

termen uit formules 6.57, 6.58, 6.59 en 6.60 als bekend aangenomen, 

nl. de waarden van de vorige tijdsperiode. Nu kan men formule 6.51 

als volgt neerschrijven

| c * C I , K , j , T )  + < » C I - 1 , K , J , T ) I . X K t I - 1 , K , J Ï .  ( - ( 1 ' K '  ̂ * I -  1 * K * J  .f T. + Al  )

-|(i|/(I + 1,K,j,T ) + tJ;(I,K,j,T)).XK(I,K,j). (-■ lil f l 1,'

+-|U(I,K. j,T)+*CI,K-1, j.TJ) .YKCI.K-1, j) . ( -tl T̂ K ■*- J-* T + 1 ] ~ ̂  ( 1 * K ~ 1 * J ' T *.1 ). ) 

-|(*(I,K*1, J,T) + *CI,K, j.T) ).YK(I,K, j) . -  - -- K 'J,T )

7  2
+— .ZK(I,K, j - 1  ) .(*[ I . K , J , T + 1) - * C I . K , j - 1 fT + 1 ) - Z 2N =

- Z2 C lp CI , K, j . T J . s ’+S ),(.l|,(I--K.,j.l-T ^ H (I/ K > j ’T ^H W ( I , K , j . T M )  6.61M O  LI

6 . 2 . 1 . 6 .  O p l o s s i n g  van d e  vergelijking

Naargelang van het hydrogeologische probleem dat gesteld 

wordt en naargelang van de voorhanden zijnde komputer of r e k e n ­

machine kan men bovenstaande vergelijking op verschillende wijzen 

o p l o s s e n .



Men o n d e r s c h e i d t  i n  h o o f d z a a k  d r i e  t e c h n i e k e n  : de  

a f w i s s e l e n d e  r i c h t i n g s t e c h n i e k ,  h e t  i t e r a t i e f  p r o c e s  en de  r e c h t ­

s t r e e k s e  o p l o s s i n g .

6 . 2 . 1 . 6 . 1 .  DE AFWI SSELENDE R I C H T I N G S T E C H N I E K

6 . 2 . 1 . 6 . 1 . 1 .  O p s t e l l e n  v a n  e e n  r e e k s  v e r g e l i j k i n g e n  p e r  k o ö r d i n a a t  

r i c h t i n g

Om de a f w i s s e l e n d e  r i c h t i n g s t e c h n i e k  t o e  t e  p a s s e n  

(PEACEMAN & RACHFORD,  1 9 5 5 ,  DOUGLAS & PEACEMAN,  1 9 5 5  en DOUGLAS 

& RACHFORD,  1 9 5 6 )  i s  h e t  n o d i g  g e l i j k a a r d i g e  v e r g e l i j k i n g e n  op t e  

s t e l l e n  a l s  6 . 5 0  en 6 . 6 1  d o c h  w a a r i n  de  w a a r d e n  v a n  de s t i j g h o o g t e  

i n  é én  r i c h t i n g  o n b e k e n d  en i n  de t w e e  a n d e r  k o ö r d i n a a t r i c h t i n g e n  

b e k e n d  z i j n .  Zo b e k o m t  men v e r g e l i j k i n g  

X K I I , K . J ) . H » C I + 1 , K , J . T + 1 / 3 } - * t I . K , J . T  + 1 / 3 ) )  

- X K C I - 1 . K . J ) . ( * ( I , K , J . T + 1 / 3 ) - * ( I - 1 , K , J , T + 1 / 3 ) )  

♦ Y K ( I . K . J ) . ( * ( I . K + 1 t J . T ) - * ( I . K . J . T ) )

7 2
( Z K ( I , K , J ) . ( ij; ( I , K , J + 1 , T ) - t | / ( I , K , J , T )  ) 

- Z K ( I . K , J - 1 ) . ( * ( I . K . J . T ) - * C I . K , J - 1 . T ) ) )
3 7 2  1

-  — - . S . .  ( ♦ ( I , K ,  J , T + 1 / 3 ) - i p ( I . K , J , T )  ) - W ( I , K , J , T + 1 ) / H  6 . 6 2
L I A

w a a r b i j  ij> ( 1+ 1 ,  K , J , T + 1 / 3  ) , < J * ( I , K , J , T  + 1 / 3 )  en ¥ ( 1 - 1 , K . J , T + 1 / 3 )  de  

o n b e k e n d e n  z i j n .

V e r d e r  v e r o n d e r s t e l t  men de p o t e n t i a a l  a l s  o n b e k e n d  i n  

de y - r i c h t i n g ,  n l . .  tp ( I , K + 1 . J , T + 2 / 3  ) . \J>( I , K , J , T + 2 / 3  ) en * ( I . K - 1 , J ,  

T + 2 / 3 )  en b e k e n d  i n  de t w e e  a n d e r e  r i c h t i n g e n .

X K ( I . K . J ) .  (»|>(I  + 1 , K , J , T + 1 / 3 ) - i J i ( I , K , J , T + 1 / 3 )  )

- X K ( I - 1 , K . J ) . C * C I . K , J , T + 1 / 3 ) - * ( I - 1 . K . J f T + 1 / 3 ) )

+ Y K ( I , K ,  J )  . ( i f » ( I . K  + 1 ,  J .  T + 2 / 3 )  - f d . K . J ,  T + 2 / 3 ) )

- Y K C I . K - 1 . J ) . U C I . K , J . T + 2 / 3 ) - * ( I , K - 1 . J . T + 2 / 3 ) )
Z 2

+ ^ 7 . ( Z K ( I , K . J ) . ( * ( I , K . J + 1 , T + 1 / 3 ) - * ( I , K , J , T + 1 / 3 ) )  

- Z K ( I . K . J - 1 ) . C ^ C I . K . J , T + 1 / 3 ) - * ( I . K . J - 1 . T + 1 / 3 ) ) )

= 777- .  s '  . ( * ( I , K ,  J , T + 2 / 3 ) - * ( I , K ,  J . T  + 1 / 3 ) ) - W ( I , K ,  J , T + ï ) / H  6 . 6 3
L I  A

T e n s l o t t e  s t e l t  men de p o t e n t i a a l  i n  de z - r i c h t i n g  a l s  

o n b e k e n d ,  n i . ,  f ( I . K,  J + 1 ,  T + 1 ) , 1J1 ( I , K,  J , T + 1 ) en i|/ ( I , K,  J - 1  , T + 1 ) en 

i n  de t w e e  a n d e r e  r i c h t i n g e n  b e k e n d .
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X K ( I , K . J ) . C * C I + 1 . K f J . T * 2 / 3 ) - * ( I . K , J . T * 2 / 3 ) )

- X K ( I - 1  , K ,  J ) . ( ï p C I . K ,  J , T  + 2 / 3 ) - ÿ ( I - 1  , K.  J . T  + 2 / 3 )  )

+ Y K ( I , K ,  J ) . . J , T + 2 / 3 ) - ^ ( I , K ,  J , 1  + 2 / 3 ) )

- Y K t I , K - 1 , J Ï  . t * C I , K , J , T  + 2 / 3 ) - < i C I , K - 1  , J , T * 2 / 3 )  )
7 2

+ — j. ( Z K ( I , K , J ) . ( i p ( I , K , J  + 1 , T  + 1 ) - i p ( I , K , J , T + 1 )  n
- Z K C I , K , J - 1 ) . t * ( I , K , J , T * 1 ) - * C I . K , J - 1 , T + 1 ) ) )

= ^ p 7 . s ' . ( * C I , K . J , T + 1 ) - * t I , K , J . T + 2 / 3 ) ) - W t I f K , J , T + 1 ) / H  6 . 6 4
u I A

Om de o n b e k e n d e n  u i t  de r e e k s  v e r g e l i j k i n g e n  v o o r g e s t e l d  

d o o r  f o r m u l e s  6 . 6 2 ,  6 . 6 3 ,  6 . 6 4  t e  b e k o me n  i s  h e t  n o d i g  d e z e  i n  de 

v o l g e n d e  v o r m w e e r  t e  g e v e n  :

v o o r  v g 1 .  6 . 6 2 ,  A ( J ) . <J> ( 1 - 1  , K,  J , T  + 1 / 3 ) +  B ( I )  . ♦  ( I ,  K,  J , T * 1 / 3 )

+ C ( I )  .<J»( I+1 . K ,  J . T  + 1 / 3 )  -  D ( I ) 6 . 6 5

w a a r i n  A ( I )  = X K ( I - 1 , K , J ) . H
372 *

B CI  ) = - ( X K ( I , K , J )  + X K C I - 1 , K , J ) + ~ —. S , )  . H
C l  A

CCI) = X K (I ,K ,J ) .H

D CI ) = -W(I,K,J,T+1Î-H. (ip(I.K,J,T) . ( - - . s ’C I A
-YKtl.K,J)

7 2
-YKCI.K-1 .J)-fj7 - (ZK(I,K,J)+ZK(I,K,J-1) ) ) 

♦YK(I,K.J).*(I.K*1.J,T)+YKCI,K-1,J).^(I.K-1,J,TÎ
7 2

*rrî—  ( Z K ( I , K , J ) . ' | ' [ I , K , J  + 1 , T ) + Z K ( I , K , J - 1 )  . * ( I , K , J - 1 , T ) ) )
n ■

v o o r  v g l .  6 . 6 3 ,  A ( K ) . ÿ ( I , K - 1 , J , T + 2 / 3 ) + B ( K ) . ÿ ( I , K , J , T + 2 / 3 )

+ C ( K ) . i | » ( I , K + 1 , J , T  + 2 / 3 )  = DCK)  6 . 6 6

w a a r i n  A ( K ) = Y K ( I , K - 1 , J ) . H

B C K) * -(YK(I,K,J) + YK(I,K-1,J)+|— .S^).H 

C (K ) = Y K (I ,K ,J ) .H

D ( K )  = - W ( I , K , J , T + 1 ) - H . ( ÿ ( I , K , J , T + 1 / 3 ) .

- X K ( I . K . J )
Z 2

- X K (I - 1 ,K , ( Z K ( I , K , J ) + Z K ( I , K , J - 1 ) Î

+ X K ( I , K , J ).ÿ ( r + 1 ,K.J,T+1/3)+XKCI-1,K,J).(\|;(I-1,K,J.T+1/3)) 

+ ^ | ( Z K ( I , K ,J).f(I,K,J+1,T+1/3)+ZK(I,K,J-1).*(I,K.J-1,T+1/3)î)

v o o r  v g l .  6 . 6 4 ,  A ( J ) . ÿ ( I , K , J - 1 , T + 1 )  + B ( J ) . ÿ ( I , K , J , T + 1)

+ C ( J ) . ÿ ( I , K , J + 1 , T + 1 )  = DCJ)  6 . 6 7
2 2

w a a r i n  A ( J )  = Z K ( I , K,  J - 1 ) .77-*
7 *-1 7 2 H *

B U )  = ( Z K ( I , K , J - 1 ) + Z K ( I , K , J  )>---— --. S A

C C J ) = ZK ( I , K, J )
n

Z 2
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D ( J ) = -WtI,K.J,T+1 )-H. (*(I.K.J.T + 2/3) . ( ~ “ .S^

- X K (I ,K , J )

- X M I - 1 . K , J ) - Y K ( I , K , J ) - Y K ( I , K - 1 , J ) )

+XK(I,K, J ) . i|<(I + 1 , K» J ,T+2/3)+XK(I-1 ,K,J ) . i|»(I-1 ,K, J ,T+2/3) 

+YK(I,K, J ) .ÿ{I,K*1, J ,T+2/3)+YK(I,K-1 , J ) . ( I . K -1 , J.T+2/3) ) )

Men past dezelfde redenering toe op vergelijking 6.61 

zodanig dat men een analoge reeks vergelijkingen verkrijgt voor de x- 

en de y-richting :

A ( I ) j 4  ( I - 1 . K , j . T + 1 / 3 ) + B ( I ) J . ip ( I , K , j , T. + 1 / 3 )

+C(I)J.*{I+1,K,J.T+1/3) = D ( I ) j 6.68
waarin A (I )j = X K (1-1.K.J ). I*C1-1.K , j .T ) ♦ * (I.K , J . T ))/2

B C1 3 j = -CXKCI-1.K,j).C*(I-1.K.j,T) + * ( I . K fJ.TÎÎ/2

♦ XK(I.K.J).(t(I.K.J,T) + *(I + 1 , K . J , T n / 2  
3 Z2♦ j ,T)+So)

C(I)j = X M I . K . J ) .  (*CI,K.J,T) + *(I»1,K.J,T))/2
3 7  2

D(I)j = -W(I,K,j,T + 1)-i|/(I,K,j,T) .-jÊré—  C . S ’+So)

+ ï*2 (I.K.J.T)-*2 (I.K-1,J.T))

-lüïliikil. ((|/2 (I,K+1,J,T)-»jj2 (I,K,j,T))
A

♦■— .ZKCI.K. j-1 ) . ( * ( I ,K.J,T)-#(I,K,J-1,TJ)-Z2 N

voor de y-richting : A (K )j .ÿ (I ,K - 1,j ,T + 2 / 3 ) + B (K ) j .p (I , K ,j .T +2/3)

♦C(K)J.*(I,K+1.j.T*2/3) = D ( K ) j 6.69

waarin A ( K ) j = Y K C I , K - 1 .j ) . ( * (I,K - 1 »J ,T + 1 / 3 Î♦ * ( I ,K.J,T + 1 / 3 ) )/2

B(K)j = - C YK CI , K- 1 , j). (ÿ(I,K-1, j,T + 1/3) + i|>(I,K, j.T+1/3) )/2
♦ YK(I,K.J).C*CI.K.j.T + 1/3 ) + <iCI, K+1,j.T + 1/3JÏ/2

+-^y CS^.+(I.K.J,T)+So)

C(K)j = YK(I,K,j).(^(I,K,j,T+1/3) + i/>(I,K+1,j,T + 1/ 3))/2
3 Z  2

D(K)J = -W(I.K, J,T + 1)-*CI.K, j,T + 1/3).||-. (tpCI.K, j.T+1/3) .S^+So) 

^ XK(I-1,K,J)  ̂( ÿ2 (I,K,j , T + 1 / 3 )-.|>2 (1-1,K,j.T+1/3)) 

. M i l d L d J . ,  ( ̂ 2 (I + 1> K.j,T+1/3)-iJ;2 (I,K. J.T+1/3))

Z2 o
+— - . Z M I ,  K, j - 1 ) . ( ^ ( I . K , j , T + 1 / 3 ) - ^ ( I , K , j - 1 , T ) ) - Z N  

voor de z-richting wordt de formule beperkt tot

A (J).*(I.K,J-1,T+1)+B(J).*(I,K.j.T+1) = D (j ) 6.70
7 2

waarin A(j, = +— . Z M  I. K, J-1 )
n 2 2 

B( j ) = ~rr~‘ ZK(I,K,j-1) (i|»(I,K,j,T + 2/3) . S ’ + So)n ui a

3 7  2
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0 C j 3 - -W(I,K,j,T+1)
372

j,T+2/3) . (<|>(I,K, j ,T + 2/3) .S^ + So)

VK(I.K-1,j) (<t>2 (I.K, j,T + 2/3)-i|>2 (I.K - 1  , j ,T+2/3) )
2 ,

- YK.(I'K ‘̂ -- ( \J/2 ( I , K+ 1 ,j,T + 2 / 3 ) - ^ 2 (I,K,j,T+2/3) )

^ 2 CI » K , j ,T+2/3)-ÿ2 (1 - 1  ,K, j ,T+2/3) )

((|/2(I+1 , £, j ,T + 2/3) -  \fi 2 ( I , K , J , T + 2/3) )

6.2.1.6.1.2. Grensvoorwaarden

Het model, dat een freatische laag voorstelt, wordt 

bovenaan begrensd door de watertafel. De speciale voorwaarden 

waaraan hier moet voldaan worden zijn weergegeven in de hierbo- 

venstaande formules 6.68, 6.69 en 6.70.

Onderaan wordt de freatische laag begrensd door het

ondoorlatende substraat, de vertikale permeabiliteit ervan

ZK(I,K,1) ■ 0. Hierdoor wordt in vergelijking 6.67 A(2) s 0 en 
Z 2

valt de term —  . Z M I . K . 1 )) in B(2) weg zodanig dat vergelijkingn
6.67 gereduceerd wordt tot

B ( J - 2 ) . ÿ ( I cK . 2 . T  + 1 ) + C ( J » 2 ) . ÿ ( I , K , 3 f T + 1)  ■ D ( J = 2 ) 6.71

Bovenaan de J-kolom heeft men de eenheidscel die begrensd 

is door de watertafel. Hierbij geldt de formule 6.70. Kiest men de 

x-richting steeds loodrecht op de stroomlijnen dan zijn de grenzen 

aan weerszijden van 'de I-rijen stroomlijnen. Deze kunnen als h o r i z o n ­

taal ondoorlatende grenzen beschouwd worden, daar loodrecht op deze 

stroomlijnen de stroming gelijk is aan nul. Daarom neemt men aan 

dat de horizontale permeabiliteit YK(1,K,J) = 0 en YK(i+1,K,J) ■ 0. 

Hierdoor wordt vgl. 6.60 voor de eerste cel van de I-rij (I“ 2) g e r e ­

duceerd tot

B(I*2).*(2,K,J,T+1/3)*C(I«2),*(3,K,J,T+1/3) - D ( I = 2 ) 6.72

daar A(I*2) = 0. Verder valt in B(I*2) de term H . YK ( .1, K , j ) weg. Ook 

in D (i » 2 ) vallen om dezelfde reden termen weg. Voor de laatste cel 

van de I-rij wordt vgl. 6.60

A(I*i) .ip(i-1 ,K,J,T+1/3) + B(I*i) .i(j(i,K,J,T+1/3) - D ( I = i ) 6.73

daar C(I«i) = 0. Verder vallen termen in B(I=i) en D(I*i) weg.

Aangezien de x-richting loodrecht op de stroomlijnen 

gekozen werd stemt de y-richting overeen met die van de richting 

van de stroomlijnen. Hier kunnen de grenzen van de K-rijen ofwel 

overeenKomen met een ondoorlatende grens of met een vaste potentiaal- 

g r e n s .



Bij een ondoorlatende grens wordt vgl. 6.66 voor de 

eerste en de laatste eenheidscel van de K-rij (K = 2 en K = k+1 op 

dezelfde wijze gereduceerd als hierboven vgl. 6.65 in vgl. 6.73.

Bij een vaste potentiaalgrens komt echter een essentiële 

verandering voor van vgl. 6.66. De potentiaal in de grenspunten 

wordt konstant gehouden in tijd, ij> ( 1 ,1 , J ) = cst(I,1,J) of 

iJi(I,i + 2,J) = est ( I , i + 2 , J ) . Voor de eerste eenheidscel van de 

K-rij (K = 2) wordt vgl. 6.66

A(K-2).ÿ(I,1,J)+B[K-2).ÿ[I,2,J,T + 2/3)*C(K-2).i|i(I,3,J.T*2/3)

= D (K = 2 ) 6.74

waarin iji ( 1 , 1 , J ) een bekende term is en bij 0(K=2) kan geplaatst 

worden zodanig dat vgl. 6.66 de volgende vorm aanneemt

B ( K * 2 ) . i | > ( I , 2 , J , T  + 2 / 3 ) + C ( K * 2 ) . i | / ( I , 3 , J , T  + 2 / 3 )  = D(K = 2 ) - A ( K  = 2 ) . ^ ( I , 1 , J )
6 . 75

Voor de laatste eenheidscel bekomen we na dezelfde redenering 

A (K = k + 1 ).iJi(I,k,J,T + 2/3) + B(K = k + 1).ip(I,k+1,J,T + 2/3) =

D(K = k + 1 ) - C ( K “ k+1).\|;(I,k + 2,J) 6.76

6.2.1.6.1.3. Oplossing van een reeks vergelijkingen per rij of 

kolom

Voor iedere rij of kolom bekomen we een reeks v e r g e l i j k i n ­

gen die we als volgt kunnen samenvatten

B(2).iji(2)+C(2).iji(3) = 0(2) 6.77

A ( N ) . ÿ ( N - 1 ) * B(N). ÿ ( N ) + C ( N ) . ÿ (N + 1 ) = D (N ) 6.78

waarin 2 <(M<n

A ( n ) . iji ( n - 1 )+B ( n ) . iji ( n ) = D(n) 6.79

waarin A,B,C de koëfficiënten zijn van de onbekende stijghoogten

i|» ( '1), iji ( 2 ) .......iji ( N -1 ) , iJi(N) , ip(N + 1 ) ...... iji(n-1) en iji(n) waar het

getal tussen haakjes 1,2 .....  N-1, N, N + 1 ( ........  n-1 en n de

plaats aanduidt van de ongekende stijghoogte in de rij of kolom 

in kwestie. Om de reeks vergelijkingen voorgesteld door de formules 

6.77, 6.76 en 6.79 op te lossen doet men volgende substituties,

V ( 1 ) = B(1) en G (1) = D(1)/B(1) 6.90

V (N ) = B ( N ) - A C N ) .C (N - 1 ) / V ( N - 1 ) 6.81

G ( N ) = (D(IM)-A(N).G(N-1))/V(N) 6.82

De waarden van V(N) en GCN) worden berekend in volgorde volgens 

stijgende waarde voor N berekend voor een rij of Kolom.



Wanneer de laatste parameters V C N ) en G(l\l) berekend 

zijn, wordt de stijghoogte berekend in volgorde van de dalende 

N-waarde met de volgende formules,

*{ n ) = G (n ) 6.83

*(N) =■ G ( N ) - ( C ( N ) .* ( N + 1 ))/V(N) 6*84

6.2.1.6.2. Iteratieve oplossingsmetode

Bij de iteratieve oplossingsmetode worden de waarden 

van de stijghoogte ^ in één richting als onbekend beschouwd. De 

richting wordt evenwijdig gekozen met de stroomlijnen (de y-richting) 

Zo worden oe stijghoogten van iedere K-rij berekend gaande voor

I gelijk aan 2 tot i en voor J van 2 tot j. De stijghoogte die de 

K-rij omringen worden als bekend aangenomen, namelijk de stijghoogte 

uit de n-de iteratie voor de stijghoogte met indices gelijk aan 

1-1 of J-1 of uit de (n-1)-de iteratie voor de stijghoogten met 

indices gelijk aan 1+1 of J+1.

Dit vergelijking 6.50 volgt dan de volgende vergelijking 

voor de n-de iteratie.

X K ( I , K , J Ï . ( * _ 1 ( I + 1 , K , J , T + l J - ^ n ( I , K , J . T + 1 J )
- X K ( I - 1 , K , J ) . ( * ( I , K . J , T + 1 ) - # ( I - 1 , K , J . T + i n

♦ Y K d . K . J )  . ( *  ( I . K + 1 . J , T + 1 ) - 4 >  ( I , K . J , T + m
- Y K ( I , K - 1 ,J ) .(* (I,K,J.T+ 1 )-* (I,K-1.J,T+1)) n n

7 2
+U7 * (ZK(I,K,J). ( <|/ „ (I.K,J+1,T+1)-* (I,K,J,T+1)H n - 1  n
- Z K ( T , K , J - 1 ) . (ÿ (I.K,J.T+1)-* ( I , K , J - 1 , T + 1 ))) n n

*n(I,K, J.T + 1 )-*(I,K, J.T) W(I,K,J,T+1) „ nr
= Z ,SA . CT h b -öb

Initiatie bij n=1 wordt * q (1+1,K , J ,T + 1 ) en * q (I ,K ,J + 1,T + 1) 

r e s p e k t i o v e 1i j k gelijk aan *(I+1,K,J,T) en * ( I ,K ,J + 1,T ).

De vergelijking 6.85 kan terug onder ds volgende vorm 

geschreven worden

A (K ).* (I,K-1,J.T+1)+B (K ).* (I,K,J,T+1)+C (K ).* (I ,K + 1,J ,T +1)n n n rn n n
=■ ü (K) 6.86

n

waarin A (K) = Y K (I ,K - 1,J ).H n

B (K) = -H.(XK(I,K,J)+XK(I-1,K,J)+YK(I,K,J)+YK(I,K-1,J)
n z 2 z 2 - h - s ;

+ £ - ( Z K ( I , K , J ) - Z K ( I , K , J - 1 ))+-

C (K) = Y K (I ,K ,J ).H n
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D CK) = -H. [ V l 1 f t . f J .’ J. * !  l + X K d . K . J )  , (I+1.K.J.T+1Î 
n H n~1

+ X K Ü - 1 . K . J )  .\J>n (I-'1 ,K,J,T+1)
Z 2

+777. .ZK(I,K, J ) .if» . (I,K,J+1,T+1)H* n - 1
♦ Z K C I . K . J - 1 ).* (I.K- 1 . J . T + 1 )) +Z2 .SÂ .* (I^ T-h  6.8 7

Voor de e e n h e i d s c e l len die bovenaan begrensd zijn door 

de watertafel Krijgen we een analoge verge 1ijking voor de n-de 

i t e r a t i e .

A (K)j.ÿ ( I , K - 1 ,j , T + 1 )+B (K)j.ÿ (I,K,j,T+1)+C ( K ) j . <J> (I ,K + 1,j ,T + 1 ) n n n n n n

■ D n lK,J

waarin A n ( K ) j = YK ( I . K - 1 , j ) . ( # _ ( I , K - 1 , j . T +1 ) + ipn _ ( I , K , j . T + 1 ) )/2 

B n C K D j - - C X K C I.K,j).(*n _ 1 CI + 1.K,J.T + 1)-*n _ 1 CI,K,J.T + 1))

+ X K C I - 1 . K - J ) .C * n (1-1.K . J » T + 1 )-^n 1 ( I , K , j , T + 1 )) 

+YK(I,K.j) . C'|»n_1 (I»K+ 1»j»T+ 1)-'j'n_1 (I.K.J.T+1) )
+ Y K I I . K - 1 .  j )  . ( « n_1 Cl .  K-1 . j . T  + 1 C I , K .  J . T + 1 )  )

2 2 
+^p-.ZK(I.K, j-1)+^|y. (*n _ 1 CI,K.J,T+1).S^ + So)ï/2

C ( K ) j = YK ( I , K , j ) . ( \|> . (I,K+ 1 ,j,T + 1 ) + ÿ ,(I,K,J,T*1))/2n n “ i n - i
7 2

□ ( K ) j = -W(I,K, j,T + 1 )— (S! .\p _ „ U . K .  j,T+1 )+So) .i|>(I.K, j,T) n u i A n “* i
7 2
-n-.ZK(I,K, j-1) .il> (I.K, j , T + 1 ) - Z 2 .Nn n

- X K Ï I . K .  j )  CI+1 ,K.  J . T  + 1 ) .  ( f  ^  (1 + 1 . K.  J . T  + 1 ) + *  ,,( I . K . J . T + 1  ) ) / 2

- X K ( l - 1 , K , j ) . i J >  ( I - 1 . K . J . T  + 1 J . ( ♦  ( 1 - 1  . K . J . T  + 1J + *  ( I . K . J . T + 1 ) ) / 2r» n n i

Initiatie voor ij/ ( I , K , j , T + 1 ) wordt gelijkgesteld aan ij; ( I , K , j , T ) .

Voor de grensvoorwaarden en de oplossing van de aldus 

verkregen reeks vergelijkingen wordt dezelfde weg gevolgd als 

hierboven beschreven bij de afwisselende r i c h t i n g s t e c h n i e k .

De balans van de grondwaterstromingen wordt opgesteld om 

de nauwkeurigheid te bepalen na iedere iteratie. Hierbij wordt 

het debiet dat naar de zee stroomt, Ozee, en het debiet dat naar 

de polders stroomt, Opol, berekend. Zoals boven reeds vermeld, 

wordt in deze studie verondersteld dat de zijdelingse grenzen o v e r ­

eenkomen met stroomlijnen zodanig dat zijdelings geen ondergrondse 

in- of uitstroming plaatsgrijpt. Het opgepompte debiet, Opomp + 

Ozand, vormt samen met Ozee en Opol het totale debiet aan water 

dat het studiegebied verlaat.



Het debiet dat in het studiegebied binnen komt wordt 

bepaald door de infiltratie van regenwater doorheen de onverzadigde 

zone naar de grondwatertafel toe. Het totale debiet dat in het 

studiegebied infiltreert wordt aangeduid door I.

De BERGINGSVARIATIE is de hoeveelheid water die door 

stijging of daling van de watertafel r e s p e k t i e v e l i j k opgeslagen 

of vrijgegeven wordt door de watervoerende laag tijdens de maand 

in kwestie.

Indien de berekening van de laatste iteratie voldoende 

juist is dun zal de balans een voldoende kleine waarde geven.De 

balans wordt op de volgende wijze berekend

BALANS = 0 zee + Opol + Opomp + Ozand + BERGINGSVARIATIE 

Indien de waarde voor de BALANS te groot is wordt een volgende 

iteratie uitgevoerd waarna terug de BALANS berekend wordt.

De flowchart van het iteratieproces en degene waarbij 

de g r o n d w a t e r b a l ans na iedere iteratieproces opgesteld wordt om 

de nauwkeurigheid te bepalen van de bekomen resultaten worden in 

het aanhangsel weergegeven.

6. 2.1.6.3. RECHTSTREEKSE OPLOSSINGSMETODE

De vgl. 6.50 kan men, mits het aannemen van een andere 

differentiatie-approximatie van het rechterlid, schrijven als 

volgt

X K ( I . K , J ) . ( * t I + 1 , K . J , T ) - f [ I . K , J fT n  

-XK(I-1,K,J) . (i()(I,K,J,T)-ip(I-1,K,J,T) )

+ Y K ( I , K , J ) . ( ÿ ( I , K + 1 , J , T ) - < M I > K , J , T n  

-YK(I,K-1,J) . (iHI,K,J,T)-\p(I,K-1,J,T) )
7 2

(ZK(I,K, J) . Ci(/CI,K,J + 1,T)~^(I,K,J,T) )n
-ZK(I,K,J-1 ) . (ip(I,K,J,T)-*Ji(I,K,J“ 1 ,T) )

4CI,K,J,T+1]-*(I,K.J.T) W(I,K,J,T+1)
" L A CT H

waarbij ïji ( I , K , J , T + 1 ) als enige onbekende voorkomt.

Op dezelfde wijze kan vgl. 6.61 geschreven worden waar 

terug slechts één onbekende voorkomt. Met deze metode kan men de 

stijghoogte van iedere eenheidscel berekenen. Daar echter het 

tijdsinterval CT te klein dient gekozen om een voldoende n a u w k e u r i g ­

heid met deze metode te bereiken en daar de berekende stijghoogte 

enkel afhankelijk is van de stijghoogte van de vier, vijf of zes 

omringende cellen is deze metode minder vatbaar voor toepassing.



Bij de keuze van een oplossingstechniek speelt de aard 

van de komputer een doorslaggevende rol. Belangrijk zijn in dit 

verband de snelheid, de omvang van het geheugen, de mogelijkheid 

van het werken met twee- of meerdimensionale matrixen, de wijze 

van het inbrengen van de gegevens en de voorstelling van de r e s u l ­

taten.

Bij het toepassen van de afwisselende richtingstechniek 

dient men vooraf de best passende tijdsinterval CT te bepalen.

Deze dient zo gekozen te worden dat de fout veroorzaakt door h e t : 

invoeren van de differentie-approximatie in het rechterlid van de 

kontinuïteitswet eerder beperkt blijft en naar dezelfde grootte 

herleid wordt als bij het invoeren van de differentie-approximatie 

in het linkerlid, afhankelijk de grootte van Z en H. Bij deze 

metode blijft het gekozen tijdsinterval CT onveranderd. In geval 

van sterk wisselende stromingsintensiteiten kunnen sterk wisselende 

fouten optreden.

Bij de iteratieve metode bestaat de mogelijkheid om 

de berekeningen door te voeren tot een vooraf bepaalde n a u w k e u r i g ­

heid. Bij de afwisselende richtingstechniek kan de rekenduur vooraf 

bepaald worden, bij de iteratieve metode is dit niet het geval.

Na verschillende testen werd een keuze gemaakt uit de 

oplossingstechnieken en werd de afmeting van het volume-element 

en het tijdsinterval vastgesteld. Als oplossingstechniek werd de 

iteratieve oplossingsmetode gekozen met een tijdsinterval CT van 

6 dagen. De afmetingen Z en H van het volume-element zijn respek- 

tievelijk 100 en 10 m. In de I-rij komen 36 volume-elementen voor, 

in de K-rij 25. In de kolommen hebben we drie volume-elementen met 

het centrum r e s p ektievelij k op het peil -20, -10 en 0. Hieruit 

volgt dat de basis van het bovenste volume-element op -5 ligt. Dat 

vlak werd gebruikt als referentievlak voor de stijghoogte in het 

mode 1 .

6 . 2 . 1 . 6 . 4 .  KE UZ E VAN O P L O S S I N G S T E C H N I E K
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G . J ,  U t  STIJGHOOGTEN

6 . 3 . 1 .  DE WAARNEMINGEN

In 86 boorputten werden piëzometers aangebracht, waarin 

regelmatig op verschillende plaatsen en diepten de stijghoogte 

gemeten werd.

In de met de hand geboorde putten (66) werd één filter 

van 1 m lengte en een diameter van 40 mm en daarop aansluitende 

bronbuizen aangebracht. De meeste filters werden geplaatst rond 

het peil 0. De ligging werd nauwkeurig opgemeten. Door waterpassing 

werd het peil van de top van iedere bronbuis bepaald zodat alle 

waterpeilen t.o.v. het nulpeil konden worden gemeten.

In de diepe boorputten (20) werd ofwel één grote 

filter, die de watervoerende laag over een grote lengte aansnijdt, 

ofwel vier piëzometers met filters van 1 m lengte van geringe 

diameter (40 mm) op verschillende diepten naargelang van de 

litologie geplaatst.

In het begin van de maand werd het waterpeil in 

iedere piëzometer opgemeten. In het midden van de maand gebeurde 

dat op een twintigtal piëzometers. Op die manier is het mogelijk 

de seizoenale schommelingen van de stijghoogten te volgen en 

de hydro-isohypsen van het studiegebied te tekenen. Uit deze 

gegevens was het mogelijk de uitbreiding van de halfdoorlatende 

lagun in een eerste benadering te bepalen. Hieruit werden de 

waarden van de matrix van de vertikale permeabiliteit ZK(I,K,J) 

bepaald. Daarna werden de hydro-isohypsen van het studiegebied 

op 1 juni 1975 aangewend samen met de matrix ZK(I,K,J) om de 

aan vangss ti j ghoogte te bepalen t|> ( I , K , J , 1 ) .

6 . 3 . 2 .  DE HYDRO-ISOHYPSEN VAN HET DUINGEBIED

Vanaf mei 1975 was het mogelijk de hydro-isohypsen van 

het duingebied voor het begin van iedere maand (fig. 6.4 tot

6.31) af te leiden. Het zijn de lijnen van gelijke stijghoogte 

op het peil 0 .
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Men mag aarnemen dat op plaatsen waar de afzettingen 

van de watervoerende lagen over de ganse doorsnede een geringe 

hydraulische weerstand vertonen en waarvan de vertikale p e r m e a b i ­

liteit niet kleiner is dan 1 m/dag, de stijghoogten bij natuurlijke 

stromingen weinig afhankelijk is van de diepte in de watervoerende 

l a a g .

Meet men de stijghoogte in een piëzometer, waarvan de 

filter voockomt op een diepte die afwijkt van het peil 0, dan kan 

men aannemen dat deze op kleine afwijkingen na, dezelfde is over 

de ganse dikte van de watervoerende laag. In dat geval komt de 

stijghoogte overeen met de g r o n d w a t e r t a f e l s t a n d .

Komen er echter halfdoorlatende lagen voor of lagen 

met een grote hydraulische weerstand, dan kan men boven en onder 

deze lagen een aanzienlijk stij g h o o g t e v e r s c h i 1 vaststellen. Het 

stijghoogteverschil is vooral afhankelijk van de verhouding diepte 

van de halfdoorlatende laag t.o.v. de watertafel tot de laterale 

uitbreiding van deze laag (R.A. FREEZE & P.A. WITHERSPOON, 1967). Het 

is eveneens afhankelijk van de hydraulische weerstand van de h a l f ­

doorlatende laag, de permeabiliteit van de bovenliggende afzetting 

en de plaats van het waarnemingspunt t.o.v. de halfdoorlatende laag..

In het studiegebied ontmoet men op drie diepten o n d e r ­

broken halfdoorlatende lagen, die de stijghoogte kunnen beïnvloeden.

Laag (5.2) die de grootste invloed oo de vorm van de 

g r o n d w a t e r t a f e 1 heeft, ligt tussen de peilen +1 en +4. Ze bestaat 

hoofdzakelijk uit een sterk lemig fijn zand met klei- en leemlenzenj 

ze is meestal bedekt door humeus of venig materiaal; ze heeft een 

grote hydraulische weerstand. De piëzometers 117HB4, -HB10, -HB13, • 

-HB5, -HB12, -HB52, -HB36F2, -HB37F2, -HB39F2 en -HB40F2 zijn boven 

de laag (5.2) geplaatsts ze geven de stijghoogte boven deze laag aan 

en bijgevolg de g r o n d w a t e r t a f e l s t a n d . Deze verschilt hier echter 

van de stijghoogte op het peil 0.

Waar mogelijk, werd onder de laag (5.2) een piëzometer 

geplaatst. De stijghoogte in die piëzometer is te beschouwen als 

die op het peil 0. Het zijn de piëzometers 117HB36F1, -HB37F1, 

-HB30F1, -HB39F1 en -HB40F1. Met boring 117DB9 in de omgeving 

van 117HB10 werd onder deze laag een piëzometer geplaatst; hierdoor 

was het mogelijk de stijghoogten boven en onder de laag (5.2) op 

één plaats te bepalen.

6.3.2.1. De stijghoogte in funktie van de diepte



In tabel 6.5 staan de gemiddelde s t i j g h o o g t e v e r s c h i 11 en 

boven en onder de laag (5.2) aangegeven d.w.z. tussen de g r o n d ­

watertafel en de stijghoogte op het peil 0. Het grote stijghoogte- 

verschil ter hoogte van 117HB10, -DB9 is te wijten aan de centrale 

ligging ten opzichte van de halfdoorlatende laag (5.2) die zeer 

uitgebreid is.

Een doorlatende laag die door een halfdoorlatende laag 

bedekt is en die volledig verzadigd is met water kan al naargelang 

van de verhouding horizontale permeabiliteit van de doorlatende 

laag t.o.v. de vertikale permeabiliteit van de halfdoorlatende 

laag als l}alf f reatisch of half artesisch beschouwd worden, de s t i j g ­

hoogte in de doorlatende laag wordt als piëzometrische stand a a n g e ­

duid. De stijghoogte aan de top van de halfdoorlatende laag als 

grondwaterstand als boven deze halfdoorlatende laag een goed d o o r ­

latende laag voorkomt. Is de halfdoorlatende laag slechts g e d e e l t e ­

lijk veraadigd aan water dan is de grondwaterstand het peil waar de 

druk gelijk is aan de atmosferische druk.

De stijghoogte boven de laag (5.2) kan aldus als de 

grondwatertafelstand aangeduid worden. De stijghoogte eronder als 

de piëzometrische stand van de halfartesische watervoerende laag.

Tabel 6.5 - Gemiddeld stijghoogteverschil boven en onder de 

laag (5.2)

Piëzometers Aantal
m e t i n ­
gen

Gespreid over 
de periode

Gemiddelde 
stijghoogte 
verschil (m)

Standaard
deviatie

117 H B 1 0,-DB9 1 5 1.5. 76-2.7.77 2,28 0,09

11 7 H B 3 6 F 1,-F2 28 2.4.75-4.7.77 0,41 0 , 1 2
11 7 H B 3 7 F 1,-F2 28 2.4.75-4.7.77 0,5 6 0,10
117 H B 3 8 F 1 ,-F2 52 31 .3.75-2.7.77 0,82 0, 18

1 1 7 H B 3 9 F 1 ,-F2 28 2.4.75-2.7.77 0,13 0, 08

1 1 7 H B 4 0 F 1 ,-F2 52 31 .3.75-2.7.77 0 , 53 0,09

De tweede halfdoorlatende laag (4.4) die bestaat uit 

sterk leemhoudend fijn zand met leemlenzen, treft men aan tussen 

de peilen -2 en -12. Het gemiddelde stijghoogteverschil onder 

en boven deze laag bedraagt 0,55 m ter hoogte van 117DB1Q. 0,35 m 

ter hoogte van 117DB13 en 0,59 m ter hoogte van 117DB14. Alhoewel
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deze laag een even grote uitbreiding Kent als laag (5.2) is de 

invloed op de watertafel geringer omdat ze dieper ligt en een 

geringer hydraulische weerstand bezit.

De derde halfdoorlatende laag, is het Klei-leemkomplex 

(3). In gebieden waar de grondwaterstroming in natuurlijke o m s t a n ­

digheden gebeurt meet men slechts Kleine stijg h o o g t e v e r s c h i 11 en 

onder en boven deze laagj ter hoogte van 117DB13 is dat 0,10 m.

Dit is het gevolg van de grote diepte waarop deze laag voorKomt, 

nl. rond het peil -15 tot -20. In het gebied met groot piëzome- 

trisch verhang tengevolge van menselijKe ingreep, zoals in het 

w a t e r w i n n i n g s g e b i e d , stelt men grote s t i j g h o o g t e v e r s c h i 1 len vast 

onder en boven deze halfdoorlatende laag (3). De stijghoogte 

is het laagst in laag (4), de laag waarop gepompt wordt. Onder de 

laag (3), in de laag (2), is de stijghoogte steeds groter.

6.3.2.2. De stijghoogte in funktie van de plaats

Uit de stijghoogte op het peil 0 Kan men in grote 

lijnen de grondwaterstroming afleiden en de veranderingen tijdens 

de seizoenen.

In het studiegebied zijn drie ondergrondse stromings- 

gebieden te onderscheiden. Het grootste (I) wordt bepaald door de 

g rondwaterstroming naar het winningsgebied van IWVA. In het tweede

(II) geschiedt de stroming in de richting van het overdeKte w a d ­

den landschap . In het derde verloopt de grondwaterstroming zeewaarts

(III) .

In het gebied van de waterwinning kan men twee subbekkens 

onderscheiden. In het eerste zijn de stroomlijnen gericht r e c h t ­

streeks naar de waterwinning (I.a). In het tweede zijn de s t r o o m ­

lijnen in het bovenste gedeelte van de watervoerende laag gericht 

naar een gebied met een lokale depressie in de grondwatertafel 

(I.b). Deze wordt veroorzaakt door het ontbreken van de h a l f d o o r ­

latende laag (5.2) en/of de halfdoorlatende laag (4.4) die hier 

uit wiggen. De hydraulische weerstand is daardoor veel kleiner 

waardoor een grotere vertikale n e e r w a a r t s ’ gericht stroming plaats 

vindt. Onder de halfdoorlatende lagen (5.2) en (4.4) gebeurt de 

stroming in het gebied (I.b) in de richting van het w a t e r w i n n i n g s ­

gebied.

A
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In het gebied waar de stroomlijnen in het bovenste 

gedeelte van de watervoerende laag rechtstreeks naar het water- 

winningsgebied gericht zijn (I.a), kan het piëzometrisch verhang 

grote waarden aannemen. Ze zijn aan sterke seizoenale schommelingen 

onderhevig. Het piëzometrisch verhang bereikt zijn kleinste w a a r ­

de j u i s t v ô ô r  de periode van intense pomping. Het piëzometrisch 

verhang is het grootst op het einde van die periode. In de v a k a n ­

tiemaanden juli en augustus wordt twee à driemaal meer gepompt 

dan in de andere maanden (tab. 6.6).

In het tweede subbekken (I.b) is het piëzometrisch v e r ­

hang gering en weinig onderhevig aan seizoenale variatie. Het 

verhang wordt geregeld door de afzetting (5.2) en (4.4) met 

grote hydraulische weerstand waardoor de invloed van de pomping 

op de stijghoogte in lagen boven (5.2) eerder gering is in t e g e n ­

stelling met de stijghoogte in de lagen onder (5.2).

In het gebied (II) waar de stroomlijnen in de richting 

van het overdekte waddenlandschap lopen wordt in het westen de 

stroming vooral bepaald door de bronbemaling van de zandgroeve 

"De drie Vijvers" nabij de boring 1 S 3 D B 1 . De bronbemaling heeft 

gewerkt van vóór 1975 tot oktober 1976. Bij de aanvang van deze 

studie (april 1975) reikte het invloedsgebied van deze bemaling 

tot in het midden van het duingebied. Vanaf december 1975 liet 

de bemaling zich nog meer noordwaarts gevoelen. In het najaar 1976 

bereikte het invloedsgebied als gevolg van een algemene lage 

grondwaterstand zijn grootste uitbreiding. Vanaf december 1976 

kromp de invloedszone geleidelijk in tot ongeveer het midden van 

het duingebied. Over de grondwaterstroming in het oostelijke 

gedeelte bestaan weinig gegevens. Het gebied met zeewaartse 

grondwaterstroming (III) is vrij stabiel, daar waar het grenst 

aan het gebied waar de strominglijnen naar het centrum toe gericht 

zijn. De grens met het stromingsgebied (II) verplaatst zich veel 

meer. In oktober en november 1976 kende het stromingsgebied (III) 

zijn geringste uitbreiding en was bijgevolg de zeewaatse stroming 

het k l e i n s t .



6.3.3. DE SEIZOENALE SCHOMMELINGEN VAN DE STIJGHOOGTEN

Als de aanvulling van het grondwater niet gelijk is 

aan de afvoer verandert de g r o n d w a t e r b e r g i n g , hetgeen zich uit 

in wijziging van de grondwaterstand.

Afvoer - Aanvulling « AS

In de periode van 1 mei 1975 tot 1 november 1975 was de 

afvoer groter dan de aanvulling zodat de grondwaterstand in deze 

periode kontinu daalde. Dit was eveneens het geval tijdens de 

periode 1 januari 1976 tot 1 november 1976. Tijdens de periode 

1 november 1975 tot 1 Januari 1976 was de aanvoer groter dan de 

afvoer zodat de grondwaterstand op de meeste plaatsen steeg; dat 

was eveneens het geval in de periode 1 november 1976 tot 1 april 

1 977.

In het studiegebied kan men drie vormen van seizoenale 

stijghoogteschommelingen onderscheiden. De eerste vorm is het 

gevolg van de wisselingen in de infiltratie van regenwater en de 

veranderlijke afvoersnelheid, die alleen afhangt van een afname 

of een toename van de berging in natuurlijke omstandigheden. De 

amplitude is hier hoofdzakelijk afhankelijk van de plaats in het 

duingebied. Dergelijke schommelingen, die meestal klein zijn, werden 

vastgesteld in het stromingsgebied III in de piëzometers 117HB49, 

1 1 7 H B 1 ’, 117HB55, 117HB54, 118HB2, 117HB17, 117HB14, 117HB20 (fig.

6.32), 1 1 7 H B 7, 117HB19, 117HB18n 117HB14, 117HB46 (fig. 6.33), 

117HB35, 117HB53, 117HB58, 117HB27 en 117H623 (fig. 6.34).

Nabij de zee (fig. 6.32) worden de zeespiegelbeweging 

op lange termijn gesuperponeerd op de seizoenale peilschommelingen 

die er zwak zijn. Bij springtij wordt op het hoge strand zeewater 

aangevoerd; dat laatste infiltreert en veroorzaakt een drukverhoging 

in het freatische reservoir. Deze drukverhoging plant zich landwaarts 

voort. Op 4 januari 1976 steeg de zeespiegel zo hoog dat het z e e ­

water in de windgeulen binnendrong en er infiltreerde. De w a t e r ­

stand van de piëzometers 1 1 7 H B 1 ’, 117HB54, 117HB55 en 117HB49

werd er door beïnvloed. De zee kan aldus in een piëzometer het 

waterpeil doen stijgen in een periode waar geen infiltratie naar 

de grondwatertafel plaats vindt. Dergelijke schommelingen van de 

stijghoogte moeten dus in verband gebracht worden met een spring- 

of d o o d t i j .



De p i ë z o m e t e r s ,die verder van de zee verwijderd zijn, 

ondergaan minder de invloed van dood- of springtij zodat de 

schommelingen een veel regelmatiger seizoenaal verloop vertonen.

In de periode van 1 mei 1975 tot 1 november 1975 is een Kontinue 

daling van de stijghoogte waar te nemen. Deze bedraagt 0,30 tot 

0,50 m in het stromingsgebied III. De stijging in de periode van 

1 november tot 1 januari 1976 varieert in dat gebied tussen 0,30 en 

0,40 m. In de periode van 1 januari 1976 tot 1 november 1976 varieert 

de daling er tussen 0,30 en 0,60 m en in de periode van 1 november 

1976 tot 1 april 1977 is de stijging begrepen tussen 0,10 en 0,50 m.

De seizoenale schommelingen nemen af naarmate men de 

h oogwa t e r l i j n nadert. Hieruit valt af te leiden dat het waterpeil 

onder het hoge strand weinig verandert in de loop van het jaar.

Hier laat alleen het tij zijn invloed gelden. Op lange termijn 

mag men aannemen dat het waterpeil onder het hoge strand niet v e r ­

andert.

In het stromingsgebied II wordt de afvoer beïnvloed 

door de stijghoogteverlaging in de zandgroeve "De drie vijvers". 

Hiertoe behoren de piëzometers 117HB26, 117HB30, 117HB29, 117HB39,

117HB25 [fig. 6.35), 117HB42, 117HB36, 117HB37 (fig. 6.36). Tijdens 

de afvoerperiode van 1 mei 1975 tot 1 november 1975 nam de stijg- 

hoogte er af tussen 0,7 en 0,8 m. De stijghoogte tijdens de a a n ­

vul 1 ings peri ode 1 november 1975 tot 1 januari 1976 varieert tussen

0,28 en 0,36 m. De daling varieert er tussen 0,7 en 1,2 m, tijdens 

de afvoerperiode van 1 januari 1976 tot 1 november 1976. De 

stijging schommelde er tussen 0,7 en 1,2 m tijdens de aanvullings- 

periode van 1 november 1976 tot 1 april 1977. De putten die het 

dichtst bij de zandgroeve gelegen waren vertoonden de grootste 

seizoenale variaties.

De piëzometers 117HB57, 117HB41, 117HB40, 117HB38 en 

117HB23 (fig. 6.37) zijn in de scheidingszone gelegen tussen het 

stromingsgebied II en het stromingsgebied III. De seizoenale 

w a t e r p e i l s c h o m m e 1ingen van piëzometer 117HB23 vertonen een zeer 

grillig seizoenaal verloop. Men merkt dat een korte periode van 

sterke stijging onmiddellijk gevolgd wordt door een korte periode 

van sterke daling. Dat kan verklaard worden door een grote 

i n f i l t r a t i e s n e l h e i d , waardoor het water vrij vlug de g r o n d w a t e r ­

tafel bereikt, en een kleine bergingskoëfficiënt nabij de watertafel.



Bij aanvulling zal de stijghoogte onmiddellijk toenemen, bij 

afvoer zal het waterpeil sterk dalen.

De andere piëzometers 117HB57, 117HB41, 117HB40 en 

117HB38 vertonen gelijkaardige, zij het minder uitgesproken, 

stijghoogtesprongen als piëzometer 117HB23. Ze nemen af naar 

het centrum van het duingebied toe.

De piëzometers 117HB45, 117HB43, 117HB47 (fig. 6.38), 

117HB63, 117HB61, 117DB16, 117HB22 en 117HB21 (fig. 6.39), 117IP1, 

117HB60, 117HB66, 117HB59 en 117HB34 (fig. 6.40) liggen in het 

stromingsgebied I.a waar de afvoer vooral bepaald wordt door de 

waterwinning. De daling van de stijghoogte bedraagt 0,7 tot 1,5 m 

in de periode van 1 mei 1975 tot 1 november 1975. De stijging 

in de aanvullingsperiode 0,7 tot 1,2 m. De schommelingen nemen 

toe naarmate men de waterwinning nadert.

De piëzometers 117HB61, 117HB63 en 117DB16 worden b o v e n ­

dien beïnvloed door de waterpeilfluktuaties in het Langeleed. Dit 

is eveneens het geval met de waterstand van de piëzometer 193DB6 

(fig. 6.41) in het overdekte wadden 1 and s c h a p , die zich bevindt 

nabij een afwateringsgracht die in verbinding staat met het 

Langeleed. Het waterpeil stijgt er vlug in de herfst. Dat wijst 

terug op een geringe waarde van de bergingskoëfficiënt nabij de 

watertafel. Later in de herfst en in de winter blijft het peil 

min of meer konstant door de drainerende werking van de gracht.

De seizoenale fluktuaties in de piëzometers 117HB50 

(fig. 6.42), 117HB51, 117IP3, 117HB48 (fig. 6.43), 117HB1, 117HB6, 

117HB9, 117HB3, 117HB11 (fig. 6.44) worden slechts in geringe mate 

beïnvloed door de waterwinning. Ze liggen in het stromingsgebied

I.b. Het enigszins grillige verloop wordt veroorzaakt door de 

getijwerking (op korte termijn). Tijdens de afvoerperiode van

1 januari 1975 tot 1 november 1975 bedroeg de daling 0,58 à 0,60 m, 

de stijging tijdens de aanvullingsperiode van 1 november 1975 

tot 1 januari 1976, 0,29 à 0,40 m. De daling tijdens de afvoer- 

periode 1 januari 1976 tot 1 november 1976 varieerde er tussen 0,63 

en 0,93 m, de stijging tijdens de opvullingsperiode 1 november 1976 

tot 1 april 1977 van 0,48 tot 0,61 m.
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De stijghoogte in de waterwinning en in de onmiddellijke 

omgeving van de zandgroeve worden rechtstreeks beïnvloed door de 

intensiteit van pomping. In de piëzometers 117HB62 en 1 93DB8 

(fig. 6.45) nabij de zandgroeve merkt men vanaf november 1976 

een sterke stijging, die aanhield tot 1 maart 1977. Deze stijging 

is grotendeels het gevolg van het stilleggen van de pomping in 

de zandgroeve op het einde van de maand oktober 1976.

De piëzometers 117DB8F1, -F2, -F3, -F4 (fig. 6.46), 

117DB7F1, -F2, -F3, -F4 (fig. 6.47), 117DB6, 117HB44, 117HB32, 

117HB33, 117HB31 (fig. 6.48) liggen in het w aterwinningsgebied 

van de IWVA. De stijghoogteschommelingen in laag (4) weerspiegelen 

de intensiteit van pomping in deze laag. De stijghoogten in de 

lagen (2) en (3) worden eveneens zij het dan in geringere mate, door 

het pompdebiet beïnvloed. Soms treedt ook een vertraging van de 

minimum of maximum stand op ten opzichte van die in de laag (4).

Die wijst erop dat de halfdoorlatende laag (3) in het w a t e r w i n n i n g s ­

gebied niet doorloopt. De piëzometer 117DB6 is voorzien van een 

filter die zowel de laag (4) als de lagen (3) en (2) aansnijdt. De 

gemeten stijghoogte in deze piëzometers is een stijghoogte die 

begrepen is tussen de stijghoogte in laag (4) en de stijghoogte van 

laag (2 ).

6.4» De p e r m e a b i l i t e i t

Op grond van granulometrische analysen bepaalt men een 

benaderende waarde van de permeabiliteit. De pompproeven geven 

vooraf een idee van de gemiddelde horizontale permeabiliteit van 

een doorsnede van de watervoerende laag. Metingen in bronbuizen 

waarvan de filters in de verschillende afzettingen geplaatst zijn, 

verstrekken een inzicht in hun verschillende p e r m e a b i l i t e i t e n .

De aanwezigheid van de halfdoorlatende horizonten in 

de watervoerende laag werd door diepe boringen bepaald. Aanvullende 

inlichtingen over hun uitbreiding werden vooral verkregen door de 

interpretatie van de hydro-isohypsen van het studiegebied en de 

seizoenale waterpeilschommelingen.



6.4.1. DE HORIZONTALE PERMEABILITEIT

6 . 4 . 1.1. T e rreingegevens

Onderaan bestaat de watervoerende laag uit middelmatig 

tot grof middelmatig zand (2). Uit de granulometrie is af te leiden 

dat de gemiddelde permeabiliteit 24 m/dag bedraagt. De pompproeven 

geven een Kleiner waarde begrepen tussen 14 en 18 m/dag.

Op de middelmatige tot grof middelmatige zanden rust 

het klei-leemkomplex (3). Het is niet mogelijk om de permeabiliteit 

ervan uit de granulometrie of uit pompproeven af te leiden. Men . 

mag aannemen dat de horizontale permeabiliteit zeer Klein is ten 

opzichte van de andere lagen.

Op de lagen (2) en/of (3) rust middelmatig tot fijn m i d d e l ­

matig zand (4) met lenzen van fijn zand, die leem Kunnen bevatten 

(4.1), (4.2), (4.3) en (4.4). De gemiddelde permeabiliteit van

laag (4) is op 9m/dag te schatten. De permeabiliteit van de lenzen 

van sterK lemige fijne zanden (4.4) Kan echter dalen tot 0,2 m/dag.

Tussen de peilen +1 en +4 ligt een Klei-leemzandKomplex

(5) dat lateraal grote facieswisselingen vertoont. Deze gaan van 

middelmatig en fijn middelmatig zand (5.3) tot sterk leemhoudend 

zand met dunne Klei-leemlenzen en veen. De horizontale permeabiliteit 

varieert van 9 m/dag tot zeer Kleine waarden. De laag (5) ligt in 

het overdekte wadden 1 andschap aan het oppervlak en komt in de duinen 

onder de duinzanden (6) voor.

De gemiddelde permeabiliteit van het duinzand bedraagt 

naargelang van de granulometrie 14 m/dag. Uit de pompproeven leidt 

men een permeabiliteit tussen 8 à 12 m/dag af voor de bovenste 

afzetting (4), (5) en (6).

6 . 4 . 1.2. De v o o rstelling in het model

Bij het opstellen van het model dienen de waarde voor 

de horizontale permeabiliteit in de XK.- en YK-matrix bepaald te 

worden. De waarde XK(I,K,J) is de gemiddelde horizontale p e r m e a ­

biliteit van een zijvlak met de x-koördinaten gelijk aan 1 + 1 /2 .

De waarde YK(I,K,J) is de gemiddelde horizontale permeabiliteit 

van het zijvlak met y-koördinaten gelijk aan K+1/2. De som van de 

horizontale permeabiliteiten r e s p e k t i e v e l i j k vermenigvuldigd met 

de hoogte van drie boven elkaar staande volume-elementen moet
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overeenstemmen met de transmissiviteit van de watervoerende laag 

in deze richting op deze plaats.

In werkelijkheid varieert de horizontale permeabiliteit 

binnen deze aangenomen doorsnede in het model van 100 m op 10 m. 

Daarom kent men een gemiddelde horizontale permeabiliteit voor het 

zijvlak van het volume-element.

Doorsnijdt dat zijvlak echter een halfdoorlatende laag 

dan dient men de bouw van de eenheidscellen hieraan aan te passen.

Het zou onjuist zijn het zijvlak van het volume-element zo te la­

ten verlopen dat het de halfdoorlatende laag volledig snijdt. H i e r ­

door zou volgen dat de stijghoogte boven en onder deze h a l f d o o r l a ­

tende laag gelijk is. Het is beter het basisvlak of het topvlak te 

laten samenvallen met de halfdoorlatende laag. De stijghoogte boven 

deze laag komt dan overeen met de stijghoogte van het bovenste v o l u ­

me-element, de stijghoogte onder deze laag met de stijghoogte van het 

onderste volume-element. De gemiddelde horizontale permeabiliteit 

van de twee volume-elementen dienen dan ook aangepast. In fig.

6.50 en 6.51 worden enkele voorbeelden aangegeven van de wijze 

waarop de waarde XK(I,K,J) of YK(I,K,J) afgeleid worden.

In fig. 6.52 , 6.53 en 6.54 worden de waarden van res- 

pektievelijk de horizontale permeabiliteiten (XK(I,K,2), XK(I,K,3) 

en XK(I,K,4) aangegeven zoals ze als onafhankelijke veranderlijken 

in het model aangewend werden.

6.4.2. DE VERTIKALE PERMEABILITEIT

6.4.2.1. Terreingegevens

In horizontaal ge lamel leerde zanden is de vertikale 

permeabiliteit meestal veel kleiner dan de horizontale. Die 

anisotropie is voor de grondwaterstromingen minder belangrijk.

In goed doorlatende afzettingen is de stroming immers hoofdzakelijk 

horizontaal zodat vooral de horizontale permeabiliteit belangrijk 

is. In halfdoorlatende lagen in tegendeel geschiedt de stroming 

vooral vertikaal zodat de vertikale permeabiliteit hier bepalend 

i s .



De vertikale permeabiliteit verandert echter meestal van 

punt tot punt wegens laterale faciesverschillenj de afzettingen 

zijn meestal heterogeen anisotroop. De vertikale stroming zal sterk 

beïnvloed worden door de verandering van de vertikale peremabili- 

teit, zodat de hydraulische weerstand van een halfdoorlatende laag 

vooral bepaald wordt door de "weke" plaatsen in die laag. De w a a r ­

den voor de hydraulische weerstand lopen sterk uiteen : voor een 

dunne veenlaag kan dat 20.000 dagen zijn, terwijl voor een k l e i ­

laag van verschillende meters dik tot amper 100 tot 200 dagen kan 

bedragen (E. SEYHAN, 1975).

Hieruit volgt dat men naast de ruimtelijke uitbreiding 

van de doorlatende afzettingen met hun horizontale permeabiliteiten 

ook zeer goed ingelicht moet zijn over de halfdoorlatende lagen 

met hun hydraulische weerstanden. Hiervoor doet men beroep op 

pompproeven, waterbalansmetodes en de studie van de stijghoogte- 

k o n f i g u r a t i e .

De ruimtelijke uitbreiding van de halfdoorlatende lagen 

in de nabijheid van de zee is af te leiden uit de stijghoogtefluktua- 

ties tengevolge van de getijden. Vooral met behulp van de hydro- 

isohypsen en de seizoenale waterpeilfluktuaties werd in eerste 

benadering de hydraulische weerstand en de laterale uitbreiding 

van de nalfdoor latende lagen bepaald. Door berekening met het 

model bepaalt men de onnauwkeurigheden van de eerste benadering.

Bij terugkoppeling of feedback is vooral de vertikale p e r m e a b i l i ­

teit ZK(I,K,J) aan wijzigingen onderhevig.

6.4.2.2» Voorstelling in het model

Bij het opstellen van het model dienen de waarden voor 

de vertikale permeabiliteit in de matrix ZK bepaald te worden. De 

waarde ZK(I,K,J) is de gemiddelde vertikale permeabiliteit van 

het topvlak met als z-koördinaten gelijk aan J+1/2. Het stelt de 

hoeveelheid water voor die per tijdseenheid zou stromen door een 

doorsnede gelijk aan een eenheid indien het stijghoogteverhang 

tussen de punten I,K,J en I,K,J+1 gelijk is aan de eenheid of 

indien het s t i j g h o o g t e v e r s c h i 1 tussen deze punten gelijk is aan

10 m. Hieruit blijkt dat 10/ZK(I.K,J), de hydraulische weerstand 

tussen de punten I,K,J en I,K,J+1, de som van de hydraulische w e e r ­

standen van de horizonten tussen deze twee punten is.



In werkelijkheid varieert de vertikale permeabiliteit 

binnen de aangenomen doorsnede in het model van 100 m op 100 m. 

Daarom kent men een gemiddelde vertikale permeabiliteit aan het 

topvalk van het volume-element toe. Indien een halfdoorlatende 

laag tussen de twee punten voorkomt dan is de hydraulische w e e r ­

stand van deze laag veel groter dan de som van de hydraulische 

weerstanden van de doorlatende horizonten, zodanig dat men deze 

laatste kan verwaarlozen. De vertikale permeabiliteit van deze 

laag kan dan afgeleid worden uit de hydraulische weerstand van 

de halfdoorlatende laag.

Indien de halfdoorlatende laag slechts over een gedeelte, 

p(%), van het beschouwde vlak voorkomt dient men eerst de h y d r a u ­

lische weerstand te bepalen van de doorsnede waar de h a l f d o o r ­

latende laag niet voorkomt en de hydraulische weerstand waar 

deze wel voorkomt. Met de onderstaande formules leidt men de 

overeenkomende vertikale permeabiliteiten af.

. v 10 . v 10
Kd ' c ~ en k h ■ c-d h

De gemiddelde vertikale permeabiliteit van het topvlak 

met als z-koördinaten J+1/2 tussen de volume-elementen met als

centra ( I , K , J ) en (I,K,J+1) is dan :

C 100-p) . kJJ + p. kJJ
ZK(I.K.J) --------- 100

In fig. 6.55 en 6.56 worden r e s p e k t i e v e l i j k de vertikale 

permeabil teiten ZK(I,K,2) en ZK(I,K,3) die als onafhankelijke v e r ­

anderlijken in het.tweede subsysteem aangewend w rden. Voor ZK(I,K,2) 

werd vooral rekening gehouden met het al of niet voorkomen van de 

halfdoorlatende laag (2), voor ZK(I,K,3) waren vooral de h a l f d o o r ­

latende lagen (4.4) en (5.2) van belang.

5 , 5 ,  i3E BERGING

De berging van de freatische laag is de hoeveelheid water 

die geleverd wordt door drainering onder invloed van de z w a a r t e ­

kracht, door samendrukking van de watervoerende laag en door u i t ­

zetting van het water wanneer de druk in het grondwater vermindert. 

In het model wordt deze berging weergegeven door het invoeren van 

twee parameters, nl. de specifieke elastische bergingskoëfficiënt 

en de bergingskoëfficiënt nabij de watertafel.



De specifieke elastische bergingskoëfficiënt kan afgeleid 

worden uit de elastische bergingskoëfficiënt bepaald bij de 

b e m a l i n g s p r o e v e n . De faktor varieerde er tussen 0,7.10 3 en 11,5.10 

Door deze faktor te delen door de dikte van de verzadigde zone 

bekomen we de specifieke elastische b e r g i n g s k o ë f f i c i ë n t . Voor de 

specifieke elastische bergingskoëfficiënt werd in het model een 

waarde 2.10 4m 1 aangenomen. Het grootste deel van de berging van 

de freatische laag wordt geleverd door de z w a a r t e k r a c h t d r a i n e r i n g .

De bergingskoëfficiënt nabij de watertafel kan op v e r ­

schillende wijzen afgeleid worden. Men kan deze bepalen uit het 

laatste segment van de tijd-afpompingskurve. Daar de pompproeven 

echter over een relatief korte periode geschieden, en daar de 

stijghoogten meestal variaties vertonen afhankelijk van andere 

faktoren zoals een veranderende lekfaktor en een veranderende 

transmissiviteit, die niet nauwkeurig te bepalen zijn, is het 

niet gemakkelijk nauwkeurig het laatste stuk van de bemalingskurve 

te i n t r e p r e t e r e n .

De faktor is ook af te leiden uit de pF-kurve van een 

monster van de zone waarin de watertafel fluktueert. Deze metode 

kon niet toegepast worden omdat de nodige instrumenten ontbraken.

Uit de studie van de seizoenale wa te rp ei 1 s clmmme 1 ingen te 

Sint-André, nabij het waterwinningsgebied van de IWVA werd voor 

de bergingskoëfficiënt nabij de watertafel een waarde van 0,165 

bepaald (LEBBE,L., niet gepubliceerd).

De bergingskoëfficiënt nabij de watertafel kan men ook 

onrechtstreeks uit de granulometrische analysen afleiden met 

behulp van de grafiek van ECKIS (fig. 6.57).

De watertafel fluktueert in het studiegebied in drie 

verschillende lagen : in het onderste gedeelte van de duinzanden

(6), in de laag (5) en in het bovenste gedeelte van de laag (4).

De aktieve korreldiameter van de gekummuleerde kurve, die met de 

grootste fraktie aanvangt, dg^, van de duinzanden varieert tussen 

de waarden 1,9 en 2,1$. Uit de grafiek van ECKIS (fig. 6.57) 

volgt voor de bergingskoëfficiënt nabij de watertafel, S^, een 

waarde begrepen tussen 0,20 en 0,22. Voor de laag (4) varieert 

de dgg van 1,8 tot 2,45$ waaruit volgt dat S q schommelt tussen

0,235 en 0,165. De meeste monsters van deze laag hebben een d g Q 

begrepen tussen 2,1 en 2,45$ wat overeenstemt met een waarde voor S



van 0,20 tot 0,165. Voor de laag (5) varieert de d 0^ tussen 2,1 

en 4,70 waaruit volgt dat S q verandert tussen 0,20 en zeer kleine 

w a a r d e n .

In het model zou naargelang de watertafel van de een 

naar de andere laag beweegt ook de bergingskoëfficiënt nabij 

de watertafel moeten variëren. De verschillende lagen komen zeer 

diskontinu in het studiegebied voor zodat een variërende bergings- 

koëfficiënt in het model zou moeten ingevoerd worden die . a f h a nkelij k 

zou zijn zowel van de plaats als van de waterstand op een bepaald 

tijdstip. Daar dit het model onnodig zou verzwaren werd slechts 

één vaste waarde gekozen nl. 0,18. De studie van de seizoenale

waterpeilschommelingen heeft aangetoond dat in het overdekte wadden-
> i

landschap de bergingskoëfficiënt nabij de watertafel beduidend 

kleiner is.

5 ,5 ,  De w in n in g  en lozlng van water

In het studiegebied werden tijdens de studieperiode op twee 

plaatsen belangrijke hoeveelheden water opgepompt. Het b e l a n g ­

rijkste gebied is het waterwinningsgebied van de Intercommunale 

Waterleidingsmaatschappij van V e u r n e - A m b a c h t , dat vanaf 22 februari 

1967 in gebruik genomen werd. Uit 100 filterputten wordt door middel 

van h e v e 1 leidingen water naar de centrale zuigput gevoerd. Het 

water wordt gestuurd naar een automatisch z u i v e r i n g s s t a t i o n , waar 

vooral het ijzer uit het water verwijderd wordt. Door beluchting 

wordt het neergeslagen samen met ander kolloïden en fijne deeltjes. 

Deze gel wordt van het water gescheiden op een filterbed van v e r ­

schillende grintlagen. Na een tijd vormt zich een film op het f i l t e r ­

bed die zijn doorlaatbaarheid sterk beperkt. Deze film wordt 

periodisch verwijderd door lucht en vervolgens zuiver water in de 

omgekeerde richting door het grintbed te sturen. Het bruine s p o e l ­

water wordt nabij het waterzuiveringsstation in het duingebied 

geloosd.

Van de opgepompte hoeveelheid water wordt ongeveer 4% 

als spoelwater gebruikt. De infiltratie van dit geloosde water 

wordt in het model opgenomen door het toekennen van positieve 

waarden aan de matrix W(I,K,J) voor drie bovenste volume-elementen 

(J=4) in de nabijheid van het pompstation. Voor ds waterwinning 

wordt verondersteld dat iedere pompput ongeveer eenzelfde h o e v e e l ­

heid water leverde en dat het water gewonnen werd uit de volume- 

elementen met centrum op -10. Bijgevolg worden negatieve waarden



toegekend aan de matrix W(I,K,J) voor de volume-elementen (J = 3) 

in de waterwinning gelegen. Deze waarden zijn evenredig met het 

aantal putten die in een volume-element voorkomt. De h o e v e e l ­

heden zuiver water geleverd door het waterwinningsgebied van De 

Panne zijn aangegeven in tabel 6.6. Dit is dan 96% van de hoeveel 

heden die uit de putten gewonnen worden.

In de zandgroeve "Drie V i j v e r s ” wordt eveneens water op 

gepompt. Bij de aanvang van de studie was de bemaling reeds bezig 

Aanvankelijk gebeurde de bemaling met slechts een pomp, die een 

debiet van 75 m 3/uur leverde. De pomping geschiedt automatisch om 

het water in de zandgroeve beneden een bepaald peil te houden.

Naarmate de uitdieping van de zandgroeve vorderde werd 

een tweede en een derde pomp (debiet 75 m 3/uur) bij g e p l a a t s t . 

Tijdens deze studie werd het waterpeil in de zandgroeve niet opge 

meten. Eveneens was het moeilijk om de hoeveelheid water te 

bepalen die uit het gebied van de zandgroeve gepompt werd. Het 

water werd via het Langeleed in het kanaal Nieuwpoort-Duinkerke 

g e l o o s d .

In het model werd verondersteld dat het peil van het 

Langeleed geen invloed heeft in het bemalingsgebied van de 

zandgroeve en dat bijgevolg geen voeding plaatsgrijpt vanuit het 

Langeleed. Verder werd er verondersteld dat het water opgezogen 

werd uit vier naast elkaar liggende kolommen volume-elementen ter 

hoogte van de zandgroeve. De winning van zand en bijgevolg de 

bemaling werden stopgezet op het einde van de maand oktober 

van 1976. In het model werd vanaf 1 november geen water meer o n t ­

trokken uit de volume-elementen. Door het f e it dat het zand in de 

zandgroeve weggenomen werd zou de bergingskoëfficiënt nabij de 

watertafel in deze groeve de waarde 1 moeten hebben bij het terug 

stijgen van het water in de zandgroeve. Hiermee werd echter in 

het model geen rekening gehouden.



Tabel 6.6 - Waterwinning "Westhoek" De Panne - Hoeveelheid gepompt 

water vanaf 22.2.67 (begin der pompingen) in m 3 
Gegevens van de Intercommunale W a t e r l e i d i n g m a a t s c h a p ­

pij van V e u r n e - A m b a c h t , Oostduinkerke

1967 1968 1 969 1970 1971

j anuari 39.812 55.559 38.471 52.516

februari 1 1 . 077 33.811 48.810 59.041 54.825

maart 70.961 37 .458 56.062 63.121 62.675
april 47.357 49.988 60.568 64 .218 85.543
mei 69.092 44.117 60.228 73.612 69.160
juni 67.902 61 . 374 67.221 67.160 59.649
juli 83.296 86.857 116.255 98.280 96.261
augustus 82.238 86. 198 124.875 132.454 90.002
september 45.624 66.543 61.527 90.020 64.835
oktober 43.832 61.520 63.249 63.270 44.432
november 40.975 62.818 57.642 51.094 45.646

december 39.822 60 .447 48.270 65.816 46.932

Totalen 602.176 690.943 320.266 866.557 772.676

1972 1973 1974 1 975 1 976

januari 38.204 57.440 60.868 69.614 67.71 1
februari 35.805 54.962 51.001 62.194 67.747
maart 53.715 76.872 54.893 74 . 986 78.422
april 55.664 74.495 84.997 76.593 94.633
mei 59.227 63.056 78.069 79.030 86.567
juni 61.519 93.233 88.296 92 . 391 140.491
juli 97.165 130.320 154.326 161.119 217.942
augustus 83.824 144.163 182.675 193.050 182.026
september 57 . 718 79.780 96.292 101.899 100.235
oktober 47.958 41.048 76.311 81.911 76.390
november 46.054 48.821 71.797 76.074 77.378
december 46.551 60.406 81.213 76.733 80 . 998

T otalen 663.406 929.596 1.080.738 1.145.594 1.270.540



6,7, ÜE RANDVOORWAARDEN

Bij de opbauw van het model wordt verondersteld dat de 

grenzen aan weerszijden van de I-rijen stroomlijnen zijn. Deze 

Kunnen als horizontaal ondoorlatende grenzen beschouwd worden 

daar loodrecht op deze stroomlijnen de stroming gelijK is aan 

nul. Daarom stellen we de horizontale permeabiliteit YK(1,K,J) 

en YKCi+1,K,J) = 0.

De grenzen van de K-rijen worden gevormd door enerzijds 

de zee en anderzijds het overdekte w a d d e n l a n d s c h a p . In het model 

laten we deze overeenKomen met vaste p o t e n t i a a l g r e n z e n . Zoals 

vastgesteld bij de studie van de stijghoogte Kunnen we aannemen 

dat de stijghoogte onder het strand Konstant is en niet onderhevig 

is aan seizoenale fluKtuaties. De stijghoogte onder het hoogstrand 

wordt in het model op 4,15 Konstant gehouden.

In het overdeKte waddenlandschap wordt het peil rond 

3,15 Konstant gehouden. In de omgeving van de zandgroeve wordt het 

rond 2,50 m O.P. Konstant gehouden.

5,3, Resultaten

6.8.1. DE STIJGHOOGTEN OP DE PEILEN 0, -10 EN -20

Als afhanKelijKe veranderlijKe van het tweede subsysteem 

wordt de matrix van de stijghoogte F (I ,K ,J ,T ) verkregen. Deze 

matrix stelt de Konfiguratie van de stijghoogten voor vai het 

studiegebied op welbepaalde tijdstippen. Voor een bepaald t i j d ­

stip neemt T een vaste waarde aan. De stijghoogten r e s p e K t i e v e l i j K 

op het peil -20 en -10 zijn degene waarbij J = 2 en J = 3.

De matrix bij J = 4 geeft de stijghoogten van de grond- 

watertafel aan. Op de meeste plaatsen stemmen deze overeen met 

die op het peil 0. Wanneer echter de halfdoorlatende laag (5.1) 

in het model opgenomen is, wordt de watertafel aangegeven door 

de stijghoogte boven deze laag, waarvan de top op +4 voorKomt.

De stijghoogtekonfiguratie afgeleid uit de v e l d w a a r n e ­

mingen van 1 juni 1975 en aangewend in het tweede subsysteem als 

onaf hanKeli j Ke veranderlijKe, wordt samen rnet de als afhanKelijKe 

veranderlijKe beKomen stijghoogten F(I,K,J,T) voorgesteld in de 

figuren 6.58 tot 6.80.



Waar geen halfdoorlatende lagen voorkomen zijn de s t i j g ­

hoogten op alle diepten gelijk. Waar men die wel aantreft zijn de 

stijghoogten verschillend.

6.8.2. BALANS VAN DE VERZADIGDE ZONE

Uit de konfiguratie van de stijghoogten kan men een 

maandelijkse hydrologische balans van de grondwaterstromingen 

in de verzadigde zone opstellen. Hierbij zijn Ozee en Opol de 

hoeveelheden water die per maand r e s p e k t i e v e l i j k in de richting 

van de zee en in de richting van de polders vloeien. De m a a n d e ­

lijkse hoeveelheid water in de richting van de polders over de 

eerste kilometer • vanaf de westelijke rand van hst studiegebied 

wordt aangeduid door 0 p O i<j* de rest door Wegens de z a n d ­

winning aan de westelijke rand geschiedt de stroming aan deze 

grens van het model in de richting van het studiegebied zodanig

dat 0 , negatieve waarden aanneemt. 0 en 0 , zijn de hoeveel-poll ° pomp zand J
heden water die respektievelijk uit de waterwinning en uit de z a n d ­

winning gepompt worden. 0tot is de totale hoeveelheid water die 

maandelijks het studiegebied verlaat.

De hoeveelheid water, die maandelijks naar de grond- 

watertafel infiltreert in het studiegebied, wordt aangeduid door

I. De hoeveelheid water die maandelijks opgeborgen of afgegeven 

wordt door de freatische laag van het studiegebied wordt aangeduid 

door D-berging (tabel 6.7).

6.8.3%FEEDBACK OP TERUGKOPPELING

Bij vergelijking van de berekende stijghoogte en van de 

veldwaarnemingen stelt men afwijkingen vast. De grootste treden op 

in het stromingsgebied (I). De stijghoogte in het stromingebied (Ib) 

daalt in de eerste maanden vlugger in het model-dan in w e r k e l i j k ­

heid. In dit gebied komt de halfdoorlatende laag (5.2) tussen de 

peilen +4 en +1 voor. Deze ligt op geringe diepte, d.w.z. op 

minder dan 2,5 m onder de grondwater t a f e l . Hierdoor is het moeilijk 

om met de formules, opgesteld voor de bovenste volume-elementen, en 

rekening houdend met een gemiddelde horizontale permeabiliteit de 

g rondwaterstromingen op korrekte wijze te simuleren.
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Tabel 6.7 : Balans van de verzaiiiyde zone van het studiegebied

maand Upoll 0pol2 üpol Ozee Opomp Ozand Otot I D-BergincL
Daar in in in in in in in in in 1000 m

1000 10U0 1000 1000 100Ü 1000 1000 1000 maand
3 / 3 y 3 / 3 / 3 / 3 / 3 , 3 !m / m / (Tl / m / m / m / m / m /

maand maand maand maand maand maand maand maand

7-75 - 1 + 45 + 44 + 48 + 105 + 356 + 356 0 + 352

8-75 - 23 ♦ 18 - 5 + 37 + 179 + 120 + 331 0 + 324

9-75 - 32 + 8 - 24 + 30 + 98 + 94 + 197 0 + 188

10-75 - 33 + 1 - 32 + 23 + 75 + 72 + 138 0 + 126

11-75 - 17 + 34 + 17 + 59 + 76 + 73 + 226 + 1159 - 919

12-75 - 13 + 42 + 29 + 82 + 77 + 74 + 262 + 310 - 32

1-76 - 14 + 34 + 20 + 75 + 68 + 65 + 228 + 180 + 40

2-76 - 14 + 31 + 16 + 69 + 68 + 62 + 218 + 189 + 22
3-76 - 18 + 23 + 5 + 57 + 90 + 86 + 237 0 + 227

4-76 - 25 + 16 - 9 + 44 + 95 + 91 + 221 0 + 206

5-76 - 29 + 11 - 18 + 35 + 87 + 83 + 186 0 + 172

6-76 - 42 + 8 - 34 + 32 + 185 + 143 + 334 0 + 320

7-76 - 47 + U - 47 + 19 + 218 + 145 + 335 0 + 329

8-76 - 54 - 6 - 59 + 12 + 182 + 121 + ^56 0 + 241

9-76 - 50 - 11 - 61 + 7 + 100 + 67 + 113 0 + 104

lü-76 - 39 - 0 - 39 + 0 + 76 + 51 + 8y + 237 - 134

11-76 - 16 + 17 + 1 + 40 + 77 0 + 118 + 905 - 774

12-76 + 0 + 23 + 23 + 57 + 81 0 + 161 + 301 - 127

1-77 + 13 + 36 + 50 + 73 + 70 0 + 192 + 743 - 540

2-77 + 19 + 41 + 60 + 82 + 70 0 + 212 + 460 - 239

3-77 + 21 + 40 + 62 + 8Li + 80 0 + 222 + 276 42
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In het model werd een te grote horizontale p e r m e a b i l i ­

teit voor deze v o 1 ume-elementen aangenomen en is wellicht de a a n ­

genomen uitbreiding van de halfdoorlatende laag te klein. Doordat 

de stijghoogte boven de laag (5.2) bij de berekeningen te vlug 

gaat dalen wordt een abnormale grote hoeveelheid water naar de 

waterwinning gedraineerd. Dit heeft als gevolg dat de stijghoogte 

in de waterwinning onmiddellijk na de eerste berekende maand 

reeds te hoog is.

In het centrum van de waterwinning is de berekende 

stijghoogte reeds na een maand 0,50 m te hoog. Na enkele maanden 

verkleint de afwijkingj op het einde van de maand september is 

de afwijking het kleinst. De afwijking tussen de berekende stij- 

hoogte en de waargenomen stijghoogte vergruot merkbaar in de 

eerste maand van de h e r c p v u 1 lingj gedurende de daarop volgende 

maanden van heropvulling blijft ze konstant. De afwijking in het 

centrum van de waterwinning neemt af gedurende de afvloeiperiode 

en de periode van intense pompingen en wordt nul op het einde van 

de maand augustus 1976. Na de intense pomping neemt de afwijking 

terug geleidelijk toe totdat ze terug in de eerste maand van 

de heropvullingsperiode 1976-77 plots sterk vergoot om dan g e d u ­

rende de volgende maanden van heropvulling min of meer konstant 

te blijven. Men kan deze afwijking verklaren door een te snelle 

drainering in het model ter hoogte van de laag (5.2) naar de 

waterwinning en een enigszins te kleine bergingskoëfficiënt S q .

Aan de zuidelijke rand van het w a t e r w i n n i n g s g e b i e d , ter 

hoogte van de boring 117HB32, 117HB34, 117HB59 en 117DB6, blijft

een afwijking tussen de waargenomen en de berekende stijghoogte 

van circa 1 m bestaan. Dit is waarschijnlijk te wijten aan het 

feit dat aan de halfdoorlatende laag een te kleine zuidelijke 

uitbreiding in het model toegekend werd. Het is echter niet u i t ­

gesloten dat meer water geput wordt uit de zuidelijke dan uit de 

centrale putten van de waterwinning. Ook is de stijghoogte in de 

polders te hoog.

In de polders tegenover de waterwinning is de berekende 

stijghoogte 0,40 tot 1,15 m te hoog. De afwijkingen zijn hier 

het grootst tijdens de a f v l o e i p e r i o d e . Dit komt hoofdzakelijk 

doordat een vaste potentiaalgrens verondersteld wordt aan de 

zuidelijke begrenzing van het model in de polders.In werkelijkheid



is dit niet het geval. Uit de veldwaarnemingen blijkt immers een 

duidelijke seizoenale s t i j g h o o g t e s c h o m m e l i n g .

De afwijkingen aan de grens tussen de stromingsgebieden 

(Ia) en (II) zijn op dezelfde wijze te verklaren. Vooral in de 

afvloeiperioden 1975 en 1976 zijn de afwijkingen het grootst.

Midden in het stromingsgebied II en in het stromingsge- 

bied III blijven de verschillen tussen de waargenomen en de b e r e ­

kende stijghoogten zeer beperkt. Zij bedragen maximaal 0,30 m. In 

de nabijheid van de zandwinning, ter hoogte van handboring 117HB62 

merkt men grotere afwijkingen. Deze worden veroorzaakt door het 

feit dat de stijghoogte aan de zuidelijke grens van het model 

gedurende de grootste tijd van de berekening te hoog gehouden 

werd en dat de debieten in de zandwinning bij benadering geschat 

werden. Deze afwijkingen zijn het meest uitgesproken naarmate 

men de zandwinning nadert.

Bij deze eerste berekening met het model komen de 

onjuiste veronderstellingen die gemaakt werden bij het opstellen 

van de onafhankelijke veranderlijken van het model tot uiting.

Door het aanpassen van deze onjuiste veronderstellingen zal men 

bij een volgende reeks berekeningen tot een nog betere o v e r e e n - 

stemming komen tussen de laatste resultaten en de waarden w a a r ­

genomen op het veld. Bij een goede overeenkomst kan dat model 

dan gebruikt worden om de invloed van de kunstmatige ingrepen 

op dj grondwaterstroming te bepalen. Bij gebrek aan tijd was het 

echter niet mogelijk een eerste aanpassing van de onafhankelijke 

veranderlijken of de zgn. feedback of terugkoppeling door te 

voeren. Daar de bekomen balans van gebied afhankelijk is van de 

onjuiste veronderstellingen die er gemaakt werden is het nodig 

er een korrektie op te maken. Door de toepassing van het principe 

van de superpositeit kan men een benaderde korrektie berekenen.

Men superponeert een kontinue stroming door het model 

vanaf de zee naar de polders. Hierbij wordt de stroming konstant 

gehouden zodat deze op de berging in het model geen invloed heeft. 

Deze stroming zal een peilverschil teweegbrengen dat overeenkomt 

met het verschil tussen de waargenomen peilen in de polders en 

het berekende peil aan de rand van het model. Tabel 6.8 geeft deze
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berekende stroming aan die respek t i e v e l i j k van de zeewaartse 

stroming en van de stroming in de richting van de polders moet 

afgetrokken en bijgeteld worden. De verbeterde stroming in de 

richting van de zee en de polder worden eveneens in deze tabel 

6.0 voorgesteld.

Tabel 6.8 - Korrektie van de stromingen in het studiegebied door 

superpositie van een konstante stroming, Q const, 

in het model die een verhang veroorzaakt dat gelijk is 

aan het verschil tussen het waargenomen en de berekende 

stijghoogten, I verschil.

Maand
Jaar

I v e r ­
schil 
in m

■
Q const. Opol

1000 m V  in 1000 m3/dae 
maand Berekend Gekorri-

geerd

Ozee

in 1000 m 3/dag

- Berekend Gekorri- 
gee rd

7-•75 0,40 5 + 44 + 49 + 40 + 43

8-■75 0,55 7 - 5 + 2 + 37 + 30

9-■75 0,60 8 -24 -16 + 30 + 22

10-■75 0,60 8 -32 -24 + 23 + 15

1 1 -■75 0,40 5 + 17 + 22 + 59 + 54

1 2 -■75 0, 35 5 + 29 + 34 + 02 + 77

1 -■76 0,50 7 + 20 + 27 + 75 + 68

2 -•76 0,50 7 + 16 + 23 + 69 + 62

3-■76 0,50 7 + 5 + 12 + 57 + 50

4-■76 0,50 7 - 9 - 2 + 44 + 37

5-■76 0,60 8 -18 - 1 0 + 35 + 27

6--76 0, PO 12 -34 -2 2 + 32 + 20

7--76 1,15 15 -47 -32 + 19 + 4

0--76 1,15 15 -i9 -44 + 12 - 3

9--76 1 , 00 13 -61 -48 + 7 - j 6 «

1 0--76 0,85 1 1 -39 -28 0 - 1 1

1 1 --76 0, 60 0 + 1 + 9 40 + 32

1 2 --76 0,40 5 + 23 + 28 57 + 52

1 --77 0,40 5 + 50 + 55 73 + 68

2 --77 0,4 0 5 + 60 + 65 02 + 77

3--77 0,40 5 + 62 + 67 80 + 75



Voor het hydrologische jaar 1975-1976 Krijgt men 

volgende balans, die loopt van 1 oktober 1975 tot 30 september 1976, 

voor het studiegebied die omschreven wordt door het matematisch 

mode 1 .

Inkomend water Uitgaand water

Aanvulling van grondwater 204 mm Zeewaartse stroming

Polderwaartse stroming 

Opgepompt water

- in waterwinning

- in zandwinning

Bergingsverandering : 100 mm bergingsvermindering

Dat hydrologische jaar is gekenmerkt door een geringe 

aanvulling van het grondwater. Deze aanvulling is bovendien voor 

meer dan de helft gebeurd in de eerste maand van de a a n v u l l i n g s ­

periode wat een sterke grondwaterstijging in deze maand voor gevolg

had. Deze grondwaterstijging had een relatief sterke zeewaartse en 

landwaartse stroming voor gevolg reeds vanaf het begin van de a a n ­

vullingsperiode. Door de sterke bemaling in de zandgroeve heeft men 

een weinig nettostroming vanuit het poldergebied naar het s t u d i e ­

gebied. In dat hydrogeologische jaar heeft men bijgevolg een b e r ­

gings vermindering van +_ 100 mm.

Uit het model kan men eveneens de grootte van de z e e ­

waartse stroming afleiden. Deze bedraagt 405.000 m 3/jaar over de 

ganse doorsnede van het model voor het hydrogeologische jaar 1976- 

1977. Dit betekent een gemiddelde van 3,75 m 3/jaar door een d o o r ­

snede van de watervoerende laag gelijk aan 1 m 2 . Nemen we bij b e ­

nadering een porositeit van 0,33 aan, waardoor de waterbeweging in 

de watervoerende laag plaatsvindt, dan bekomen we een snelheid 

van het water van 11 m/jaar of gemiddeld +_ 1 m. Door het voorkomen 

van het infiltrerend zeewater op het strand wordt do afvoerdoor- 

snede voor het zoete duinwater ongeveer voor de helft beperkt 

waardoor men hier een verdubbeling van de afvoersnelheid van het 

water kan verwachten.

Uit de veldwaarnemingen en de resultaten van het model 

blijkt dat d-eze zeewaartse stroming sterk kan variëren met de 

verschillende seizoenen. Zo blijkt dat gedurende de afvloeiperiode

4 5 mm 

-7,1 mm

14 7 mm 

120 mm
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een landwaartse stroming Kan plaats hebben aan de grenzen van het 

model die onder het strand gelegen is. Deze landwaartse stroming 

is geluKKig eerder beperKt in grootte en tot een relatief Korte 

periode. Deze stroming was echter wel het grootst onder het strand- 

gedeelte die het dichts bij de waterwinning gelegen is. Wellicht 

is dat feit de verKlaring waarom de z o u t - z o e t w a t er o v e r g angszone 

onder het strand in dat laatste gebied dieper gelegen is dan in 

het westelijKe deel van het studiegebied.
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7, BESLUIT

Een dicht net van boringen en het sedimentologische o n d e r ­

zoek van talrijke monsters hebben geleid tot een vrij g e d e t a i l ­

leerd beeld van de opbouw van het freatische reservoir. Onderaan 

begrensd door het nagenoeg ondoorlatend Ieperiaankleisubstraat 

vertoont het reservoir een duidelijke gelaagdheid. Het onderste 

gedeelte van de watervoerende laag bestaat meestal uit middelmatig 

tot grof middelmatig zand. Hierop rust plaatselijk een komplex 

waarin een kleiig en een lemig facies te onderscheiden zijn. Het 

kleiig facies komt meestal voor in geulen, die ingesneden zijn, 

in de onderliggende afzetting. Het lemig ■racies is minder dik, men 

treft het aan op een vervlakking van de onderliggende afzetting 

rond het peil -18. In het noordelijk gedeelte van het o n d e r z o e k s ­

gebied ontbreekt meestal dat k 1 e i -1e e m k o m p 3 e x . De volgende laag 

bestaat uit middelmatig tot fijn middelmatig zand, die plaatselijk 

zeer veel leem bevat. Hierop rust een komplex, dat zowel zand, 

klei, leem als veen bevat. Tenslotte treft men het duinzand aan.

Door de aanwezigheid van diskontinue halfdoorlatende lagen 

in het reservoir wordt soms een halfartesische toestand geschapen. De 

ruimtelijke verbreiding en de hydraulische weerstand van de h a l f ­

doorlatende lagen werden in eerste benadering bepaald door de studie 

van de stijghoogten in ruim;e en in tijd. Deze werden verwerkt op 

maandelijkse h y d r o - i s o h y p s e n k a a r t e n . Vastgesteld werd dat de stijg- 

h o o g t e f l u k t u a t i e s , voortvloeiend uit de g e t i j d e b e w e g i n g , door de 

halfdoorlatende lagen naar boven toe sterk tot volledig gedempt 

w o r d e n .

Het zijn vooral de ondiepe halfdoorlatende lagen die de 

vorm van de grondwatertafel beïnvloeden. Uit de vorm kan men drie 

grote stromingsgebieden afleiden waarin de grondwaterstroming in 

de richting van respek t i e v e l i j k de zee, de polders en de w a t e r w i n ­

ning van de IWVA geschiedt.

De grootte van deze hoofdzakelijk horizontale stromingen 

wordt vooral bepaald door de transmissiviteit van de watervoerende 

laag. Deze parameter werd afgeleid uit pompproeven. Deze wezen op 

een grotere transmissiviteit in het noordelijke duingebied, 

zoals voorspeld uit het sedimentologische onderzoek.
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De voeding van het freatisch reservoir gebeurt uitsluitend 

door de infiltratie van regenwater. Uit de meteorologische gegevens 

werd de potentiële evapotranspiratie berekend volgens de metode 

van PENMAN. Een maandelijkse balans van de bodemwaterhuishouding 

werd opgesteld rekening houdend met een aantal bodemkarakteristie- 

ken. Uit deze gegevens, die lopen over een periode van 20 jaar is

een voedingskoëfficiënt van 0,40 af te leiden. Deze stemt vrij

goed overeen met de waarde 0,38 bepaald volgens de metode van 

SCHOELLER, die steunt op een vergelijking van het chloorgehalte 

van het regenwater met dat van het duinwater.

Uit het chemische onderzoek valt verder af te leiden dat 

het regenwater tijdens de infiltratie doorheen de onverzadigde zone 

vooral calcium en bicarbonaten opneemt. Op plaatsen waar de w a t e r ­

tafel door bemaling sterk verlaagd werd bevat het duinwater aan de 

topzone van de watervoerende laag veel ijzer en sulfaten. Het 

zoete duinwater stroomt ondergronds gedeeltelijk in de richting van

de zea, gedeeltelijk in de richting van de polders. Onder het strand

bevindt zich boven de zoete waterlaag een oppervlakkige zoute 

waterlaag, die docr zeewaterinftitratie gevoed wordt. Zowel het 

zoute als het zoete water hebben een zeewaarts gerichte stroming.

In het oosten waar de zeewaartse stroming van het zoete water m i n ­

der groot is door de waterwinning is de oppervlakkige zoute w a t e r ­

laag dikker. De grens van de diepe zoute waterlaag, die wigvormig 

onder de zoete waterlaag verloopt, ligt waarschijnlijk ten noorden 

van de vloedlijn.

In het westelijke deel van het studiegebied stroomt het 

duinwater grotendeels in de richting van de polders. In het o o s t e ­

lijke deel daarentegen stelt men vast dat, als gevolg van de water- 

onttrekking door IWVA, de grondwaterstroming geschiedt vanuit de 

polders naar de duinen. Dit is af te leiden uit het verhang van de 

watertafel en uit de chemische samenstelling van het water.

In de polders van het overdekte waddenlandschap wordt de 

grillige zoet-zoutwaterverdeling bepaald zowel door litologische 

als door hydrologische faktoren. In natuurlijke omstandigheden is 

die zoet-zoutwaterverdeling weinig of niet onderhevig aan seizoenale 

invloeden. De wateronttrekking in de zandgroeve heeft tijdelijke 

een sterke kunstmatige stroming veroorzaakt en han plaatselijk 

hierop wel een invloed uitgeoefend hebben.
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Het is mogelijk gebleken alle waarnemingen te verwerken 

in een matematisch model. Hiermee werd een beter inzicht verkregen 

in de opbouw van het reservoir en de grootte van de stromingen. Zo 

werd de grondwaterbalans opgesteld voor het hydrologisch jaar, dat 

loopt van 1 oktober 1975 tot 30 september 1976. Volgens deze 

bedroeg de aanvulling van het grondwater 204 mm, de zeewaartse 

stroming 45 mm, de p o l d e r w a a r t se stroming -7,1 mm, de wateront- 

trekking door IWVA 147 mm, de wateronttrekking in de zandgroeve

120 mm; dat betekent dat de berging in het gebied met 100 mm 

verminderde. Uit het model is ook af te leiden dat in 3976-19Z7
o

een zeewaartse zoetwaterstroming van 405 .000 m -/jaar over de 

ganse doorsnede van het model plaatsgreep. Met een porositeit van 

0,33 betekent dit dat het water zich met een snelheid van circa

11 m per jaar beweegt. De snelheid van het water neemt toe omdat 

de doorsnede zeewaarts afneemt wegens de bovenste zoute waterlaag.

De bruikbaarheid van het matematisch model voor de hydro- 

geologische toestand van de Westhoek werd duidelijk aangetoond. 

Rekening houdend met ekologische en ekonomische faktoren kan het 

model aangewend worden voor een optimaal beheer van de w a t e r v o o r ­

raden in dit gebied. De berekeningswijze vcor het model kan echter 

ook toegepast worden op tal van andere hydrologische problemen, 

zoals de interpretatie van b e m a l i n g s p r o e v e n , de verwerking van de 

getijschommelingen, het ber kenen van de zeewaartse grondwaterstromin-

gen voorbij de vloedlijn, het evalueren van de stromingen in de o n ­
verzadigde zone.
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HOOFDSTUK 3

SEDIMENTOLOGISCH ONDERZOEK 

Figuren 3.1 tot 3.20
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% gevichtpercentage van de drie belangrijkste f rakties

Fig.3.2. Korrcktiefaktoren voor de bepaling van de permeabiliteit 
van zanden uit korrelgroottc analysen
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Fig. 3.13 - Bun d el  van kurnulatieve kurv en van de m i d d e l m a t i g e
tot gr of m i d d e l m a t i g e  zanden met s c he lp en  en
s c h e l p g r u i s  (2)



F i g . 3 - 1 4 Bun d el  van k u m u l a t i e v e  kur v en  van het k l e i - l a e m k o m -
plex (3]



Fig. 3.15 - Bun d el  van k u m u l a t i e v e  kurv en van de m i d d e l m a t i g
tot fijn m i d d e l m a t i g  za nd a f z e t t i n g  (4)



Fig. 3.16 - Bundel van k u m u l a t i e v e  Ku rv en  van de fijne za nd ig e
(4.1 + 4.2], lemig fijn za nd ig  (4.3] en sterk
l e e m h o u d e n d  fijn za n d i g e  (4.4) lenzen



Fig. 3.17 - B u nd el  van k u m u l a t i e v e  Kurv en van de s c h e l p b a n k e n
(4.5] en (4.6)



Fig. 3.18 - Bund el van k u m u l a t i e v e  kurven van de k l e i - l e m i g ë
z a n d a f z e t t i n g  (5)
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F i g .  3 . 1 9 Bun de l van k u m u l a t i e v e  Kurv en van de d u i n z a n d e n  in
het strand zand (6)



Fig 3.20 -  L ito s tra tig ra fis c h  p ro fie l dwars door het stud iegeb ied ( N-S ) 

N Zee Duinen Polders s



Lilo log ische verklaring bij de figuren 3.3 tot en m et 3.12 
en fig. 3 .20

grof m id de lm atig  zan d

m id d e lm a t ig  zand

fijn m id d e lm a t ig  zand

weinig leemhoudend fijn m id de lm atig  zand

leem houdend fijn zand

T— TT— r leem  of leemhoudend

V V 
V V veen of veenhoudend

X X X
xx xx hum ushoudend

g r in t

-  klei of klei houdend
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HET HYDROCHEMISCH ONDERZOEK 

Figuren 4.1 tot 4.16



V o o r s t e l l i n g  v a n  de r e l a t i e v e  i o n e n v e r d e  1 i n g 
v a n  de v e r s c h i l l e n d e  w a t e r g r o e p e n  i n  e e n  
P I P E R - d i a g r a m (DE MOOR,  G. & DE BREUCK,  W. 1 9 6 9 )
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LEGENDE

• handboringen 

o diepe boringen 

®  informatiepunten



f / F 0,01 ( p w 0 = 0,01 Om)

0,02 0,05 0,1 0,2 0,5 1,0 2 5 10 p w (  P m )
( 2 5 °C)

Fig. 4.5 - Verband tussen de verhouding
F/F0.01 en de resistiviteit v a n  
het poriënwater voor v e r s c h i l ­
lende kationenuitwisselings- 
kapaciteiten uitgedrukt door 
de parameter b (V.N. DAKHNOV. 1962)
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Fig 4.16. R es is tiv ite itsp ro fie l en het L ito s tra tig ra fisch  profiel 

N U '  Duinen
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HYDRAULISCHE KENMERKEN VAM DE 

FREATISCHE LAAG

Figuren 5.1 tot 5.28
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volume percent water gedraineerd 
6 door de zwaartekracht

20 40

Fig.5.1. De pF- kurve van duinzand leem en klei

60*/. 
vol water
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Fig. 5.3_ Onderlinge ligging van de pompput en de peilputten



Fig. SÂ _ Getijdebeweging ter hoogte van 117 DB 2 in m ei 1975

mm











- 0.10 -

/ \

/  x »

/ / -  \
. / r X \  \ ______________ &

ƒ ƒ  * * \  aanvan9sP®i|

II 
u 
i

oioH h
I*

\ r

X

0.30-> resterende verlaging (m)

dagen 
2000 minuten 

' -  tijd 
na stilleggen pomp

+ 117 SB1 *  117DB 1 F3
o 117 SB2 • 117DB1 R,

Fig. 5 .9 . Bemalingsproef 117 DB2 BP1, resterende 
verlaging in de piëzometers 117DB 1 F i

117DB3 
117SB1 F1 en 
117SB2 F1



-0,10-

i

\
020 +117 DB 3 F1 *117 DB 3 F3

• 117DB3 F2 • 117DB3 F4

(MO

resterende verlaging (m )

Fig 5.10. Bemalingsproef 117DB2 BP1, resterende verlaging 
in de piëzometers F4,F3,F2 en F1 van 117DB3







•i

2 3 4 5 6 7 8 9 1 0

♦— i—h — i i m u

4  5  6  7 8  9 1 0



0
 
0

)c
0

 
N 

«O 
10 

Tf 
CO 

CS 
'

0
0

)0
0

3 - -

2 - -

-1

•2

7 
6 - 

5 

4 ■

3 ■

2 3 4 5 6 7 8 9 1 0

4 — 4— M  I I  I 1 I
2 3 4 5 6

4— M — b -b -b
8 910 2 3 4 5 6 7 8 910

4— H — ( I I 1 I I I
2  3  4 5 6 7 8 9  10

— 1— f— t— H - H -

_Vej.be e j J e y j s  cLaging^s LooL

i :

H;t
Ï j!1

i l l

H ’ l -fi't 
t l”  ■

I

::::

h ; -  
* • 7 '
ï j  ' t M •

: ; : ï 
: : ; :
ï : : :  
i  : :  ;

i : : :

in :

;S 
: à

u i 
< * f

- w

Tïï
: ;

j .

1 :

TT

iiii

:rö  ; :*

Mi; 
TH ; 
in :

i • • r 
1*0

s ; :

i i 1 •

Iliz

lÜI
u : :

: < i

l i l :

!Ü

$

- - 3

- - 2

- - I 0

-  -  7

- - 5

- - 4

- - 3

-3
10- -

r r r -

t ; :
i • r r r

Ir
in

]!
TTTT 
t . ; •

4 UI

.TijcLLafpampii
in

Hii iiii

de pjézo n

i k  1 v a n . de 
F^ii F3Ü)

"M

j ::

ingspr.
van

D B Î-B P 1 ..

t ••• 
* * i *

—  i

i— M  f- t- t -H  H 1 ♦ 1— 1—I 1— I— \
3 4 5 6 7 8 9 1 0 3 4 5 6 7 8 9  10

- \— 1— I— I I 14 4 4 1
3 4 5 6 7 8 9 10J

4 - 4
Ti d

3 4 5 6 7 8 9 1 0

0)03 
N 

(O 
in 

 ̂
CO 

CM 
Ü

O
>C

O



3 - -

2 - -

lo - l-
9 - -
8 - -
7 - -
6 - -
5 - -

4 - -

3 - -

2 3 4 5 6 7 8 9 1 0

H— H — h - 1 - f  11  1 I
2 3  4 5 6 7 8 9  10

+ - H — I H ' t l l l

l  _Verbe te rde _veLrlagifig;.s. (m j

i—

— — p

tti+

l i t U I

: i :

- f

- - 3

-10

• 7 
-6 
- 5

■4

■3

- - 2

-10 
-9 
-8 
-7 
-6 
- 5 

-4

- - 3

- - 2

- -  1

-2
1 0- -  
9 - -  
8- 
7
6 +
5-

3 - -

1*^-

. i ;  i f*
1 H

1
trrr

: : r

i 4 -I

4-f-H

■l:

: l : :

Tijd t

6 7 8  9 1 0

CT) 
CD



3 - -

-1
10- -  
9-  
8 - -  
7 - -  
6 - -  

5 - -  

4 - -

3 - -

-1
1 0 -  

9 
8 +  
7
6 +

3 - -

2 -  -

-1
10--

4 5  6  7  8  9 1 0 6 7 8 9 1 0  2 3 4 5 6 7 8 9 1 0

4-H-*— I—H — M  l 11 I I
3 4 5 6 7 8 9  10

- H — l - - f  4 + -J-H -

------------ 4 .

e _ r.d ^ _ v g rL a L ^ in g

• T

X

t o i —

4-

: l  
-Hr

J-_L1 : * i !

lil.

rtrr

! . .

O- . 
. * _

tri:

J.ïi:

- - - t

i j  ! ;

; t:

r;rr

f l l

Î f i

T T T
4 T ♦« ♦ 1 

-t j  t

-fHI

l ijd

g. ,>

rnt 1 ! 1 i
' t i l  ■Mi

I '  j i
in de

^a fp _  

piê
* + ) t  
♦ T * t • i f i

t t i i
Hji ; i 11
Hl!

; : : i
I j::

: : i :

:j!i

g::: 
4-—

v v
fc-

l U  DB

:-u:
n i :

3mp.ingkur.Y.e y;.
zorne

I
ers

r r r

F U

I! t 1i i u
Tijd t

f - n H ----- f— M W l H f
4 5 6 7 8 9 4 5 6 7 8 910



Zun»hH-v in : 

1
r ------- •—

*c »o o
8 8 8 —

- j - .

ö ? 8 910
i •

2 3 4 5 6 7 8 9  10
-------- j__H _ 4 _4 _4_f H + _

> USW USW 4------ 8 Abnahme in %

4 5 6 7 8 910

H— f T — r -H -H —
2 3 4 5 ’ 6 7 8 9  10

! - !  i  I H + -

-0 0 4 0 -

0 0 4 0



o . <T cn U M -USW 4--- o o o o o o o Abnahme in #«

iaanvdngspeil

8 .Verbeterde resterende verlag
; i : ( " ï - :. : F-flTT: j “  il ïl: t :7:11~T l_: 1 ! j •
• proef 117DB3 £ P ïm  de piëzc

ngskurve van de berrialjrigs?,':
; r : : i V\r] \ \ : : ï : - : : !
meterâ FA F3 F2 en F1 van1V7QB3

5 6 7 S 9 I 0  2 3 4 5 6 7 8 9  10
: f ■ -}— -j- -|— 1 H ~ H -

4  5  6  7  8  9 1 0

M - + - H + - -

-00A0-

0.0 A 0

0080

• 1I7DB3 FA 

+ 117DB3F3 

° 117DB3 F2

Ajs = 0,120 m 

A s i  Ó 0765 m 

A s ' = 0 ,0 7 2 0  m  

A s = 00715 m -* 117DB3 F1
0200

0280

0320

verbeterde  
resterende verlaging s Cm)!-



*o K3 u:c ir oo c o

5 6 7 8 910
: *  r  -

I usw

3  4

— X-
5 6 7 8 9 10
j  - H  H -

2 3
!_________ I

Abnahm e in °o

5 6 7 8 910
J—T

2  3  4 5 6 7 8 9  10

-f— - f - H - M -

e o o r »  ia
6  7 8  9  10



o  —  > js w  usw 4 —  o  o  o  o  o  o  o  Abnahm e in °o

aanvangspeii

verlagingskurve van de bemalings 
DiëzometersJ17DB 5 FA. l i j 0 8 5 ^ 3 ^ (1 -  
LÜlilii L.: 117DB5F2 en 117DB5FH Î !

Verbeterde resterende 
proef. ;il7DB5 BRLiWde

I  I I ! I I * I
1------- !.... l — \'  T T T T '

• 0040-

0040-

0080

.117DB5 FA As = 0.1115m

+ 117 DB 5 F3 As' = 0.108 m

A s -  0.0835 m 

A s". 00835 m

o 117 DB 5 F2 

- 117DB5 F1

0.240-

0280-

0 320-

verbeterde ; ; 
resterende verlaging

0360-
: s“ (m
“1— i T'TI



T z  
8 -  

7 1- 
6

-2
1 0 4 -

2 3 4 5 6 7 8 9 1 0  2 3 4 5 6 7 8 9 1 0

H--------- 1— M - H - H  I-•— I— i— I— [ I I I I M
2  3  4  5 6 7 8 9 1 0

+ - M — I— I-H - H 4
3  4 5 6 7 8 9  10

I— 1— I— H - f - H -

A V e rlag ingJ jn o l

10- 
9-  
8 -  

7 "
6 - r  
5 - 

4 -

3 4 - -I

2 —

-  >

. I

......

Ó

. -O -

o
-o—

. +

.0 * 9

. +

O
o, . . .

+ ■

Itri

o

— j

- r r r

: ÎT

l . T
...... - i q .

P : <? :

JijcLuafp 

in de pi

f f

7^-

y
v::

x • • •

orripijjijgsl- Ur. » 

iz o m e te rs  '

H f  
• 1

e 1

?-<>■

varvd
t

F 2

( T ,  o

S !

■i t

: i !

t  !■ 4- -

•lil

tri 
• 11

H m

Î Î Î Î
Ui t

t ó t

T

r :  :

Ui
TTr

iii
—•-4

:

eLbem alLngsproet 

en :F : va

• I l  i  
I H Ï

i ! ; .  
• i j l  
H

i i i ’

t rM
m

{tu

X ™
::!i

n 9

i . i i

193

! !

u u

1 :1!

DB

D B t

93

:B

- - 3

D. 3.7B PJi - -

--10

>  - - 1

\ ' I----- 1— M - H - t - h - -------------------- *----------- h
2 3 4 5 6 7 8 9 I0 1 2

-•-------1— 1— I— h-1 H ~ t u
Tijd

3  4  5 6 7 8 9  10 3  4  5 6 7 8 9  1 0 ’ 3  4 5 6 7 8 9 1 0

CD 
CO 

N> 
CO 

ik 
Ü1 

O) 
Nl 

CO
0



aanvahgspeil t /

/a n  de bemaliResterende

de piezometers-FA193DB7B n

193DB6F4 

193DB6F3 

193DB6 F2 

193DB6F1

T T î m r
À s"= 0,152 m -  

À s"= 0.165 m

A s = Ô i 6 5 ; m f H M !

- • r  1
■ i ' '

— r - :

A s = 0 4 6 5m

resterende verlaging (m ) j

iiiiiiiip iip j i

S  S  fi  O c O “  ♦

6 7 8 9101
"--------- j------------- 1--------- j-------{— r -  i .  -,

A b n a h m e  m °o



+ -
2 3 4 5 6 7 8 9 1 0  2 3 4 5 6 7 8 9 1 0  2 3 4 5 6 7 8 9 1 0  2 3 4 5 6 7 8 9  10

-H — H— I I M  1 11-1— I— 1— I— h  I I I I I I-•— I— H — 1 M I M I---- 1— I— H — I f - f - H - H -

3 - -

-1
1 0 - -  
9- 
8 
7 
6 -

A  „Verlaging.Lml

4 — M ------- H t l I 11  l + - H — h + +

Tijd t
- w m -

4 5 6 7 8 9 10 4 5 6 7 8 910' 4 5 6 7 8 910



USW { ------o  o  o  o  o  o  o A b n a h m e  in °o

-02

- 0 4

-06

-08

-1

117SB8 F1 

117DB1S FA A 

117SB6F1 A 

117SB 7 FI A: 

117SB5 FI A;

resterende verlaging
• î . - -4 *1

i p a p i
H—

r» a ia C e *7 Q û 1A + +
*  R 7  Q Q m



i
3

10 
9 - -  
8 - -

4 —

3 —

2 —

-1
10 -’t -  
9 - r
3 j-  
7 
6 - 

5 -  -

4 -

3 - -

2 3 4 5 6 7 8 910
4------- -I— h  I I I 1 I I

2 3 4 5 6 7 8 9 1 0
4 — >— I— I— [ M  I i 1

2 3 4 5 6 7 8 9 1 0
■*— I— +H— 1--4- I 1111

2 3 4 5 6 7 8 9  10
4 — M — I 1 I I I f f -

A y e r lagiJig ( m ).

' .  1

: I :

! !

T

r  :

; * ! ; ; H'
O * •

x i

- l d

TTt

ÎSSÏI Tijd}afp

in de piezom

117 $B 5

r.::

ompi ïgsl:

F.1,
; t !

•?n ï

, ia
i.vA

ete

11:7:5

; n :
M j

u i

s

B.C

U i;

!de

1-4 t ‘
i - l i !

44-
■fi

; : : i

r-*; ; i
i : .

î i *

U I ;

l t J |

l i l ]
ü i!

bemalïn

2 eh

7S B 8
- r m

f i :

m i  

;ii i

H n

Tt‘*
. . .  h .

: ! :

3 s proef 1

van

mm

1)7

117

liK
rtn

117

*1

s ö

P Ô

SB

7 C

DB

i ,.. 
i . .

_

6

4 f h t  I I I --------♦----- 1— -
4 5 6 7 8 9 1 0 1 2

+ - M — I I I I  I I I

Tijd t
4 ^ ' H

4  5  6  7 8  9  10 ‘ 4  5  6  7 8  9  1 0 3 4 5  6  7 H 9 1 0



vatertafel

fijn korrelig* 
' afzetting

referentie-
vlak

grof
korrelige

afzetting

Fig. 5 .26_ H alf-freatische watervoerende laag met 
zijn hydraulische parameters

\p ̂ : stijghoogte in de fijnkorrelige
afzetting

^  : vertikale permeabiliteit van de
fijnkorreljge a-Pze^.tin’

D1 : dikte van de verzadigde zone van de
fijnkorrelige afzetting

\p 2 : stijghoogte in de grofkorrelige
afzetting

k^ : horizontale permeabiliteit van 
de grofkorrelige afzetting

D2 : dikte van de g r o f k o r r e l i g e  a f z e t t i n g



Fig. 5.27 - FOURIER-analyse van de w a te r p e i 1f 1ukt uat ies
onder invloed van de getijden in de piëzometers 
117DB12F1 (0 m), 117DB10F1 (360 m). 117DB11F1
(360 m). 117S B 4 F 1 (360 m), 117DB2F1 (635 m) en
117DB9F1 (800 m)
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Fig. 5 .28.

LEGENDE

A piëzometers waarin de 
waterpeilfluktuaties op korte 
term ijn werden opgemeten 
A amplitude van de 
waterpeilflifruaties (cm)

dve rtika le  vertragingsfaktor 
(rad)

W invloed van de waterwinning



HOOFDSTUK 6

HYDROGEOLOGIE 

Figuren 6.1 tot 6.80



Fig. 6.1 - Schematische voorstelling van het aangewende w a t e r h uishoudi ngssysteem



atmosfeer

Fig. 6.2 - Energiebalans van een watervolume

Fig. 6.3 - Vo lu me-element aangeduid door dimensielozs 
Koördinaten van zijn middelpunt
samen met de mi ddelpunten van zijn omringende 
volume-elementen
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LEGENDE

509 . ... .• stiighoogte in piezometer 
6 117HB6F1
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•  stijghoogte in piezometer 

117HB6F1

-^ lijnen  van gelijke 
stijghoogte op het peil 0





N

f f i V V T ;
Fig. 6 8 .

LEGENDE

-4.53
•  stijghoogte in piezometer 

117HB6F1

lijnen van gelijke 
stijghoogte op het peil 0

waterscheidingslijn
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•  stijghoogte in piezometer 
6 117HB6F1

lijnen van gelijke 
stijghoogte op het peil 0

waterscheidingslijn

Datum: 1 november 1975
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LEGENDE
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•  stijghoogte in piezometer 

117HB6F1

lijnen van gelijke 
stijghoogte op het peil 0

. ^  waterscheidingstijn 
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LEGENDE

.471
•  stijghoogtc in piezometer 
6 117HB6F1

lijnen van gelijke 
stijghoogte op het peil 0

. . ^  waterscheidingslijn 
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Fig. 6.15-

LEGENDE

♦4.56
•  Stijghoogte in piezometer 

117HB6F1

lijnen van gelijke 
stijghoogte op het peil 0
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LEGENDE

.4,23
•  stijghoogte in piezometer 
6 117HB6F1

lijnen van gelijke 
stijghoogte op het peil 0

— waterscheidingsli jn
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LEGENOE

♦ 3.94
• stijghoogte in piezometer 
6 117HB6F1

lijnen van gelijke 
stijghoogte op het peil 0

— • "waterscheidingslijn 

Datum: 1 seP,ember 1976
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LEGENOE

•  stijghoogte in piezometer
6 117HB6F1

• lijnen van gelijke 
stijghoogte op het peil 0

’ waterscheidingstijn 

Datum 1 oktober 1976
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LEGENDE

♦ 389
•  stijghoogte in piezometer 
6 117HB6F1

^ ___ lijnen van gelijke
stijghoogte op het peil 0

waterscheidingslijn 

Datum: ' november 1976
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LEGENDE

•  stijghoogte in piezometer 
6 117HB6F1

lijnen van gelijke 
Stijghoogte op hel peil 0

waterscheidingslijn

Datum: 1 januari 1977
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LEGENDE

♦ uf* 6
•  stijghoogte in piezometer 

117HB6F1

lijnen van gelijke 
stijghoogte op het peil 0

_ .  waterscheidingslijn 

Datum: 1 ju n i 1977
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Fig.6. 33_ Se i zona I e waterpei Ischommel ingen



Fig. 6. 3U . S e izona Ie walerpe i IschommeI ingen
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Fig 6 35_ Seizona Ie waterpe i IschommeI ingen
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AANHANGSEL 1

VOORNAAMSTE GEGEVENS UIT DE 

WATERANALYSES



Analyses van regenwater en grondwater uit de Westhoek

Analyse
nr.

Datum Peil
filter

Na+
mg/1

K+
mg/1

_  ++ Ca
mg/1

++Mg
mg/1

Regenwater

117/
R1 01.02.75 — 2,94 0, 32 3,27 0,47

Water in de duinen

117/
HB1F1 22.04.75 -3,2 11,33 4,95 66,13 4,03
HB7F1 20.03.75 + 1,8 13,75 1,65 56,71 6,35
HB8F1 29.04.75 +2,8 30,50 2,42 109,68 5,83
HB10F1 12.05.75 +4,6 9,25 1 f 75 105,85 4,02
HB12F1 21.07.75 + 2,8 169,0 4,25 127,75 5,27
HB13F1 22.04.75 +3,7 31,70 2,29 143,88 5,18
HB17F1 20.03.75 0 19,5 1,75 72,83 1,00
HB18F1 23.06.75 + 0,7 25,6 1,50 75,81 5 ,96
HB20F1 30.04.75 + 1,5 36,25 2,90 87, 10 5,95
HB23F1 12.05.75 -0,6 10,25 2,30 91,94 3,93
HB24F1 22.04.75 +0,5 15, 75 4,70 108,07 4,68
HB31F1 30.04.75 “ 1,3 12, 00 2, 10 197,40 5,80
HB32F1 22.04.75 -1,5 5,50 1,20 75,81 2,88
HB33F1 30.04.75 -1/4 16,25 3,85 125,17 5,45
HB36F1 04.06.75 + 1,2 21,25 1,50 100,01 3,34
HB37F1 04.06.75 + 1,3 7,00 1,00 69,36 2,42

HB37F2 04.06.75 + 3,5 19,50 2,00 130,49 3,87

HB38F1 17.03.75 +0,5 22,00 2,25 111,80 3,92

HB38F2 17.03.75 + 4,7 2,75 0,40 46,99 1,08

HB44F1 23.06.75 + 0,9 16,10 1,20 153,24 5,62

Tot.Fe Cl SO^ NO^ HCO^ CO^ Tot.min. Tot.min.
mg/1 mg/1 m g/1 mg/1 mg/1 mg/1 mg/1 meq/1

0,02 9,60 6,59 0

0,30 33,33 40,79 0

0,05 28,50 31,72 0,15

2,30 65,20 45,94 0,07

1,35 27,60 41,26 0,01

0, 05 146,60 174,07 0,62

1,03 41,93 130,19 0,13

0,18 42,90 28,22 0,04

0,12 40,00 73,75 0,33

2,30 74 ,40 68,60 0,44

5,92 24,00 26,16 0,07

2,00 29,27 72,72 0,07

16,30 30,20 261,00 0,01

1,68 19,40 6,39 0,03

24,78 32,80 105,47 0,06

3,65 28,13 83,43 0,10

3,95 16,93 18,54 0,03

1,90 49,80 86,52 0,09

0,78 18,80 71,28 0,02

0,18 18,80 9,68 0,08

1,05 33,00 149,76 0,03

0 24 ,13 0,796

11 0 314,29 8,575

04 0 300,27 8,116

66 0 583,10 16,036

60 0 472,47 12,400

34 0 1051,89 29,018

01 0 691,62 18,692

85 0 340,64 9,284

21 6 388,69 10,928

97 0 448,29 12,885

80 0 465,15 12,128

05 0 554,74 14,531

86 0 848,09 23,450

63 0 347,03 8,926

26 0 653,21 17,796

56 0 457,29 13,113

40 0 329,25 8,588

50 0 571,32 15,645

54 0 545,92 7,177

12 0 200,33 5,395

10 0 673,38 18,165

0

153

161

308

280

423

330

173

159

168

292

308

320

233

345

241

207

274

313

117

311



analyse 
n r .

Datum Peil Na+ 
filter mg/1

K+
mg/1

Ca++
mg/1

X* + +Mg
mg/1

T ô t .Fe 
mg/1

Cl"
mg/1

s o - -

mg/1

NO"

mg/1

HCO” CO~~ 

mg/1 mg/1

Tôt.min. 
mg/1

Tôt.min 
meq/1

/ater in de duinen

L17/
HB48F1 .01.07.75 + 2,3 14,84 1,32 43,55 2,37 0,13 21,73 25,13 0,01 123,22 0 232,79 6,229
HB50F1 12.05.75 + 1,3 8,50 1,75 100,01 4,21 3,43 21,40 26,99 0,01 290,97 0 458,63 12,335
HB51F1 01.07.75 -0,5 27,80 0,07 106,46 3,77 0,13 22,47 7,62 - 376,98 0 549,17 14,125
DB4F4 04.06.75 + 0 ,  1 13,25 1,00 77,94 3,46 11,23 30,13 3,50 0,08 310,49 0 462,65 12,029
DB4F3 04.06.75 -6,9 14,50 1,50 98,52 3,94 11,20 26,53 4,12 0,03 367,22 0 536,47 13,841
DB4F1 14.06.75 -26,2 80,00 7,50 85,49 6,60 5,35 80,93 4,12 0,03 395,89 0 679,77 17,825
DB10F1 09.08.75 -11 tot 

-26
20,87 1,75 89, 15 8,60 0,05 27,60 46,10 0,13 262,00 0 456,80 6,036

DB11F1 09.08.75 -5 tot 
-7,5

17,97 2,19 65,33 4,08 0,02 24,20 35,40 0, 12 175,07 0 324,80 8,746

IP1F1 23.06.75 ? 20,80 3,50 113,72 3,92 1,38 25,20 22,04 0,10 362,95 0 554,79 14 ,240
tfater van strand en windgeulen

117/
HB54F1 01.07.75 -0,2 997,50 17,76 351,63 61,47 0,03 2071,9 276,35 0,02 214,72 0 3991,6 134,15
HB54F1 15.01.75 -0,2 967,58 15,77 370,99 88,39 0,05 2150,0 296,85 4,41 172,63 13£0 4080,2 138,43

HB55F1 15.01.76 -0,3 3243,0 73, 14 409,70 316,57 0,08 5900,0 861,70 1,02 243,39 13,80 1106 378,19

h b i'f i 23.06.76 + 1,0 173,30 21,70 27,42 20,10 0,25 104,70 38,73 0,04 430,05 16,2 0 883,58 22,518

HBl'F2 23.06.76 + 4,0 214,20 24,40 20,97 16,99 0,30 143,00 38,93 0,03 408,09 16/17 884,87 25,536

h b i 'f i 23.01.76 + 1,0 6869,7 215*42 256,47 698,32 0,13 121,00 1493,9 2,26 142,74 0 21779 749,17

HB49F1 01.07.75 -1,0 900,00 22,21 75,81 41,82 0,05 1327,8 215*2 7 0,02 279,38 0 2862,7 93,445

HB49F1 23.01.76 -1/0 385,96 18,04 50,00 32,61 0,13 530,00 129,78 4,89 235,46 1920 1406,8 44,693

HB35F1 17.03.75 + 2,5 130,00 4,00 125,57 15,17 0,08 245,70 83,02 0,50 261,08 0 873,96 26,496

DB13F4 28.07.76 + 0,6 5984,0 278,88 202,85 673,40 2,74 10370 1552,0 34,31 172,63 0 19271 661,15

DB13F3 28.07.76 -8,4 6712,9 213,11 330,14 834,59 2,41 11685 1832,2 42,13 230,58 0 21883 754,65



Analyse Datum Peil Na+ K+ Ca++ Mg++
nr. filter mg/1 mg/1 mg/1 mg/1

Water van strand en windgeulen

17/
DB13F2 28.07.76 8,2 21,95 34,21 11,2 25
DB13F1 28.07.76 8,2 23,75 31,00 11,3 24

DB14F4 09.08.76 7,8 17,88 4,50 11,8 359

DB14F3 09.08.76 7,6 19,05 29,68 11,5 474

DB14F2 09.08.76 7,7 25,50 41,70 11,3 113

DB14F1 09.08.76 7,3 26,98 18,39 11,5 34

nfiltrerend zeewater in windgeul

17HB]/Z 14.01.76 7,9 11,80 1,65 4,5 404

ater in het overdekte waddenlandschap

17/
HB21F1 17.03.75 7,0 35,50 29,75 10,2 56

HB22F1 22.04.75 7,0 40,35 20,04 10,8 90

DB16F4 28.07.76 7,6 37,50 14,54 11/5 63

DB16F3 28.07.76 7,7 37,15 39,98 11,2 55

DB16F2 28.07.76 8,1 33,55 50,46 11,2 30

DB16F1 28.07.76 8,2 80,55 51,30 11,5 510

9 3/ 
DB6F4 28.07.76 8,0 39,95 40,84 11,5 48

DB6F3 28.07.76 8,2 53,80 95,15 11,5 114

DB6F2 28.07.76 8,2 69,00 59,44 12,5 305

DB6F1 28.07.76 8,1 52,10 30,36 15,8 149

DB5F2 23.06.75 7,2 52,55 4,50 11,2 60

99

13

40

92

08

59

14

72

31

73

80

47

17

23

81

67

11

63

Tot.Fe Cl SO^ NO^ HCO^ CO^ Tot.min. Tot.min.

mg/1 mg/1 mg/l mg/1 mg/1 mg/1 mg/1 meq/1

8,40 98,4 79,5 19,8

6,27 10,2 58,1 18 , 3

352,07 400,6 10,3 77,4

458,23 506,2 10,0 78,1

85,20 200,4 9,7 75,3

12,46 5,8 127,8 22,5

393,43 449,9 9,4 80,9

22,69 6,1 482,9 15 ,0

51,65 10,3 200,2 23,8

32,76 11,0 15,6 19,3

27,30 65, 3 11,7 65,0

3,30 26,3 5,9 23,8

450,00 375,8 10,9 76,6

14 ,76 27,8 3,3 66,9

75,00 244,0 9,1 79,0

277,50 363,1 11,0 77,0

120,00 163,0 8,9 73,2

10,62 13,5 120,6 25,2

67,6 560 Vb3g4

76.3 513 Vblh4

1.1 23305 Sh6al

0,9 29520 Sh6al

6.2 6806 Bh5al

.51,5 859 Fclf5

0,6 27047 Zi6al

50,9 1028 Fblf7

33.3 1822 Acld5

43,0 1250 Fble2

22.5 2800 Ag3c2

81,2 697 Vc2i2

3.7 33800 Zh6a2

26.5 2600 Ag2cl

9.8 9890 Ch5a]

5.2 21500 Sh6a2

9,5 10100 Ch4al

64,9 1243 Fclgf



Analyses van regenwater en grondwater uit de Westhoek

Analyse Datum pH TAC SiO Temp. Tot.hard. 
nr. __water °F

mg/1 oC

Regenwater

117R1 01.02.75 7,4 0 0,06 4,7 1,01

Water in de duinen

117/
HB1F1 22.04.75 7,8 12,55 4,01 10, 7 18,33
HB7F1 20.03.75 7,8 13,20 4,25 10,6 16, 77
HB8F1 29.04.75 7,4 25,30 7,59 10,2 30,12
HB10F1 12.05.75 7,3 23,00 6,01 10,5 28,23
HB12F1 21.07.75 7,7 34,70 7,22 12,3 34,62
HB 13 22.04.75 7,3 27,05 8,82 10,7 38,55
HB17F1 20.03.75 7,4 14,28 6,00 10,6 18,67
HB18F1 23.06.75 8,2 14 ,05 1,07 11,8 22,98
HB20F1 30.04.75 7,5 13,85 7,88 11,0 24,31
HB23F1 12.05.75 7,1 24,00 32,61 13,5 24 ,43
HB24F1 22.04.75 7,4 25,25 26,99 10,4 28,76
HB31F1 30.04.75 7,2 26, 30 33,14 10,8 51,71
HB32F1 22.04.75 7,0 19,15 19,78 10,5 20,40
HB33F1 30.04.75 7,2 28,30 29,93 10,1 34,30
HB36F1 04.06.75 7,4 19,80 30,06 9,6 29,06
HB37F1 04.06.75 7,3 17,00 26,99 10,1 18,63
HB37F2 04.06.75 7,9 22,5 12,69 14,2 34,04
HB38F1 17.03.75 7,5 25,7 35,75 10,4 29,67

HB38F2 17.03.75 8,0 9,6 4,50 10,2 12,28
HB4 4F1 23.06.75 7,5 25,50 4,81 11/5 40,80

Blijf. Mgca Socl 100 (Na^+K*1-) 
hard. EK
0 F

1,00 23,9 50,6 40,2

7,65 10,0 90,3 14,6

6,10 18,4 82,2 16,0

8,77 8,7 52,0 18,9

6,82 6,3 110,5 7,4

13,28 6,8 87,7 52,3

13,76 5,9 229,4 15,9

6,22 2,3 48,6 19,4

11,15 12,9 136,2 21,2

12,22 11,2 68,1 25,4

5,63 7,0 80,5 9,3

7,06 8,2 183,6 12,2

27,81 4,8 638,0 5,3

4, 74 6,2 54,7 6,3

11,92 7,2 237,5 10,7

12,22 5,5 299,2 15,5

5,22 5,7 80,9 8,3

13,40 4,9 128,3 11,6

7,11 5,8 280,2 14,7

4,27 3,8 38,1 5,1

17,02 6,0 335 /0 8,2

1 0 0 (HC0”+C03“) Ge- Type

yS/cm
(bij
10°C)

0 43,1 Ge 2 a4

58,4 383 Wblg4

64 ,3 355 Wblg4

64,4 643 Vblg4

73,7 506 Valh5

47,2 1646 Felf4

58,1 729 Vblf 6

61,3 423 Vblg3

49,5 514 Vcle5

44,0 608 Vale4

79,7 467 Valh4

68,3 625 Vblg5

45,5 825 Fale7

84,9 359 Wbli4

64,5 652 Vblg6

61,0 566 Vblg4

79,8 327 Walh4

58,4 619 Vblf 5

71,8 589 Vblh6

72,4 230 Walh3

55,7 695 Valf 7



Analyse 
n r .

Datum pH TAC s io 2 Temp.
water
°C

T o t .hard. 
°F

Blijf.
hard.
°F

Mgca Socl 1 0 0 (Na++K+ ) 
EK

1 0 0 (HCO~+CO”~ ) Ge- Type
mg/1 EK X 61 CIO

yS/cm
(bij
10°C)

Water in de duinen

117/
HB48F1 01.07.75 7,6 10,10 4,94 13,5 12,22 5,22 9,0 85,5 22,3 64,0 379 Wclg4
HB50F1 12.05.75 7,2 23,85 10,02 10,4 26,89 4 ,09 6,9 93,2 7,2 80,4 478 Valk4
HB51F1 01.07.75 7,2 30,90 22,72 12,2 28,23 3,32 5,8 25,1 17,7 88,6 516 Vbli3
DB4F4 04.06.75 7,0 25,45 21,38 10,3 24,73 6,40 7,3 8,6 12,6 84,6 487 Vblil
DB4F3 04.06.75 7,1 30,10 26,19 10,3 28,64 4,15 6,6 11,5 11,3 . 87,8 533 Vbli2
DB4F1 04.06.75 7,3 32,45 26, 19 10,4 25,03 0,89 12,7 3,8 43,3 73,3 730 Velhl
DB10F1 09.08.75 7,8 21,48 27,88 12,2 25,85 7,31 15,9 123,4 15,6 71,2 492 Vblh5
DB11F1 09.08.75 7,6 14,35 10,24 11,8 25,82 6,56 10,3 108,1 18,9 66,9 358 Wblg5
IP1F1 23.06.75 7,2 29,75 5,40 11,9 30,90 4,98 5,8 64,0 14,2 83,6 600 Vbli4

Water van strand en windgeulen

117/
HB54F1 01.07.75 7,7 17,60 10,42 12,3 114,51 99,39 28,8 9,9 66,0 5,2 5555 Bg2al
HB54F1 15.01.76 8,3 16,35 11,23 11,0 128,42 112 ,49 39,2 10,2 62,2 4,7 5904 Bg2a2
HB55F1 15.01.76 8,3 22,25 8,29 10,9 232,74 218,44 127,3 10,8 75,4 2,4 13967 Sh4a2
h b j'f i 23.06.75 8,3 37,95 1,04 15,4 15,54 1,60 120,7 27,3 72,8 65,2 938 Fh4g3
H B i'f 2 23.06.75 8,3 36,15 0,86 15,5 12,69 0,95 133,4 27,2 80,3 58,0 1068 Fi4 f 3
h b /f i 23. 01. 76 8,0 11,70 1,63 10,0 351,17 344,03 448,5 9,1 81,2 0,6 24104 Si6al
HB49F1 01.07.75 7,9 22,90 5,88 12,4 36,25 17,08 90,9 11,9 84,6 9,8 3793 Bi3a2
HB49F1 23.01.76 8,4 22,50 6,15 10,1 25,89 7,53 107,4 18,1 76,9 20,3 2140 Ah4c2
HB35F1 17.03.75 7,7 21,40 5,50 9,9 38,62 19,79 19,9 25,0 43,4 33,1 1285 Feld3
DB13F4 28.07.76 8,2 14,15 8,12 11,9 327,53 301,16 546,8 11,1 80,3 0,9 27000 Si6al

DB13F3 28.07.76 7,9 18,90 16,46 11,2 425,58 397,50 416,0 11,6 77,7 1,0 30000 Sh6a:



analyse Datum pH TAC SiO„ Temp. Tot.hard. Blijf. Mgca Socl 1 0 0 (Na++K+ ) 100 (HCCK+CO-. ) Ge- Type
nr. ... water °F hard. Ik  ------- — -------  leidb.

mg/1 °C EK yS/cm
(bij 
10°C)

faters van strand en windgeulen

117/
DB13F2 28.07.76 -16,4 22,82 11,46

DB13F1 28.07.76 -24,1 23,46 2,52

DB14F4 09.08.76 + 1,2 5522,6 240,28

DB14F3 09.08.76 -7,3 7294,5 305,16

DB14F2 09.08.76 -12,3 1452,0 55, 13

DB 14 F 1 09.08.76 -29,8 70, 18 5, 10

Infiltrerend zeewater in windgeul

117/HB l'z 14.01.76 - 7760,4 241,17

Water in het overdekte waddenlandschap

117/
HB21F1 17.03.75 + 0,2 44,20 2,70

HB22F1 22.04.75 + 0,1 80,35 83,80

DB16F4 28.07.76 -1,2 57,29 21,89

DB16F3 28.07.76 -9,2 464,36 21,31

DB16F2 28.07.76 -16,7 35,60 13,74

DB 16 F 1 28.07.76 -23,7 7511,7 227,10

193/
DB6F4 28.07.76 -0,6 444,44 6,40

DB6F3 28.07.76 -9,6 1934,7 79,84

DB6F2 28.07.76 -16,1 4598,0 202,54

DB6F1 28.07.76 -24,6 1834,7 66,72

DB5F2 23.06.75 -0,7 82,90 15,75

52,49 31,36 2,38 41,50 44,70

87,78 5,41 7,59 33,00 25,96

287,28 698,61 0,06 10302,0 1436,2

301,86 927,63 0,11 13495,0 1834 ,4

141,41 172,07 0,12 2506,8 329,47

207,63 7,35 6,19 79,00 136,64

294,37 804,06 0,10 13500,0 1716,0

213,46 7,95 9,15 41,60 271,92

327,44 20,43 2,00 190,87 517,27

217,03 23,23 8,90 44 ,50 385,43

135,17 53,64 6,10 815,00 128,54

96,65 15,42 4,50 52,00 4 ,12

429,55 979,96 10,70 13292,0 1967,5

151,13 25,53 8,55 759 ,50 33,58

133,59 198,10 0,25 3229,0 339,02

264,41 582,88 1,21 7995,0 1185,9

227,28 224,68 3,61 3236,5 390,16

209,69 17,27 2,90 91,20 148,94

7,35 267,79 0 483,36 13,268

5,18 289,75 0 481,67 12,653

0,01 218,08 0 18714 ,0 642,40

0,01 232,41 0 24402,0 839,65

0,02 311,10 0 4974,8 168,83

0,01 329,10 0 844,62 25,19:

3,41 143,96 0 24464,0 843,30

0,07 433,04 0 1029,5 13,984

0,07 492,27 0 1718,5 28,219

5,10 427,50 0 1192,7 32,744

0,69 453,23 0 2082,6 65,581

6,52 409,31 0 639,63 16,693

25,45 982,71 0 25479,0 868,62

0,69 487,39 0 1918,1 59,754

17,00 656,36 0 6651,4 219,71

17,56 841,80 0 15691,0 530,60

13,68 635,62 0 6641,2 221,93

0,07 641,11 0 1210,8 32,264



AANHANGSEL 2

FLOWCHART VAN HET ITERATIEF PROCES 

FLOWCHART VOOR HET OPSTELLEN VAN BALANS



FLOWCHART SYMBOLEN

CALCULATION. 

INPUT/OUTPUT OPERATION. 

GRAPHICS. 

MISCELLANEOUS.

CONDITIONAL BRANCH.

SUBROUTINE CALL.



'DIM F<:2?.4>,Fl<27,4>,K<26,4>,KK26.3>,W<26.4>,Mv3>.Wl''3;<,F2(2?,4> 
DIM F3<2?,4),K2<2€,4),K3(26,4.'.F4<27.4)

l____________ DIM A<26>,B<26>,C<26>,D<26),U<26>,G<26>_____________

/fefeftD S,S1,S,H,X/

(PÂTh 0 . 1 8 , 5 .0 fe -4 ,1Ô 9,1 0 ,6 .Ó 84)

FIHD 3

/PÊftD  e 3 3 :H ,U l ,T ,N l , 0 3 ,0 4 ,S 3 ,H 2 ,P * /
l€ > ------------------------

|H 2 =M2+1 I

LET F2=Ö 
LET

I
(FOP 11=4 TO 39)------------------------

FIND M

/REftD <?33 ! F > F11K > K1 > K3, H /

FIMD M+l 

/REftP (?33: F3 /

LET F4=F

LET F3=0



-»>5



B d  I,J>+K(I-1,J>+K3<I.J>+K2<I,J)>
B<I>=BCI>♦< <K1<I,J)*K1<I,J-l>>/H+Sl*H'X>*Zt2

D* I>=<S1*H*F1<I, J)/X+<K1(I, J)*F<I, J41)+K1<I, J-PIFd, J-l >)-'H)*Zt2 
Dd)=D(I>-t-H»CK3(I, J>*F3<I, J)-*-K2d. J)»F2<I. I, J)»U1<T>

U>>-

13 > 'r

\2>r-

10>>

YES

YES

|D < I> = D < I> -C ( I> » F » : if l,  J> ]

(FOR J=2 TO 4 )-

/FOP 1*2 T0"27V

X I= F < I> J ) - F 4 ( I , J >
FC I > J > = F 4 (I> J )+ X 1 < < 1 .3 + 9 .63*H 2)

(HEXT I>

(HEXT J>

->>11

-*>12

->>13

->>14

->>15

FIHD M

AlftlTÈ &33:f ,fi,k .kiT>:3.u/

LET F2=F 
LET K2=K3

(HEXT H y

YES
H2<5

FIND 3

/URITE t33;M,Ul.T:

--16

1, ,04 > 53 > H2V F5~7

FIND 2
I

OLD

Œ D

dEO



Æ.JLCI H>

r w n

<DIM F"27^4>,Fl(27,4>,K<26,4),KlJ6,3>,H<26,4>,N<3>,HH3M'3<26,4^

/ m i  52, '01,02,5.SI,2,H,k,K2,W 7 -j

(Dht  ̂e,9,e,8.is,5.8É-4.îae,ia,6.e94,â,ô> i

FIND 3

e33:H,Hf;'T.t|l,03.04,S3,H2,P8/

(EûR M=4 TO 3?)---------------------------

FIMD M

/R E hD e 3 3 :F .F l ,K ,K l ,K 3 ,H  /

I0 1  = 0 1 *H t- ' F< 2 , 2 > - F '1 ,2 > )< K <1•2 • + C F '2 , 3 > -F < 1 , 3> 1 fK < 1 ,3 > > 
01=01♦ <F '2 .4  -1 2 - F -1 . 4 ) t2 > * K < l ,4 > /2

^ v ES
< ^ M > 1 3 ^ > ----------------------------------------*>1

P9=F'9+Ht ( (F(2612 N — F (. 2 7 ,2 )  2b. 2 >♦ > F 1 2&« 3>-F< 2 7 , 3 ) >tK<’2 6 , 3 
PS,*P 9 + < F < 2 6 ,4 > t2 -F ‘ 2 7 , 4 )1 2  1 t K > 2 6 .4  > /2

>

------------------------>>2
1>>------------------------

Ù 2 * 0 2 ♦ H * ( < F C 2 6.2 V- F C 2 7,2 > > * K < i 6«2"' + *.Fi.26, 3>-f7 27,T ô  ffî f  l ïT T ô  
02s02+<F<26,4>t2-F<:27.4>t2>»K'26.4>^2____________

— — I
{FOR 1=2 TO 26)----------------------

S2=S2+Z t2tH*S 1 * < F1 ( 1,2 > +F1 < 1,3 >-F< 1.2 > -F 1.3 • 
S2=S2»ZT2t|,Fl < 1.4 V-F( I.4)>t(S+51<(F1 ̂ 1. 4^+Fv 1.4) '> ■'2

(NEXT I y —  ■■ — —

I U2=U2+SIJM'- M> 1

/üry "TTS._ü/

0»01*02-H1<T)*H2+P9 
Il«N<T>*Zt2*25*36 

B1=0—I1—S2

r ..... “  —  PPINT $37 .2611
/  PRINT 9 5 i : " 0 » B»0J " I * "»  11 î ” # S *“ 5 S2 J " BAL(hNS=“ ?B1
ƒ PRINT E S I : “ 0 2 E E » " ;0 H " OPOLa “ j 0 2 î " 02ftN &=">P 9 ;» OPOMP="; N 2»K1(T>

O* I



5>>-

3>>-

4 > r

/M P ITE H ,H l,T ,N l|ü 3 ,Q 4 ,S 3 ,H 2 ,P S ~ 7

FIMD 1

I
OLD

03=03+01
04=04+02
S3=S3+S2
P8=P8+P9
N1=H1+1
H2=0

YES

•

) 3FIN

/W1TE 033:1-1,Ml,T, NlVÜ3;ó4jS3*H2iPê /

m=< " fT| •‘io \

FIH > M

/R E M  833:F,F1,K,K1.K3.M /

LET F1=F

I
F I  ND M

/U P IT E  P 3 3 :F ,F 1 ,K ,K 1 ,K 3 ,H /

(HEXT,M>

/  ------ ■ - -

11=2. ?3?8E+8tN<:T>
O5=-30.42*W 1<T)<W 2

S3=S3*X
03=03*X
04=04tX

-»>4

-*>5

D



---P5Ï&ÎB---
0=03+04+05-t-P8

-----------------------------------   PP ft-it' vZV °'6:~i------•--------------------------------
FBI HT ?5i:"Q2EE*"?03{" QPOL*" 5 * 0 4 ;QP0M=";05;“ QT0T=“;0 

PPINT c*5i: “HEERSLhG="; ils " BERGIHGSI,'APIhTIE=";S3;" ÖZP=";P3
PRINT £37,26:0

VES

/PE ftD  H l ,0 3 . 0 4 .S3.PS~7 

(CiftïH 1 . 0 . 0 , 0 , 0 . 0") 

(DELETE F 1 ,K ,K 1 ,K 3 .H )

<DIH E '2 5 .3 6 > >

(FOP Tij 4 y

(FOP H=4 TÙ 39 >-  

FIHD H 

/PIM' !?33:F/

(FQP 1=2 TO 26 >-

[' feTT-T» lï-T )  s fT î 7 j >~|

( hExt t )

(HEXT M >

FIHD 39+J+ <T -2> *3  

/M R ITE  S33:E  /

->>6

(HEXT J ) ------------------------------------------

(DELETE E )

(DIM Fl' 27.4), K■2b, 4), 11 j2673>. K3< 26ÏT>ThT26,~47)

G'yy-
( STOP )

Œ D

%
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