PALAEOGEOGRAPHIC AND PALAEOENVIRONMENTAL CHARACTERISTICS OF MAJOR MARINE INCURSIONS IN NORTHWESTERN EUROPE DURING THE WESTPHALIAN C (BOLSOVIAN)

Michiel DUSAR¹, Eva PAPROTH², Maurice STREELE³ & Martin J.M. BLESS³

(12 figures, 2 tables)

¹ Geological Survey of Belgium, 13, Jennerstraat, B-1000 BRUSSEL, Belgium
² Schwanenburgstrasse, 14, D-47804 KREFELD, Germany
³ Palaeontology, University of Liège, Sart-Tilman Bât. B18, B-4000 LIEGE 1, Belgium

ABSTRACT. The Westphalian C was a time of marked tectonic and climatic changes within the Variscan Foreland, but our understanding of these changes is hampered by a poor appreciation of large-scale palaeogeography and palaeogeographic evolution within this key stratigraphic interval. The distribution of tonsteins, marine bands and faunal occurrences related to marine incursions or the proximity of marine conditions in Britain and on the European mainland during the Westphalian C (Bolsovian) is briefly summarised. The favoured environmental conditions of some selected fossil taxa (Lingula, arenaceous foraminifers, Geisina, conchostracan faunas and Torispora producing tree ferns) are highlighted. A palaeogeographic model shows the relationship between major sedimentary facies belts in the Westphalian C of western Europe and the influence of major marine incursions on the distribution pattern of incursion-related faunas.

The frequent succession of transgressive-regressive faunal phases in beds with marine faunas and the close correlation between the distribution of these beds and the distribution of upper delta plain environments in the Westphalian C of northwestern Europe suggest that marine incursions were long-lived, related to glacio-eustatic events, and cannot be regarded as catastrophic « flash floods ».

KEYWORDS: Westphalian C, palaeogeography, western Europe, marine bands, tonstein, faunas, miospores

1. Introduction

The Westphalian C (or Bolsovian) of western Europe forms part of the Coal Measures deposited in the Late Carboniferous Variscan Foreland (age range 311 – 308 Ma, Menning et al., 2000: Fig. 6). Syndepositional low relief deformations, related to build-up of Variscan compressional forces, led to considerable regional variations in thickness and facies distribution (Bless et al., 1977; Hedemann & Teichmüller, 1971) – (thickness range 500 m, South Wales, to 1000 m, Ruhr; Menning et al., 2000: Tab. 3). However, high rates of sedimentation generally maintained a depositional regime dominated by coal swamps, lakes, deltas and alluvial flood plains. Red beds are adjacent to tectonically elevated areas only. The cyclic nature of sedimentary sequences is mainly related to 3rd order glacio-eustatic sea-level fluctuations and to 5th order autocyclic controls of the delta plain/alluvial plain depositional environment. Marine transgressions supposedly invade the Variscan Foreland basin either from the marine Moscow Platform to the east or the Canadian maritime provinces to the west (Bless et al., 1981; Ziegler, 1990). Recognition of flooding events in different depositional systems is necessary to establish a basin-wide stratigraphic framework.

The detailed correlation of Westphalian C or Bolsovian (Owens et al., 1984) strata in western Europe is based on an intricate succession of tonsteins and bands with marine faunas or faunas related to marine incursions (Table 1, Figure 1). Only one of these, the Mansfield-Aegir Marine Band at the base of the Westphalian C (also referred to as Cefn Coed, Maurage, Petit-Buisson, Skipsey's or Rimbert Marine Band) has been traced through large parts of western Europe.

Marine bands higher up in the succession are practically unknown outside Britain, but they can be correlated with selected fossil bands on the European mainland, which have been linked to marine incursions because of their presumed
brackish water faunas (arenaceous foraminifers and the ostracode *Geisina*) or faunas linked to marine incursions (conchostracans). Geophysical well-logs (notably gamma-ray, sonic logs and resistivity) are very useful as additional tools for the recognition of these widespread horizons (Schuster, 1968). These marine bands generally coincide with maximum flooding surfaces in 4th order sequence stratigraphic schemes (Flint et al., 1995; Stüss et al., 2000).

Long-distance correlations in the Westphalian C also depend on tonsteins, altered volcanic ash layers, which act as widespread isochrons (Burger, 1982). Firm tonstein correlations between Germany, Belgium and northern France have become possible through the application of zircon typology (Delcambre, 1987). One tonstein has been traced from Britain (Sub-High Main) to the European mainland (Constance-Erda) by means of geochemical analysis (Spear & Kanaris-Sotiriou, 1979: 421). Other tonstein correlations between Britain and the European mainland are based on their relative lithostratigraphic position.

The correlation scheme of marine bands, bands linked to marine incursions and tonsteins is supported by the quantitative distribution pattern of selected fossil taxa, such as the miospore *Torispora securis*, the seed ferns *Alesthopteris corsini* and *A. grandini*, and the *adamsii-inductus* non-marine bivalve assemblages. It also emphasises the partly diachronous arrival of the *Torispora securis* epibole assemblages and the non-marine bivalve *Anthraconauta phillipsii*.

The distribution of tonsteins, marine bands and bands presumably related to marine incursions or the proximity of marine conditions in Britain and on the European mainland is summarised in the following chapters. Subsequently, the favoured environmental conditions of some selected fossil taxa will be highlighted. Finally, a palaeogeographic model will show the relationship between major sedimentary regimes in the Westphalian C of western Europe and the influence of major marine incursions on the distribution pattern of incursion-related faunas.
Table 1. Relative stratigraphic position of tonsteins and bands with characteristic faunas related to marine incursions in the lower to early upper Westphalian C of Europe.

<table>
<thead>
<tr>
<th>South Wales</th>
<th>Pennines</th>
<th>Northern France</th>
<th>Campine</th>
<th>Ruhr</th>
<th>Hoya Z1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geisina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geisina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geisina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. Cwmgorse</td>
<td>Top</td>
<td>Patrice</td>
<td>Odin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geisina</td>
<td>conchostracans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geisina</td>
<td>Winghay</td>
<td></td>
<td></td>
<td>T1p</td>
<td></td>
</tr>
<tr>
<td>Geisina</td>
<td>Winghay</td>
<td></td>
<td></td>
<td>Odin</td>
<td></td>
</tr>
<tr>
<td>Geisina</td>
<td>Winghay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Marine bands and *Torispora* assemblages in Britain

The Westphalian C in Britain contains six marine bands with a wide range of fossils indicating open marine (notably goniatites, productoid brachiopods and the bivalve *Dunbarella*) to nearshore (the brachiopod *Lingula*, conodonts and some arenaceous foraminifers) conditions (Calver, 1968a-b). The complete succession of six marine bands only occurs in South Wales (cf. Bless et al., 1972: Encl. 1; Ramsbottom et al., 1978: Pl. 2-3). They die out or become less well developed in the strongly attenuated sequences at the eastern border of the South Wales basin (Evans et al., 1971: Figs. 31, 33).

Four marine bands extend into the Pennines, where marine faunas become impoverished or even absent in marginal areas (Calver, 1968a: 49-59). Only one band (Skipsey’s Marine Band at the base of the Westphalian C) is generally recognised in Scotland, where scarce records of one or two marine bands with a poor fauna higher up in the sequence emphasise the diminished marine influence towards the north (Ramsbottom et al., 1978: Fig. 14).
Several horizons in between and above these marine bands have yielded conchostracans and/or the ostracode genus *Geisina*, fossils linked to the times of marine incursion, or to the proximity of marine conditions (Calver, 1968a: 157-158). One of these horizons, the Main Estheria Band of Yorkshire, Nottinghamshire-Derby and perhaps also Canonbie and Durham (cf. Ramsbottom et al., 1978: PI. 3), is inferred to match the stratigraphic position of the Five Roads Marine Band in South Wales.

Lower Westphalian C tonsteins have only been documented in the Pennines, where they occur in three intervals separated by marine bands (Table 2). The lower interval of four tonsteins occurs below the Edmondia Marine Band. The lowermost Sub-High Main Tonstein has been correlated with the Constance-Erda Tonstein of northern France, the Belgian Campine and the German Ruhr basins (Spears & Kanaris-Sotirou, 1979: 422, Fig. 2).

The middle interval with the three Top Robins tonsteins in between the stratigraphic position of the Main Estheria Band and the Shafton Marine Band is only known from South Staffordshire, whereas the upper interval with the three Winghay tonsteins in between the Shafton Marine Band and the Top Marine Band has only been observed in North Staffordshire.

Beds with the *adamsii-hindi* non-marine bivalve assemblage (also including *Naiadites ex gr. productus*; cf. Evans et al., 1971: Fig. 14) occur below the position of the Sub-High Main Tonstein in the Pennines and above the Carway Fawr Marine Band in South Wales (Ramsbottom et al., 1978: Pl. 3). The non-marine bivalve *Anthraconauta phillipsii* appears immediately above the Lower Cwmgorse Marine Band in South Wales (cf. Evans et al., 1971: Fig. 14) and immediately above the Shafton Marine Band in the Pennines (Calver, 1956: Fig. 6).

The base of the epibole (interval wherein a taxon is common - more than 1% of the assemblages - or frequent; cf. Alpern, 1970: 82-85) of the miospore *Torispora securis* occurs some 30 m above the Upper Cwmgorse Marine Band in South Wales, where the taxon reaches 11% of the miospore assemblage (Butterworth & Smith, 1976: 286). A maximum of 32% has been recorded some 40 m above the position of the Wilbourne (=Upper Cwmgorse) Marine Band in the nearby Bristol area (Butterworth & Smith, 1976: 286). *Torispora* rarely attains proportions of greater than 1% in the Pennines, where maximum values of 1% (some 60 m above the Top Marine Band in North Staffordshire) and 4% (some 100 m above the Top Marine Band in the Corringham borehole near Doncaster, Gainsborough Trough) have been observed (Butterworth & Smith, 1976: 284).

A large tract of the northwestern European paralic coal basin is occupied by the Southern North Sea Carboniferous Basin. No data from the North Sea are included in this study. This reflects the paucity of detailed published work on Westphalian C strata of the North Sea. Regional correlation of marine bands and their equivalents in different depositional environments requires a large data set with many exploration wells. Their stratigraphy has to be studied by combining geochemistry, frequency analy-

<table>
<thead>
<tr>
<th>Lancashire</th>
<th>Yorkshire</th>
<th>Nottinghamshire / Derbyshire</th>
<th>South Staffordshire</th>
<th>North Staffordshire</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>TOP MARINE BAND</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>SHAFTON MARINE BAND</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>EDMONDIA MARINE BAND</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>MANSFIELD MARINE BAND</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Worsey Four Foot</th>
<th>Sub-Worsey Four Foot</th>
<th>Sharleston Top</th>
<th>Sharleston Muck</th>
<th>High Main</th>
<th>Sub-High Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>adamsii-hindi non-marine bivalve assemblages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Stratigraphic position of tonsteins in the lower Westphalian C of the Pennine Basin (after Francis, 1969: Fig. 2; Mayland & Williamson, 1970: 1167; Spears & Kanaris-Sotirou, 1979: Fig. 2).
sis of facies-sensitive geophysical logs and conventional biostratigraphic techniques, calibrated with recognised marine bands in cores. In the absence of such integrated approach and considering poor seismic resolution in the Carboniferous strata underneath a Permian cover, stratigraphic interpretations in the North Sea area are rather tentative (Besly, 1998: 134). Nevertheless, the facies present in the Southern North Sea Carboniferous Basin are similar to those described on the British onshore; sand-mud distribution patterns in the Westphalian A-B formations also seem to confirm the provenance data obtained from the British onshore coal fields (Rippon, 1996: Fig. 12; Besly, 1998: 123).

3. Marine bands and Torispora assemblages on the European mainland

The correlation of the stratigraphic subunits of the Westphalian C on the European mainland is also based on the occurrence of several widespread tonsteins, which have been traced from northern France through the Belgian Campine Basin into the German Ruhr area (Table 1; Delcambre, 1987).

Apart from a single record of a double-layered Lingula band in the Hoya borehole (40 km SE of Bremen; Paproth, 1962: 793; Hecht et al., 1962: 1067), no marine fossils have been observed above the Aegir-Maurage-Rimbert Marine Band at the base of the Westphalian C. The stratigraphic position of the British marine bands is frequently occupied, however, by beds with arenaceous foraminifers, the ostracode Geisina or conchostracans (Tables 1 and 2).

Conchostracans are irregularly distributed in two or three bands, Kobold, Loki and Midgard, in between the Hagen and Nibelung tonsteins of the Ruhr area. The conchostracans are locally replaced by arenaceous foraminifers in the Midgard Band. The distinction between the Kobold and Loki bands remains problematic, since conchostracans occur either in the Kobold and Midgard bands or in the Loki and Midgard bands within a single section (Fiebig & Groscurth, 1984: 261, Pl. 1). The Kobold and Midgard bands have been correlated by means of geophysical well-logs (Schuster, 1968: 447-448) with, respectively, a double-layered Lingula band of the Hoya borehole (Schuster, 1968: 447-448), and by a similarly double-layered « marine band » identified on the geophysical well-logs of Victorbur (Schuster, 1968: 447-448), Itterbeck-Halle 7 (Schuster, 1968: Fig. 17), Norddeutschland 8 (Hedemann et al., 1984: Fig. 9) and Rehden 21 (Hedemann et al., 1984: Fig. 9).

This double-layered « marine band » is matched by a double-layered Geisina band above the T1Gb tonstein in the Campine Basin (Figure 2, Table 1). No fossils have been recorded, however, from the (sandy) beds above the Maxence Tonstein in northern France.

The Nibelung Band (immediately above the presumed position of the Nibelung tonsteins) is usually replaced by coarse-grained to sometimes conglomeratic sandstones in the Ruhr and Ibbenbüren areas. There is only one record of conchostracans in the Ruhr area (Fiebig & Groscurth, 1984: 261, 266, Pl. 1). Elsewhere, however, this horizon is represented by the undoubtedly marine, double-layered Lingula band of the Hoya borehole (Schuster, 1968: 447-448), and by a similarly double-layered « marine band » identified on the geophysical well-logs of Victorbur (Schuster, 1968: 447-448), Itterbeck-Halle 7 (Schuster, 1968: Fig. 17), Norddeutschland 8 (Hedemann et al., 1984: Fig. 9) and Rehden 21 (Hedemann et al., 1984: Fig. 9).

This double-layered « marine band » is matched by a double-layered Geisina band above the T1Gb tonstein in the Campine Basin (Figure 2, Table 1). No fossils have been recorded, however, from the (sandy) beds above the Maxence Tonstein in northern France.

Figure 2. Stratigraphic position of tonsteins (black dots) and Geisina bands (asterisks) in the lower to early upper Westphalian C of the Belgian Campine area (Dusar, 1989; Dusar et al., 1986 and 1987; unpublished data). The first appearance of Anthraconauta philippisi (A'nauta) and the base of Torispora epibole assemblages are also shown. Depths in metres. Underlined depths refer to tonstein horizons recorded by Delcambre (1987: 131).
The poorly developed Odin Band (presumably on top of the stratigraphic position of the Odin Tonstein) of the Ruhr area (with a single record of arenaceous foraminifers and a single record of conchostracans; Fiebig & Groscurth, 1984: 262, Pl. 1) has no counterpart in the Campine Basin. It is correlated here, however, with the conchostracan band on top of the Patrice Tonstein in northern France (Bouroz et al., 1964: Fig. 13-14).

Local records of arenaceous foraminifers, conchostracans and the marine ichnofossil Planolites ophthalmoïdes from higher horizons (Parsifal, Rübezahl, Siegfried and Tristan bands) in the upper Westphalian C of the Ruhr area (cf. Fiebig & Groscurth, 1984: 262-265, Pl. 1-2) and the Westphalian D of the Piesberg area (Knauff et al., 1971) may be correlated in the future with conchostracan and Geisina bands in northern France, the Netherlands and Britain, or with marine faunas of Westphalian D age to the west of Ireland (Tate & Dobson, 1989). They are not considered further here.

The productus-hindi non-marine assemblage (the presumed counterpart of the adamsii-hindi assemblage with Naiadites ex gr. productus in Britain) locally occurs above the Chriemhilt (below the Erda Tonstein) and Freya (in between the Erda and Hagen tonsteins) coal seams of the Ruhr area (Schlepper, 1971: 24). This assemblage has not been recognised in the Campine Basin or northern France.

The appearance of the non-marine bivalve Anthraconauta phillipsii is clearly diachronous. This species appears slightly above the Hagen tonsteins in the Ruhr area (Schlepper, 1971: 25-29) and at a comparable stratigraphic position in the Hoya borehole (Paproth, 1962: 792-793). The first specimens in the Campine Basin occur somewhere in between the stratigraphic position of the two Geisina bands, in between the T3/4 and T1Ga/b tonsteins (Figure 2; Dusar et al., 1986: 62). The species only appears above the Maxence Tonstein (on top of coal seam « 21 » in the Bruay section) in northern France (Bouroz et al., 1964: Fig. 13; Bouroz et al., 1969: 101).

The base of the epibole of the miospore Torispora securis is also clearly diachronous. The taxon reaches 5% abundance in the first coal seam (coal seam « 21 » of Bruay) above the Maxence Tonstein in northern France, and varies between 2 and 18% (mean: 12%) in the overlying

Figure 3. Quantitative distribution of *Torispora securis* in the lower to early upper Westphalian C of northern France (Bruay section; Loboziak, 1969: Tables O, R) and the Ruhr area (Borehole Abt. 04, 2.S., Fürst Leopold-Baldur; Grebe, 1962: Table 1; for stratigraphic calibration of section see Fiebig & Groscurth, 1984: Table 1), compared with the top of the common occurrence of *Alethopteris corsini* and the base of the common occurrence of *Alethopteris grandini* in the same areas (Josten & Laveine, 1984: 98-101, Fig. 4, Table 1). The stratigraphic position of the Patrice and Odin tonsteins is used here as datum line.
seams (Figure 3; Loboziaik, 1969: Tables O, R). This percentage suddenly increases to values between 5 and 30% (mean 18%) some 60 m above the Patrice Tönstein. The base of this second maximum in coal seam «15» presumably matches the base of the epibole in the Campine Basin (some 20 m above the T1p Tönstein; Dusar et al., 1987: 142, 175-176), where Torispora reaches 10% (Somers, 1971: 402), and in the Ruhr area (some 40 m above the Odin Band; Figure 3; Grebe, 1962: Table 1).

The correlation between the base of the epibole of Torispora in the Ruhr area and the base of its second maximum in northern France is supported by the distribution pattern of the seed ferns Alethopteris corsini and A. grandini (Josten & Laveine, 1984: 98-101, Figure 4, Table 1). The top of the interval, wherein A. corsini is common, is situated some 110 m above the Patrice Tönstein in northern France and some 90 m above the Odin Band in the Ruhr area (Figure 3). The base of the interval, wherein A. grandini is common, occurs some 85 m above the Patrice Tönstein in northern France and some 40 m above the Odin Band in the Ruhr area (Figure 3).

4. Palaeoecological conditions

In contrast to the laterally extensive Mansfield-Aegir Marine Band, the higher, geographically more restricted marine bands in the Westphalian C sequence are generally considered to «represent short-lived marine to brackish incursions across an 'upper delta plain' rather than the re-establishment of lower delta plain conditions» (Guion et al., 1995: 51). This model is tested here by means of a detailed analysis of the distribution pattern of some selected marine, brackish water and non-marine faunas. They provide a useful tool to the understanding of the overall palaeogeography at the acme of a marine incursion. Five major faunal assemblages are briefly described. Moreover, the partly diachronous distribution of epibole assemblages of the miospore Torispora provides valuable gross information about the nature of the Westphalian C landscape that was invaded by the marine incursions.

4.1. Faunal assemblages related to marine incursions

Open marine faunas include goniatites, productoid brachiopods, marine bivalves and gastropods, crinoids, sponges, fishes, conodonts, endothyrid foraminifers and marine ostracodes. They occur in a wide variety of marine offshore deposits (Calver, 1968a-b).

Lingula faunas are sometimes associated with arenaceous foraminifers and conodonts. Like its modern representatives, the inarticulate brachiopod Lingula occurred preferentially in low-energy, nearshore conditions, such as tidal flats to shallow subtidal (30-40 m) mud-flats (Craig, 1952).

Arenaceous foraminiferal assemblages « are remarkably similar to those occurring in modern coastal wetlands » (Wightman et al., 1994: 200-201). The monotonous faunas consist of only one or a few species or genera of agglutinated, arenaceous foraminifers. They preferentially occur in argillaceous, greyish shales and are rare or absent in highly carbonaceous shales (Calver, 1968a: 166). They possibly preferred a wide range of brackish (frequently oligotrophic) conditions in interdistributary bays, estuaries or salt-marshes in the coastal wetlands (cf. Steineck & Bergstein, 1979; Wightman et al., 1994).

Geisina faunas. The filter-feeding ostracode Geisina preferentially occurred without other fossils or was associated with monotonous « non-marine » bivalve assemblages in black «bituminous», canneloid or carbonaceous shales, sometimes with some pyrite and/ or calcareous shell material (Pollard, 1966: 668-677; Calver, 1968a: 152, 154, 156; Eagar, 1974: 224; Paproth, 1978: 98). Increased boron contents of the shales (Ernst, 1963), occasional preservation of calcareous shell material and organic-rich shales point to brackish, eutrophic ponds, which formed on the «extensive floodplain of a delta complex which was occasionally breached by the sea to allow the brackish [ostracode/bivalve] faunas to flourish for brief periods » (Barclay et al., 1994: 377), or developed on «broad, very low gradient floodplains, seasonally covered by shallow lakes or marshes. Broad transition zones of this type are found in some seasonal wetland coastal plains at the present time such as the Kakadu of northern Australia. If seasonal onshore winds correspond to periods of flooding on the floodplains, very extensive transition zones, of brackish character, could develop and extend for tens of kilometres or more inland » (Wright & Marriott, 1996: 91).

Conchostracan faunas, including Estheriids and Leaids, occur «in a variety of sediments, but are most abundant in canneloid or carbonaceous shales» (Calver, 1968a: 157). The commonly decalcified carapaces frequently reach bloom proportions in discrete beds within undoubtedly non-marine, upper Westphalian C to Permian successions (cf. Warth, 1963; Calver, 1968a; Weingardt, 1976; Kozur & Sittig, 1981; Martens, 1987). This «conflicts with the concept of a brackish water habitat that is closely linked to a marine environment» (Calver, 1968a: 158). Most likely they were non-marine organisms thriving in lacustrine environments (lakes), although they were «not part of the endemic fauna of the swamps» (Defrise-Gussenhoven & Pastiels, 1957: 57; Calver, 1968a: 158). Their characteristic presence in beds associated with major marine incursions or in beds «immediately preceding or following a marine incursion» (Calver, 1968a: 157-158) may have been caused by climatic events, such as exceptional cold spells, which were related to or induced by the marine ingestions. Perhaps the pollen-sized conchostracan eggs were introduced into the temporar-
ily cooled waters of lakes within the tropical/subtropical belt by exceptional winds (cf. Warth, 1963: 8) blowing from higher latitudes at the onset of glacially-driven eustatic sea level changes (cf. Klein & Kupperman, 1992; DiMichele et al., 1996). Increasing water temperature would have killed the conchostracans a few weeks or a few months later. The conchostracan faunas are therefore believed to represent temporarily cool water lake environments.

Non-marine bivalve faunas, in the Westphalian C only include Myalid bivalves assigned to the genera *Anthraconaiia, Curvirimula, Naiadites* and *Anthraconauta*, which presumably occurred in a wide range of fluvio-deltaic freshwater and brackish water environments (Calver, 1968a: 150-156, Fig. 2). They have not been incorporated in the present study, since the data from several areas on the European mainland may need revision.

4.2. *Torispora* epibole assemblages

Except for their greater length and the presence of the crassitude, the specimens of *Torispora securis*, found at the periphery of the Marattialean *Scolecopteris dispora* synangia (Lesnikiwka & Willard, 1997), are identical to the interior spores which have been assigned to *Laevigatosporites globosus*. The second miospore species first occurs as *sporae dispersae* much earlier in the stratigraphic record than the first one. As the first occurrence of *Torispora* is known «worldwide» within the Westphalian C, we assume that the capacity of *Scolecopteris* to produce crassitate spores at the periphery of their synangia does represent a step in the evolution of this taxon rather than some local adaptation to ecological conditions.

Apart from the Pennines, where the species is extremely rare (one record of 1% and another of 4%; Butterworth & Smith, 1976: 284), the miospore *Torispora* is frequently common to occasionally abundant in late lower to upper Westphalian C coal seams, as emphasised by data from the Ruhr area (up to 26%; Grebe, 1962: 777, 781), Campine Basin (up to 10%; Somers, 1971: 402), northern France (up to 30%; Loboziazi, 1969: Table O-P), Bristol area (up to 32%) and South Wales (up to 11%; Butterworth & Smith, 1976: 286). The species may be rare or virtually absent in shales of the same age, as emphasised by data from northern France (Coquel, 1974: Table S) and the southeastern Netherlands (Van de Laar & Ferrmont, 1990: 39-40, Encl. 1-3).

Torispora was also rare or virtually absent in shales from the upper Westphalian C of the Campine Basin. Only three of 111 shale samples have yielded values of more than 3% *Torispora*. One of these (9.8% *Torispora* in KB169 at 1231.25 m; Streel, unpublished data) presumably corresponds to the late lower Westphalian C, whereas the other two (6.0% and 31.8% in KB172 at, respectively 978.30 m and 1069.00 m; Streel, unpublished data) represent the upper Westphalian C. These extremely high percentages of *Torispora* point to an exceptional, local admixture of the spores, perhaps by the abnormal occurrence of some *Torispora* producing tree ferns near the border of the lake where the enclosing silty-clayey sediment accumulated.

The *Torispora* producing Pecopterid tree ferns (cf. Laveine, 1970; Lesnikiwka & Willard, 1997) presumably favoured mineral-poor, ombrogenous, raised mire conditions, similar to those preferred by tree ferns producing the spore *Thymospora* (Mahaffy, 1988: 253-255), above the reach of (frequent) fluvial flooding. In Maritime Canada, Lyons et al. (1997: 45) observed that an upward increase of tree-fern spores in a coal seam was coupled with a substantial decrease in ash content (from 30 - 47% ash in the lower part to 11 - 19% ash in the upper part).

Such conditions may have been more frequently achieved in thick, clean and extensive peat within the upper alluvial plain system than in thin, impure and discontinuous peat within the lower alluvial plain system (Dreesen et al., 1995: 229, Fig. 9). *Torispora* epibole assemblages are therefore believed to represent raised mire conditions, without frequent inundation of the swamps.

Figure 5. Strongly simplified and idealised distribution of major fluvio-deltaic depositional environments in northwestern Europe during the early lower Westphalian C (partly based on Lindert, 1994: 247; Flint et al., 1995: Fig. 7; Guion et al., 1995: 51; Dreesen et al., 1995: Fig. 12; Koekel, 1995: 15). a: upper delta plain, b: alluvial red bed facies, c: lower alluvial plain with anastomosed river systems and frequent lakes.

Figure 6. Distribution of characteristic faunas at the acme of the Edmondia-Kobold marine incursion in northwestern Europe. Key as for Figure 4.

Figure 7. Distribution of characteristic faunas at the acme of the Five Roads-Midgard marine incursion in northwestern Europe. Key as for Figure 4.
5. Palaeogeographic implications

5.1. Landscape successions

Northwestern Europe turned into a vast fluvio-deltaic landscape during the first half of the lower Westphalian C after the withdrawal of the sea at the end of the major Mansfield-Aegir marine incursion (Figure 4). Upper delta plain and alluvial red bed facies characterised the British lowlands to the north and to the south of the Wales and Anglo-Brabant massifs (Flint et al., 1995: Fig. 7; Guion et al., 1995: 51), whereas (lower) alluvial plains with an intricate network of downstream-branching, anastomosed rivers and lakes dominated the European mainland (Figure 5; Dreesen et al., 1995: Fig. 12; Lindert, 1994: 247). This geographic distribution of major depositional areas was hardly affected by the ephemeral Carway Fawr marine incursion in South Wales (Table 1; Ramsbottom et al., 1978: Pl. 3).

The sea extended across the upper delta plains of South Wales and the Pennines and perhaps some parts of Scotland during the succeeding Edmondia-Kobold incursion as testified by the open marine and Lingula faunas in these areas (Figure 6), but presumably never reached Bristol and Kent (Calver, 1968b: 51-53; Ramsbottom et al., 1978: Pl. 3, Fig. 14). The impact of this incursion on the European mainland was limited to some brackish water (Geisina) faunas in the Campine Basin (Figure 2) and presumed cool water conchostracan assemblages in northern France (Bouroz et al., 1995: Fig. 1) and Germany (Schuster, 1968: Fig. 16; Fiebig & Groscurth, 1984: Pl. 1-2). Brackish water Geisina faunas were also established in South Wales immediately after the retreat of the Edmondia-Kobold Sea.

The sea remained in South Wales during the less important Five Roads-Midgard incursion (Table 1, Figure 7). Brackish water conditions became locally established on the European mainland as illustrated by Geisina faunas in the Campine Basin (Figure 3), and arenaceous foraminifers in the Hoya borehole (Schuster, 1968: Fig. 16) and in some places of the Ruhr area (Fiebig & Groscurth, 1984: Pl. 2). Cool water conchostracan faunas occurred in the Pennines (Main Estheria Band; Table 1), at some localities in the Ruhr area (Fiebig & Groscurth, 1984: Pl. 1-2), at Victorbur (Schuster, 1968: Fig. 16), and in northern France (Bouroz et al., 1964: Fig. 1). Brackish water Geisina faunas again occurred in South Wales immediately after the end of the Five Roads-Midgard incursion.

During the second half of the lower Westphalian C and the beginning of the upper Westphalian C the upper delta plain faunas persisted in the Pennines (Flint et al., 1995: Fig. 7; Guion et al., 1995: Fig. 4). On the European mainland, however, upper alluvial plains gradually replaced the lower alluvial plains (Dreesen et al., 1995: Fig. 12). Increasing sand content and steeper hydraulic gradients for predominantly north-flowing rivers are probably related to crustal shortening and uplift of the advancing Variscan chain to the south (Bless et al., 1977; Paproth et al., 1996). This shift from lower to upper alluvial plains is closely matched by the diachronic appearance of Torispora epibole assemblages.

The distribution pattern of Torispora epibole assemblages (Figure 3) suggests that raised bogs first occurred in northern France during the second half of the lower Westphalian C (Figure 8). Slightly after the beginning of the upper Westphalian C, this environment was also developed elsewhere (Figure 9) as illustrated by the repeated occurrence of Torispora epibole assemblages in the Ruhr area (Figure 3; Grebe, 1962: Table 1), and also - but less frequently according to the only occasionally high percentages of Torispora - in the Campine Basin (Somers, 1971: 402; Streel, unpublished data, this paper) and in Southern Britain (South Wales and Bristol; Butterworth & Smith, 1976: 286). The meagre record of Torispora epibole assemblages in the upper Westphalian C of the Pennines (only two records of, respectively, 1% and 4%; Butterworth & Smith, 1976: 284) supports the interpretation of persistent upper delta plain facies in that area (Flint et al., 1995: Fig. 7; Guion et al., 1995: Fig. 4).
The Shafton-Nibelung marine incursion at the onset of the late lower Westphalian C (Figure 10) must have been more important than the preceding Five Roads-Midgard incursion. Open marine faunas occur in South Wales and the Pennines, and at some places in Scotland (Ramsbottom et al., 1978: Pl. 3, Fig. 14), whereas Lingula assemblages have been reported from the German Hoya borehole (Schuster, 1968: Fig. 16). The presence of Lingula at Hoya may indicate a (temporary) eastern extension of the British upper delta plain environment (if the sea only flooded the upper delta; cf. Guion et al., 1995: 51), an exceptionally low-lying lower alluvial plain, or rather a transitional zone between these major facies zones. The same holds perhaps for the Campine Basin, where brackish water Geisina faunas have been observed once more (Figure 3). There is only one record of conchostracans from the Ruhr area (Fiebig & Groscurth, 1984: Pl. 1-2). No characteristic faunas have been mentioned from northern France.

The Top-Odin marine incursion at the beginning of the upper Westphalian C was the last one leaving a widespread marine band with a rich and diverse fauna in South Wales, Bristol and the Pennines (Figure 11; see also Calver, 1969: Fig. 14). This incursion only left a single record of a local salt marsh (arenaceous foraminifers) environment and a single occurrence of cool water conchostracans in the Ruhr area (Fiebig & Groscurth, 1984: Pl. 1). Conchostracans have also been observed above the Patrice tonstein in northern France (Bouroz et al., 1964: Fig. 13-14). No characteristic faunas are known from the Campine Basin. The scarcity of recorded faunas on the European mainland at this time may be related to the rapidly expanding high-gradient braided fluvial channel belts and stable mires, wherein lakes were less common than on the lower alluvial plain (cf. Dreesen et al., 1995: Fig. 12). The Top-Odin incursion was also preceded and followed by several beds with Geisina or conchostracans in South Wales and the Pennines.

5.2. Tectonic control

The palaeogeographic evolution of the northwestern European paralic basin during the Westphalian C shows a gradual increase in the number and extent of upper alluvial plain systems, especially along the southern and eastern margins of the basin (facies “d” on Figures 5, 8-9). This suggests that major sediment transport routes derived from the advancing and uplifting Variscan orogenic belt replaced earlier fluvial systems supplying sediments from other, more distant or less active source lands. Sediment provenance and palaeocurrent studies in Westphalian C (or Bolsovian) sandstones of the Pennine basin indeed show that sediments from the Variscan orogenic belt were supplied by a fluvial system flowing from the south and southeast (Hallsworth & Chisholm, 2000). Previous fluvial systems transported sediments from a northern provenance during the Namurian to Westphalian A (or Langsettian), progressively replaced by a westerly derived system which predominated during the upper Westphalian A and the major part of the Westphalian B (or Duckmantian) (Glover et al., 1996; Rippon, 1996). The transition to the E-SE-oriented fluvial system occurred abruptly with the Woolley Edge sandstone, above the Malby Marine band in the late Westphalian B (Hallsworth & Chisholm, 2000: Fig. 8). Similar provenance and paleocurrent results were obtained for Westphalian D sandstones of the Campine Basin (Dusar et al., 1987). The abrupt change in provenance during the late Westphalian B is probably linked to tectonic events in the Variscan chain to the south. Thus the Variscan orogeny apparently steered palaeoclimatic changes and controlled changes in depositional environment in the Variscan Foreland (Bless et al., 1984: 193; Besly, 1998: 110).

Inside the paralic basin subparallel east-west oriented drainage systems may have recurred, terminating in lacustrine deltas without connection to the sea. However, these large channels may have provided pathways for marine incursions into the Variscan Foreland, forced in east-west directions by the emerging Variscan mountain chain to the south (Rippon, 1996: 896).

6. Palaeoenvironmental conclusions

The observations discussed above have been synthesised in a palaeogeographic model showing the relationship between the major sedimentary facies zones and the influence of the marine incursions on the distribution of incursion-related faunas (Figure 12).

There is a close correlation between the distribution of beds with marine (open marine/Lingula) faunas and the distribution of upper delta plain environments in the Westphalian C of northwestern Europe, as already suggested by Guion et al. (1995: 51). The frequent succession of transgressive-regressive faunal phases in these beds suggests that the sea stayed here for a significant period during each marine incursion, so that these incursions cannot be regarded as some kind of catastrophic « flash floods ».

The recurrent presence of Geisina or conchostracans in beds immediately preceding or following a marine incursion within the Westphalian C upper delta plain sequences of Britain suggests that marine incursions in Britain were at least sometimes heralded by or followed by the (local) development of brackish water (Geisina) or cool water (conchostracans) conditions. This gradual appearance and disappearance of the « proximity of marine conditions » (cf. Calver, 1968a: 158) emphasises that these marine incursions cannot be regarded as sudden events.
Figure 12. Palaeogeographic model correlating the distribution of incursion-related faunas across major sedimentary facies belts in the Westphalian C of western Europe during the acme of marine incursion.

The «proximity of marine conditions» presumably resulted in the development of brackish water (*Geisina* and arenaceous foraminifers) and non-marine «cool water» (conchostracans) facies in pre-existing lakes in the fluvio-deltaic environment. These lakes were more abundant on the delta plain and on the lower alluvial plain with low-gradient anastomosed river systems than on the upper alluvial plain with high-gradient braided channels (cf. Dreesen et al., 1995; Rippon, 1996: Fig. 3). This might explain the relative frequency of brackish water and «cool water» faunas in the lower alluvial plain sequences on the European mainland.

The possibly short-lived brackish-water faunas may have been introduced in these lakes by occasional (seasonal) onshore winds during the marine incursion (Barclay et al., 1994; Wright & Marriott, 1996).

7. Acknowledgements

We wish to extend our warmest thanks to our good friend Michael Calver for his careful reading of earlier drafts of this paper and to Gary Hampson for his thoughtful remarks and hints.

8. References

DUSAR, M., BLESS, M.J.M., BORREMAINS, G., BURGER, K., DE LOOSE, J., FAIRON-DEMARET, M.,

MAJOR MARINE INCURSIONS IN NORTHWESTERN EUROPE DURING THE WESTPHALIAN C

Manuscript received on 29.11.2000 and accepted for publication on 12.9.2001.