Variability in specific-absorption properties and their use in a semi-analytical ocean colour algorithm for MERIS in North Sea and Western English Channel Coastal Waters

Gavin H. Tilstone a,⁎, Steef W.M. Peters b, Hendrik Jan van der Woerd b, Marieke A. Eleveld b, Kevin Ruddick c, Wolfgang Schönfeld d, Hajo Krasemann d, Victor Martinez-Vicente d, David Blondeau-Patissier a,e,1, Rüdiger Röttgers d, Kai Sørensen b, Peter V. Jørgensen g,2, Jamie D. Shutler a

a Plymouth Marine Laboratory (PML), Prospect Place, West Hoe, Plymouth, PL1 3DH, UK
b Institute for Environmental Studies (IVM), Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
c Management Unit of the North Sea Mathematical Models (MUMM), Royal Belgian Institute for Natural Sciences (RBINS), 100 Gulledelle, B-1200 Brussels, Belgium
d Institute for Coastal Research, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, D-21502 Geesthacht, Germany
e Aquatic Remote Sensing Group, CSIRO Land & Water, GPO Box 1666, Canberra ACT 2601, Australia
f Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO 0349, Norway
g Danish Meteorological Institute (DMI), Copenhagen, Denmark

⁎ Corresponding author. Tel.: +44 1752 633100; fax: +44 1752 633101.
1 Present address.
2 Current address: Ministry of Food, Agriculture and Fisheries, Landbrug og Fiskeri, Direktoratet for FødevareErhverv, Nyrøgsaden 30, 1780 København V, Denmark.

Abstract

Coastal areas of the North Sea are commercially important for fishing and tourism, and are subject to the increasingly adverse effects of harmful algal blooms, eutrophication and climate change. Monitoring phytoplankton in these areas using Ocean Colour Remote Sensing is hampered by the high spatial and temporal variations in absorption and scattering properties. In this paper we demonstrate a clustering method based on specific-absorption properties that gives accurate water quality products from the Medium Resolution Imaging Spectrometer (MERIS). A total of 468 measurements of Chlorophyll a (Chla), Total Suspended Material (TSM), specific- (sIOP) and inherent optical properties (IOP) were measured in the North Sea between April 1999 and September 2004. Chla varied from 0.2 to 35 mg m−3, TSM from 0.2 to 75 g m−3 and absorption properties of coloured dissolved organic material at 442 nm (aCDOM(442)) was 0.02 to 0.26 m−1. The variation in absorption properties of phytoplankton (aph) and non-algal particles (aNAP) were an order of magnitude greater than that for aNAP normalized to Chla (aNAP* and aph normalized to TSM (aph*). Hierarchical cluster analysis on aph*, aNAP* and aCDOM reduced this large data set to three groups of high aNAP∗−aCDOM, low aph∗ situated close to the coast, medium values further offshore and low aNAP∗−aCDOM, high aph* in open ocean and Dutch coastal waters. The median sIOP of each cluster were used to parameterize a semi-analytical algorithm to retrieve concentrations of Chla, TSM and aCDOM(442) from MERIS data. A further 60 measurements of normalized water leaving radiance (nLw), Chla, TSM, aCDOM(442) and aNAP(442) collected between 2003 and 2006 were used to assess the accuracy of the satellite products. The regionalized MERIS algorithm showed improved performance in Chla and aCDOM(442) estimates with relative percentage differences of 29 and 8% compared to 34 and 134% for standard MERIS Chla and aCDOM(442) products, and similar retrieval for TSM at concentrations >1 g m−3.

© 2011 Elsevier Inc. All rights reserved.
small area, accounting for just 7% of the world ocean's surface, coastal zones play an important part in the global carbon cycle and in buffering human impacts on marine systems. They support 10–15% of the world ocean net annual productivity and may be responsible for > 40% of the annual carbon sequestration (Muller-Karger et al., 2005). Coastal areas of the North Sea are commercially important for fishing and tourism, yet are subject to the increasingly adverse effects of harmful algal blooms (Aanesen et al., 1998; Davidson et al., 2009), eutrophication (Lancelot et al., 1987) and climate change (Reid et al., 2001; Stige et al., 2006). There is therefore an obvious need to develop accurate Chla algorithms in coastal regions to monitor these environmental changes.

Understanding the optical variability in the marine environment is important since it aids the development of satellite algorithms, especially in optically complex coastal areas. In most oceanic waters, which occupy approximately 60% of the global ocean (Lee & Hu, 2006), light absorption by phytoplankton dominates and is modified by the "pigment package effect" (Bricaud et al., 2004), which is a function of cell size, species type and pigment concentration within the cell. Low pigment concentrations are predominantly associated with small phytoplankton cells, and high pigment concentrations with large cells (Yentsch & Phinney, 1989). In these waters, the absorption coefficient of coloured dissolved organic material \( a_{\text{CDOM}} \) is coupled with variations in phytoplankton biomass and can be modified by microbial and photochemical degradation (Del Vecchio & Blough, 2002; Hedges et al., 1997). In coastal regions, where the presence of Coloured Dissolved Organic Material (CDOM) and Total Suspended Material (TSM) also modify the light field (IOCCG, 2000), accurate estimation of Chla from satellite is more difficult. CDOM and TSM originating from riverine run-off and re-suspension of bottom sediment, are highly variable and on a global basis, the combined absorption of coloured dissolved organic and detrital material \( a_{\text{D}} \) contribute up to 40% of the non-water absorption at 440 nm in the subtropical gyres and 60% at high latitudes (Siegel et al., 2005a). To facilitate algorithm development, Morel and Prieur (1977) classified optical water types into either Case 1 waters, where the optical properties are governed by phytoplankton, or Case 2 waters which are additionally affected by absorption properties of coloured dissolved organic material \( a_{\text{CDOM}} \) and TSM that do not co-vary with phytoplankton. A plethora of algorithms were developed to detect Chla in Case 1 waters and the most successful was an empirical, band switching ratio, which is accurate to 25% for Chla concentrations up to 35 mg m\(^{-3}\). This algorithm was adopted by NASA as the standard Sea-viewing Wide Field of view Sensor (SeaWiFS) open ocean algorithm (O'Reilly et al., 1998). It often fails in Case 2 waters because the optical signature of CDOM or TSM can mask phytoplankton absorption at 442 nm (Sathyendranath et al., 2001). Prieur and Sathyendranath (1981) suggested seven water types based on the relative importance of the absorption coefficients of phytoplankton \( a_{\text{D}} \), non-algal particles or detrital material \( a_{\text{D}} \) and \( a_{\text{CDOM}} \) to the total absorption in the water column. From these a number of algorithms were developed to retrieve inherent optical properties (IOP) and biogeochemical parameters from optically complex Case 2 waters (Carter et al., 1999; Doerffer & Schiller, 2007; Lee et al., 2002; Maritorena et al., 2002), which also provide additional parameters other than Chla (IOCCG, 2006). A number of semi-analytical approaches have been used in which water constituent concentrations are derived from the IOP, through a knowledge of the specific-inherent optical properties (sIOP) i.e. the IOP normalised to its biogeochemical concentration (Lee et al., 2002; Smyth et al., 2006; van der Woerd & Pasterkamp, 2008). These methods have advantages over conventional band ratio algorithms in that multiple ocean properties can be retrieved simultaneously from a single water-leaving radiance spectrum. The availability of data from satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua) and Medium Resolution Imaging Spectrometer (MERIS), which have more spectral bands, a higher spatial resolution than SeaWiFS and novel atmospheric correction models, have also facilitated the development of a new range of satellite products for coastal waters. The current diversity of IOP models, however, exhibits large differences in performance when retrieving total absorption, backscatter or decomposing these into individual optically active components (IOCCG, 2006), primarily because they are trained on a limited IOP data set (Claustre & Maritorena, 2003; Cota et al., 2003; Sathyendranath et al., 2001). This is also compounded by the fact that with inverse modeling techniques, several combinations of IOP can lead to the same reflectance spectrum (Defoin-Platel & Chami, 2007).

There have been few studies of variations in IOP and sIOP in the optically complex coastal waters of the North Atlantic and the implementation of this data in ocean colour algorithms for Case 2 waters. North Sea and English Channel coastal areas have high absorption and scattering properties (Hommersom et al., 2009), and can switch seasonally between Cases 1 and 2 water types (Groom et al., 2009). The variability in \( a_{\text{CDOM}} \) in these areas is strongly linked to seasonal cycles of riverine run off and water column mixing (Garver & Siegel, 1997). The most comprehensive analysis of the optical properties of European waters, which included the North Sea, was conducted by Babin et al. (2003a, 2003b). From over 350 stations, they found that there were significant departures from the general trend between \( a_{\text{D}}(\lambda) \) and Chla reported for oceanic waters due to a different pigment composition and cell size under the influence of \( a_{\text{CDOM}} \) and \( a_{\text{D}} \), and that low light scattering at 555 nm was principally due to minerals with a low clay and silt content that occur along the European shelf. Due to its optical complexity, the North Sea has been a site for satellite algorithm development: A Chla atlas of the region was published using NASA-Coastal Zone Color Scanner (CZCS) global algorithm as a qualitative proof of concept (Holligan et al., 1989). More recently, a neural network algorithm was developed, firstly calibrated on North Sea data and then globally, to give standard global coastal products of Chla, TSM and \( a_{\text{D}} \) from MERIS data (Doerffer & Schiller, 2007). Directional water leaving radiance is input into the algorithm and it outputs Chla, TSM and \( a_{\text{D}} \) based on the conversion of scattering and absorption coefficients using non linear multiple inversion solutions and regional conversion factors to give concentrations. Regionally tuned algorithms for the North Sea have also been developed to retrieve Chla (Høkedal et al., 2005; Peters et al., 2005) and TSM (van der Woerd & Pasterkamp, 2004) based on either radiative transfer solutions using the numerical model HYDROLIGHT to estimate concentrations of optically active substances from modeled reflectance spectra or regionally tuned spectral shapes and slope inputs to empirical solutions.

In this paper we addressed the following questions: What are the temporal and spatial variations in absorption and specific-absorption properties in the North Sea and Western English Channel? What are the principal absorption and specific-absorption properties in this area? Can trends in specific-absorption properties alone be used to develop accurate ocean colour regional algorithms? The variation in specific-absorption properties in the North Sea and Western English Channel is analysed using hierarchical clustering to characterise the principal optical types. Representative sIOP groups are then used, in conjunction with a semi-analytical model HYDROPT, to retrieve water quality parameters Chla, TSM and CDOM. To demonstrate the benefits of this method, the products from this regionally tuned model are compared to standard MERIS Case 2 water products.

2. Methods

2.1. Study area characteristics and sampling regime

Seven research institutes measured the bio-optical properties and associated biogeochemical concentrations of 468 stations on 22 cruises from 1998 to 2004 in the North Sea, Western English Channel (WEC) and Celtic Sea (Table 1a, Fig. 1A). A further 61 stations were sampled on 15 further cruises to measure Chla, TSM, \( a_{\text{CDOM}}(\lambda) \) and...
normalized water leaving radiance \( (I_{\text{lw}}(\lambda)) \) by four institutes in the North and Celtic Seas from March 2003 to September 2006 (Table 1b, Fig. 1B). This second set of measurements was used to perform an accuracy assessment of satellite products. On all cruises, surface water samples were collected using 10 L Niskin bottles.

2.2. Measurement of biogeochemical parameters

2.2.1. Chlorophyll-\( a \)

Danish Meteorological Institute (DMI), Institute for Coastal Research (HZG), Management Unit of the North Sea Mathematical Models (MUMM), Norwegian Institute for Water Research (NIVA) and Plymouth Marine Laboratory (PML) measured Chla by High Pressure Liquid Chromatography (HPLC). Between 0.25 and 2 L of seawater were filtered onto 25 mm, 0.7 \( \mu \)m GF/F filters and phytoplankton pigments were extracted in methanol containing an internal standard apocarotene (Sigma-Aldrich Company Ltd.). Chla extraction was either by freezing at \(-30^\circ C\) or using an ultrasonic probe following the methods outlined in Sørensen et al. (2007). Pigments were identified using retention time and spectral match using Photo Diode Array (Jeffrey et al., 1997) and Chla concentration was calculated using response factors generated from calibration using a Chla standard (DHI Water and Environment, Denmark). The Institute for Environmental Studies (IVM) extracted Chla using 80% ethanol at 75 \(^\circ C\) and concentrations were determined spectrophotometrically, by measuring the extinction coefficients at 665 and 750 nm before and after acidification with 0.20 mL HCl (0.4 mol L\(^{-1}\)) per 20 mL of filtrate.

2.2.2. Total suspended material (TSM)

For measurements made by HZG, MUMM, NIVA and PML, between 0.5 and 3 L of seawater was filtered onto 47 mm, 0.7 \( \mu \)m GF/F filters in triplicate, which were ashed at 450 \(^\circ C\) and then washed for 5 min in 0.5 L of MilliQ to remove friable fractions that can be dislodged during filtration. The filters were then dried in a hot air oven at 75 \(^\circ C\) for 1 h, pre-weighed and stored in desiccators (van der Linde, 1998). Seawater samples were filtered in triplicate and the filters and filter rim were washed three times with 0.05 L MilliQ to remove residual salt. Blank filters were also washed with MilliQ to quantify any potential error due to incomplete drying. The filters were then dried at 75 \(^\circ C\) for 24 h and weighed on microbalances (detection limit 10 \( \mu \)g). TSM concentrations were determined from the difference between blank and sample filters and the volume of seawater filtered. Samples analysed by DMI were measured in the same way but were dried at 65 \(^\circ C\) for 1 h. The IVM samples were pre-ashed at 550 \(^\circ C\) and then dried at 105 \(^\circ C\).

2.3. Measurement of inherent optical properties

2.3.1. Phytoplankton (\( a_{\text{fl}}(\lambda) \)) and non-algal particle (\( a_{\text{NAP}}(\lambda) \)) absorption coefficients

HZG, NIVA and PML filtered between 0.25 and 2 L of seawater onto 25 mm, 0.7 \( \mu \)m GF/F filters. The absorbance of the material captured on the filter was then measured from 350 to 750 nm at a 1 nm bandwidth using dual beam spectrophotometers retro-fitted with spectrophotometer-coated integrating spheres, following the transmission-reflectance method of Tassan and Ferrari (1995). Measurements were made of total particulate absorption \( a_{\text{part}}(\lambda) \) and \( a_{\text{NAP}}(\lambda) \) retained on GF/F filters before and after pigment extraction with NaClO 1% active chloride. The path length amplification correction of Tassan and Ferrari (1998) was used and \( a_{\phi}(\lambda) \) was derived from the difference between \( a_{\text{part}}(\lambda) \) and \( a_{\text{NAP}}(\lambda) \). IVM and DMI measured \( a_{\text{part}}(\lambda) \) in transmission mode only with an Ocean Optics FC UV200-2 and a Shimadzu UV-2401 spectrophotometer, respectively. The \( a_{\text{NAP}}(\lambda) \) was also measured in transmission mode after pigment extraction in 80% ethanol at 75 \(^\circ C\) following the methods of Kishino et al. (1985). Chlorophyll specific absorption coefficients \( a_{\phi}(\lambda) \) and suspended particulate matter specific absorption coefficients \( a_{\text{NAP}}(\lambda) \) were calculated by dividing \( a_{\phi}(\lambda) \) and \( a_{\text{NAP}}(\lambda) \) by their respective Chla and TSM concentrations.

2.3.2. CDOM absorption coefficients (\( a_{\text{CDOM}}(\lambda) \))

All laboratories filtered replicate seawater samples through 0.2 \( \mu \)m Whatman Nuclepore membrane filters into acid cleaned glassware. The first two 0.25 L of the filtered seawater were discarded and \( a_{\text{CDOM}}(\lambda) \) of the third sample was determined in a 1 cm quartz cuvette from 350 to 750 nm relative to a bi-distilled MilliQ reference blank. The samples were analysed immediately on board using the

---

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Vessel</th>
<th>Dates</th>
<th>Location</th>
<th>No. stations sampled</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMI</td>
<td>DMI local boat</td>
<td>20 June 1998</td>
<td>Danish Coast</td>
<td>6</td>
</tr>
<tr>
<td>HZG</td>
<td>RV Heincke</td>
<td>March 1999–May 2001</td>
<td>German Bight</td>
<td>76</td>
</tr>
<tr>
<td>DMI</td>
<td>DMI local boat</td>
<td>14 June, 2000</td>
<td>Danish</td>
<td>20</td>
</tr>
<tr>
<td>PML</td>
<td>RV Discovery</td>
<td>1–14 April 2002</td>
<td>Celtic Sea</td>
<td>12</td>
</tr>
<tr>
<td>IVM</td>
<td>RV Mitra</td>
<td>8 April 2002</td>
<td>Dutch Coast</td>
<td>4</td>
</tr>
<tr>
<td>HZG</td>
<td>RV Heincke</td>
<td>24 April–May 2002</td>
<td>German Bight</td>
<td>40</td>
</tr>
<tr>
<td>MUMM and PML</td>
<td>RV Belgica</td>
<td>3–9 May 2002</td>
<td>Celtic Sea</td>
<td>11</td>
</tr>
<tr>
<td>NIVA</td>
<td>RV Trygge Braud</td>
<td>7–14 May 2002</td>
<td>Skagerrak</td>
<td>7</td>
</tr>
<tr>
<td>MUMM and PML</td>
<td>RV Belgica</td>
<td>18–21 June 2002</td>
<td>Belgium to UK transect</td>
<td>15</td>
</tr>
<tr>
<td>HZG</td>
<td>MS Wappen von Hamburg</td>
<td>29–30 July, 14–15 Aug, 3 Sept 2002</td>
<td>German Bight</td>
<td>27</td>
</tr>
<tr>
<td>IVM</td>
<td>RV Mitra</td>
<td>3 June, 2 Sept 2002</td>
<td>Dutch coast</td>
<td>8</td>
</tr>
<tr>
<td>NIVA</td>
<td>RV Trygge Braud</td>
<td>7–10, 20 April, 13–16, 22 May, 16–19 June, 14, 24–26 Aug 2003</td>
<td>Skagerrak/Kattegat</td>
<td>23</td>
</tr>
<tr>
<td>HZG</td>
<td>RV Heincke</td>
<td>23 April–May 2003</td>
<td>German Bight</td>
<td>35</td>
</tr>
<tr>
<td>MUMM and PML</td>
<td>RV Belgica</td>
<td>6–8 May 2003</td>
<td>Celtic Sea</td>
<td>5</td>
</tr>
<tr>
<td>MUMM and PML</td>
<td>RV Belgica</td>
<td>16–20 June 2003</td>
<td>Belgium to UK transect</td>
<td>15</td>
</tr>
<tr>
<td>PML</td>
<td>RV James Clark Ross</td>
<td>1–4 August 2003</td>
<td>Celtic Sea</td>
<td>4</td>
</tr>
<tr>
<td>HZG</td>
<td>MS Wappen von Hamburg</td>
<td>15 July, 5–6 August, 17 Sept 2003</td>
<td>German Bight</td>
<td>23</td>
</tr>
<tr>
<td>PML</td>
<td>RV Squila</td>
<td>1 May</td>
<td>Plymouth Sound, WEC</td>
<td>32</td>
</tr>
<tr>
<td>HZG</td>
<td>MS Wappen von Hamburg</td>
<td>28 July, 3–6 August 2004</td>
<td>German Bight</td>
<td>18</td>
</tr>
</tbody>
</table>

Total 468
spectrophotometers except for samples collected off East Anglia, UK, which were spiked with 0.5 mL solution of 10 gL$^{-1}$ of NaN$_3$ per 100 mL of seawater (Ferrari et al., 1996) and stored in a refrigerator for less than 10 days until analysis to prevent sample degradation (Mitchell et al., 2000). The aCDOM($\lambda$) was calculated from the optical density of the sample and the cuvette path length.

2.3.3. Particulate scattering coefficients ($b_p$)

Particulate scattering coefficient ($b_p$) was calculated at nine wavelengths (412, 440, 488, 510, 555, 630, 650, 676 and 715 nm) from dual WetLabs ac9 absorption and attenuation profiles measured at stations in the North Sea and WEC by HZG, NIVA and PML. Measurements were made at a resolution of 5 nm and with an accuracy of 0.005 m$^{-1}$ following WetLabs protocols (WetLabs, 2007). Water calibrations were performed to account for the attenuation and absorption of pure water to monitor any drift in the sensors. Temperature and salinity correction was performed following Pegau et al. (1997) and methods 1 and 3 were used for scattering correction (Zaneveld et al., 1994). The data were binned to 1 m values, discarding peaks in the top 5 m due to bubbles.

2.4. Characterization of specific-inherent optical properties in the North Sea

To characterize the stations by sIOP type, Primer-E v6.1.5 Cluster Analysis (Clarke & Gorley, 2006) was applied to 316 sIOP data. The Ward method of hierarchical agglomerative clustering on squared Euclidean distance was employed (Ward, 1963), in which the

![Figure 1](https://example.com/figure1.png)
Euclidean distance between two stations is the sum of the squared differences between the values of the clustering variables. A SIMPROF test was applied to each node of the dendrogram using a significance level of 5% (Clarke & Gorley, 2006), which highlights branches with no remaining structure so that the main clusters can be identified quantitatively.

2.5. Measurement of apparent optical properties

Measurements were performed by HZG and MUMM with three TriOS-RAMSES hyperspectral spectroradiometers, two measuring radiance and one measuring downwelling irradiance as in Ruddick et al. (2006). The instruments were mounted on a steel frame, so that the main clusters can be identified quantitatively.

2.6. Variation between laboratories in the measurement of biogeochemical parameters, apparent and inherent optical properties

To quantify measurement differences between laboratories, an inter-calibration experiment was performed between HZG, NIVA and PML from 9 to 14 June 2002 (Tilstone et al., 2004a). All laboratories used the same measurement protocols (Tilstone et al., 2004b). Surface water was collected by RV Squila from three stations in the WEC close to the Plymouth coast. All variables were measured in triplicate by each laboratory. For HPLC Chla, there was no significant difference between laboratories (F2,28 = 0.70, P = 0.51) and the maximum difference in Chla concentration between laboratories was 9%. There was also no significant difference between laboratories for aph(442) between laboratories was 14% and 10% at aph(680). There was no significant difference between laboratories for the measurement of TSM (F2,53 = 0.30, P = 0.74) and the maximum difference between laboratories was 20%. Similarly, there was no significant difference between laboratories for acDOM at MERIS bands (F2,80 = 0.43, P = 0.84). The maximum difference in aph(442) between laboratories was 14% and 10% at aph(680). No significant difference between laboratories for the measurement of TSM (F2,53 = 0.30, P = 0.74) and the maximum difference between laboratories was 20%. Similarly, there was no significant difference between laboratories for acDOM at MERIS bands (F2,80 = 1.34, P = 0.27), which were within 20%. During the inter-calibration exercise, each institute measured in situ parameters in triplicate; the estimated uncertainty in each of the parameters (average percentage standard deviation) was 22% for Chla, 15% for TSM, 4% for acDOM(442) and 10% for aph(442) and aph(442). For nLw, the sky, nadir and sea surface radiometers were calibrated in the laboratory using a NIST traceable lamp and the difference in radiometers was <5% between laboratories. The differences between laboratories for all parameters were smaller than the variations in these parameters in the field and we therefore expect there to be no bias due to systematic errors in measurements in UK, Belgium, German and Norwegian waters.

2.7. Accuracy assessment of remote sensing algorithms

In addition to, and independent of, the initial 468 measurements described in Section 2.2, 61 further measurements of Chla, 51 measurements of nLw, 51 measurements of TSM and 14 measurements of acDOM(442) and aph(442) were made between 2003 and 2006 (Table 1b, Fig. 1B) for an accuracy assessment of MERIS algorithms.

MERIS reduced resolution (1.2 × 1.2 km) level 2 data, 2nd preprocessing (R2005) using the ‘bright pixel’ atmospheric correction for Case 2 waters (Moore et al., 1999), were downloaded from the European Space Agency. The standard Case 2 MERIS products from the neural network (NN) algorithm (Doerffer & Schiller, 2007) Chla pigment 2 (AP2), aph(442) and TSM, were extracted using Beam v4.8. The following MERIS quality flags were used to eliminate erroneous data: cloud flag over ocean (CLOUD), land (LAND), no glint correction applied — accuracy uncertain (HIGH_GLINT), reflectance
corrected for medium glint – accuracy maybe degraded (MEDIUM/GLINT), highly absorbing aerosols (AODB), low sun angle (LOW-SUN), low confidence flag for water leaving or surface reflectance (PCD1_13) and reflectance out of range (PCD_15). The MERIS L2 products were extracted from a 3 x 3 pixel box, within ± 0.5 h of MERIS overlaps.

The semi-analytical algorithm HYDROPT (van der Woerd & Pasterkamp, 2008) was also used with the same R2005 MERIS data. HYDROPT comprises a forward model based on the HYDROLIGHT radiative transfer model (Mobley, 1994) and an inverse model based on least-square fitting of the MERIS measured to modeled reflectance (Garver & Siegel, 1997; Maritorena et al., 2002). The forward model generates a lookup table (LUT) of $\rho_{\text{aw}}$ as a function of the absorption ($a$) and scattering ($b$) properties and their constituent Chla, TSM and $a_{\text{CDOM}}$, as follows:

$$\rho_{\text{aw}} = f(a, b, \theta_i, \psi_i, \psi_v, \text{Fresnel coefficient}_{\text{water-sky}})$$  \hspace{1cm} (3)

where $f$ is a function, $\theta_i$ is the solar zenith angle, $\psi_i$ is the viewing zenith angle, $\psi_v$ is the viewing azimuth angle and the Fresnel coefficient is the factor required for the water–sky interface. The algorithm predicts remote sensing reflectance spectrum from $a$ and $b$ through knowledge of the sIOP for a particular region as follows:

$$a(\lambda) = a_{\text{aw}}(\lambda) + a_{\text{ph}}(\lambda) \cdot \lambda \cdot \text{Chla} + a_{\text{NAP}}(\lambda) \cdot \lambda \cdot \text{TSM} + a_{\text{CDOM}}(\lambda) \cdot \lambda$$  \hspace{1cm} (4)

$$b(\lambda) = b_{\text{aw}}(\lambda) + b_{\text{ph}}(\lambda) \cdot \lambda \cdot \text{TSM}$$  \hspace{1cm} (5)

where $a_{\text{aw}}$ and $b_{\text{aw}}$ are the absorption and scattering coefficients of pure water. HYDROPT was parameterized with medium sIOP values ($a_{\text{CDOM}}, a_{\text{ph}}, a_{\text{NAP}}$, and $b_{\text{NAP}}$) from the main cluster groups identified using the methods described in Section 2.4. The HYDROPT algorithm was run using MERIS data in bands 1 to 9, to estimate concentrations of Chla, TSM and $a_{\text{CDOM}}$. The scattering phase functions in the forward radiative transfer model were a uniform scattering function for pure water and the ‘San Diego harbor’ scattering phase function for TSM (Petzold, 1972). The algorithm retrieves the concentrations from each sIOP type, by minimizing the chi square ($\chi^2$) difference between observed MERIS and modeled reflectance spectra stored in the LUT (Mobley et al., 2005) at consecutive MERIS bands; 413, 442, 490, 510, 560, 617, 665, 681 and 708, as follows:

$$\chi^2 = \frac{\sum_{i=1}^{m} \left[ (R_{\text{MERIS}}(\lambda) - R_{\text{Modeled}}(\lambda))^2 / \sigma^2 \right]}{\sigma}$$  \hspace{1cm} (6)

where $i$ is the band number, $m$ is the band number minus 1 and $\sigma$ is the estimated standard error between bands based on Rast et al. (1999). The NN and HYDROPT use the same LUT. The only difference between them is in the bio-optical modeling and the use of different sIOP datasets to retrieve the LUT values to match the MERIS and modeled reflectance. For HYDROPT, each sIOP type input is evaluated on a pixel by pixel basis, and the sIOP type with the smallest $\chi^2$ difference is selected. The sIOP data used in HYDROPT are not fixed and can be calibrated quickly using an ‘external’ data set, whereas the MERIS NN algorithm requires extensive ‘internal’ calibration.

To evaluate algorithm performance we used the mean (M), standard deviation (S), and root-mean square (RMS) of the difference error (D) between measured and satellite products at each station as described in Campbell et al. (2002). The geometric mean and one-sigma range of the inverse transformed ratio between satellite and measured values are given by $M$ (F$_{\text{meas}}$), M–S (F$_{\text{meas}}$), M+S (F$_{\text{meas}}$) and were used as algorithm performance indices. The relative (RPD) and absolute percentage differences (APD) were calculated following Antoine et al. (2008). We also used one way analysis of variance (ANOVA) to test for significant differences between in situ and satellite products. Kolomogrov–Smirnov with Lilliefors tests were used to check whether the distribution of in situ and satellite products were normal. The ANOVA results are given as $F_{1,108} = x$, $P = y$ where $F$ is the mean square to mean square error ratio, the subscript numbers denote the degrees of freedom and $P$ is the ANOVA critical significance value.

3. Results

3.1. Variation in biogeochemical concentrations, inherent and specific-inherent optical properties in the North Sea

Chla and $a_{\text{ph}}(442)$ were significantly higher along the Dutch Coast (Chla $F_{10,413} = 6.25$, $P < 0.0001$; $a_{\text{ph}}(442)$ $F_{10,338} = 9.71$, $P < 0.0001$) followed by the German Bight, West Jutland and Belgium coasts and lowest in the NW North Sea and WEC (Fig. 2A, B). $a_{\text{ph}}(442)$ was significantly higher in the Celtic Sea ($F_{10,407} = 6.26$, $P < 0.0001$) and lowest on the Dutch coast and the SE North Sea (Fig. 2C). $a_{\text{CDOM}}(442)$ varied by 100 times and was highest in the Skagerrak, German Bight and NW North Sea and was significantly lower in the Celtic, NE North Sea and WEC ($F_{10,407} = 42.96$, $P < 0.0001$; Fig. 2D). TSM varied by over 350 times and was highest along the German Bight, Belgium and Dutch coasts and lowest in the WEC, Celtic Sea, SE, NW North Sea and Skagerrak (Fig. 2E). $a_{\text{NAP}}(442)$ was higher along Dutch, Belgium, German and UK East Anglia coasts (Fig. 2F). $a_{\text{NAP}}(442)$ was significantly higher along the West Jutland coast ($F_{10,338} = 2.58$, $P = 0.013$) and lowest in the SE North Sea and WEC (Fig. 2G). There were fewer $b_p^*$ and $b_{\text{NAP}}^*$ data available ($n = 172$). From these, $b_p^*$ had higher values in German and Dutch coastal regions and significantly lower values in the SE North Sea and WEC ($F_{1,176} = 9.40$, $P < 0.001$; data not shown). By comparison, $b_{\text{NAP}}^*(560)$ was significantly higher in the NW North Sea ($F_{1,176} = 24.91$, $P < 0.001$) and the lowest values occurred in the SE North Sea and UK East Anglia coast (Fig. 2H).

Fig. 3A shows the relationship between $a_{\text{ph}}(442)$ and Chla for spring and summer in the North Sea and surrounding environs. We found that $a_{\text{ph}}(442) = 0.0543 \cdot \text{Chla}^{0.675}$, which explained 67% of the variability in $a_{\text{ph}}(442)$, and is slightly lower than the power law commonly used for Case 1 and 2 waters by Bricaud et al. (2004), which is also plotted in Fig. 3A. For the regression between TSM and $a_{\text{NAP}}(442)$ (Fig. 3B) we found that $a_{\text{NAP}}(442) = 0.0242 \cdot \text{TSM}^{1.7}$, which is slightly lower than the relationship reported by Babin et al. (2003b), which we also plot in Fig. 3B.

Using the ternary absorption budget proposed by Prieur and Sathyendranath (1981), we characterise the optical water types based on absorption properties (i.e. $a_{\text{ph}}, a_{\text{CDOM}}, a_{\text{NAP}}, a_{\text{CDOM}}-a_{\text{NAP}}, a_{\text{NAP}}-a_{\text{CDOM}}, a_{\text{NAP}}-a_{\text{CDOM}}-a_{\text{ph}}$) and map them over the ten geographic regions sampled (Fig. 4A, B). Some clear patterns in the absorption properties emerge: The Skagerrak was dominated by $a_{\text{CDOM}}(442)$ with a couple of stations during the spring bloom dominated by $a_{\text{ph}}(442)$ (Fig. 4A, B). The German Bight, Dutch, Belgian and UK coasts were either co-dominated by $a_{\text{ph}}, a_{\text{CDOM}}$ and $a_{\text{NAP}}(442)$ or by $a_{\text{NAP}}$ and $a_{\text{CDOM}}(442)$. The SE North Sea, WEC and parts of the Celtic Sea were also co-dominated by $a_{\text{ph}}$ and $a_{\text{CDOM}}(442)$. Only three stations in the Celtic Sea, SE North Sea and Dutch Coast were dominated by $a_{\text{ph}}(442)$ alone. $a_{\text{NAP}}$ and $a_{\text{CDOM}}(442)$ co-dominated in the inner German Bight and some stations on the Belgian coast (Fig. 4B). There were no stations where $a_{\text{ph}}$ and $a_{\text{NAP}}$ co-dominated (Fig. 4B).

In Fig. 5 we depict the ternary plot given in Fig. 4A for different seasons, to illustrate the temporal shift in absorption parameters. Of the ten geographic regions listed (Table 1a, Fig. 1A), six were sampled in April and May (spring; Fig. 5A), eight in June and July (summer; Fig. 5B), five in August and September (autumn; Fig. 5C) and two from October to March (winter; Fig. 5D). From spring to winter in
the German Bight aCDOM(442) generally dominated but the relative contributions of aph and aNAP shifted with season so that in spring more stations were dominated by aph(442), whereas in autumn and winter the stations sampled had a higher proportion of aNAP(442).

From April to September the WEC stations were either high aph(442) and low aCDOM(442) or low aph and high aCDOM (Fig. 5A, B, C) reflecting the influence of the Atlantic inflow from the Celtic Sea or the freshwater outflow from River Tamar. By winter, the WEC samples were dominated by aCDOM(442) alone (Fig. 5D). The Dutch coast samples tended to have higher aph(442) in April and May (Fig. 5A) but higher aCDOM(442) in August and September (Fig. 5C). The Skagerrak samples remained high aCDOM, low aph, and aNAP from April to September (Fig. 5A, B, C).

To compare the distribution of IOP with sIOP we employed cluster analysis on coincident measurements of aCDOM(442), aph*(442) and aNAP*(442). The analysis segregated three principal clusters...
The largest (Cluster 2, n=161) grouped stations with low $a_{ph}$*, high $a_{NAP}$* and $a_{CDOM}$, which also had high $b_{p}$* (median values $a_{ph}$*(442) 0.029±0.012 mg m$^{-2}$, $a_{NAP}$*(442) 0.041±0.023 g m$^{-2}$, $a_{CDOM}$(442) 0.367±0.287 m$^{-1}$, $b_{p}$* 0.36±0.31 m$^2$ g TSM$^{-1}$; Fig. 6) from the Belgium, Danish and German coasts. The second largest (Cluster 3, n=137) grouped stations with medium $a_{ph}$*, $a_{NAP}$* and $a_{CDOM}$ which had lower $b_{p}$* (median $a_{ph}$*(442) 0.041±0.022 mg m$^{-2}$, $a_{NAP}$*(442) 0.018±0.013 g m$^{-2}$, $a_{CDOM}$(442) 0.227±0.164 m$^{-1}$, $b_{p}$* 0.28±0.20 m$^2$ g TSM$^{-1}$; Fig. 6) from the Southern Bight between the Belgium and UK coasts, NE North Sea, WEC and Skagerrak. The smallest cluster (Cluster 1, n=18) grouped stations with high $a_{ph}$*, low $a_{NAP}$* and $a_{CDOM}$ from the WEC, Celtic and SE North Seas (median $a_{ph}$*(442) 0.047±0.147 mg m$^{-2}$, $a_{NAP}$*(442) 0.012±0.013 g m$^{-2}$, $a_{CDOM}$(442) 0.062±0.073 m$^{-1}$, too few $b_{p}$* data, default value used; Fig. 6).

To assess the influence of river discharge in the coastal zone on the absorption and specific-absorption properties we plot the relationships between $a_{CDOM}$(442) and $a_{NAP}$(442) and salinity (Fig. 7A, B) as a function of the optical types from the ternary absorption budget given in Fig. 4B. We also plot $a_{CDOM}$(442) and $a_{NAP}$* (442) against salinity as a function of the main sIOP groups from the cluster analysis (Fig. 7C, D). For $a_{CDOM}$(442) and salinity we observed two main regressions; one for $a_{CDOM}$ and $a_{ph}$-$a_{CDOM}$ type waters, where $a_{CDOM}$(442) = −0.020 × Salinity − 0.91 ($r^2 = 0.24$, $P = 0.0002$; dashed line in Fig. 7A) which corresponds to the relationship observed for sIOP Cluster 3 ($a_{CDOM}$(442) = −0.015 × Salinity − 0.72, $r^2 = 0.35$, $P = 0.0001$; dashed line in Fig. 7C). The other $a_{CDOM}$(442)-salinity regression was for $a_{NAP}$-$a_{CDOM}$ and $a_{NAP}$-$a_{CDOM}$ type waters where $a_{CDOM}$(442) = −0.066 × Salinity + 2.35 ($r^2 = 0.93$, $P < 0.0001$; solid line in Fig. 7A) which corresponds to the relationship observed for sIOP Cluster 2 where $a_{CDOM}$(442) = −0.058 × Salinity + 2.12, ($r^2 = 0.78$; solid line in Fig. 7C). For $a_{NAP}$(442) and salinity there was one significant regression for $a_{NAP}$-$a_{CDOM}$ and $a_{NAP}$-$a_{CDOM}$
type waters, where $a_{\text{NAP}}(442) = -0.042 \times \text{Salinity} + 1.58$ ($r^2 = 0.49$, $P < 0.0001$; solid line in Fig. 7B), illustrating that low $a_{\text{NAP}}(442)$ is associated with higher salinity stations influenced by Atlantic water and high $a_{\text{NAP}}(442)$ is associated with stations in coastal waters influenced by river runoff. The other regression plotted in Fig. 7B is for the $a_{\text{CDOM}}$ and $a_{\text{ph}}$ type waters but was not significant since $a_{\text{NAP}}(442)$ was consistently low with varying salinity. By comparison, the regression between $a_{\text{NAP}}*(442)$ and salinity explained a lower percentage of variance and Clusters 2 and 3 had similar slopes (Cluster 3 $a_{\text{NAP}}*(442) = -0.0011 \times \text{Salinity} + 0.053$, $r^2 = 0.12$; Cluster 2 $a_{\text{NAP}}*(442) = -0.0013 \times \text{Salinity} + 0.08$, $r^2 = 0.05$, Fig. 7D), illustrating a weaker link between $a_{\text{NAP}}*(442)$ and river discharge. There was no significant regression between $a_{\text{ph}}(442)$ and $a_{\text{CDOM}}(442)$ and salinity for any of the Cluster groups (data not shown).

### 3.2. Accuracy assessment of MERIS derived products

The median values in sIOP at MERIS bands 1–9 from the three groups characterized by the cluster analysis (Fig. 6) were used to parameterize the semi-analytical algorithm HYDROPT. There were few $b_p*(555)$ data available for Cluster 1 to be statistically representative of this group, so the default reference value was used. We then used the 61 in situ match-up points for Chla, 51 for nLw, 51 for TSM, and 14 for $a_{\text{CDOM}}(442)$ and $a_{\text{NAP}}(442)$ to assess the accuracy of both standard MERIS ocean colour and the newly parameterized HYDROPT algorithm (Figs. 8, 9). The majority of the stations were from the Belgium coast, the others were from the German Bight, NW North Sea and Celtic Sea (Table 1b, Fig. 1B).

Firstly we assessed the 2nd reprocessing of MERIS nLw against in situ nLw to evaluate the accuracy of the satellite radiometers and atmospheric correction (Fig. 8). The range in situ nLw(442) at the validation stations was 0.2 to 0.54 mW cm$^{-2}$ μm$^{-1}$ sr$^{-1}$. Generally the RMS, bias, RPD and APD decreased and $F_{\text{med}}, F_{\text{min}}, F_{\text{max}}$ increased in satellite images from 22 April 2003, MERIS AP2 gave higher Chla values during the spring bloom in the Celtic Sea, SE, NW North Sea, and the Skagerrak and WEC compared to HYDROPT, but lower values in continental European coastal areas (Fig. 10A, B).
Fig. 6. Relationship between salinity and (a.) $\alpha_{CDOM}(442)$ and (b.) $\alpha_{NAP}(442)$ with the absorption types shown in Figure 4b. In (a.) and (b.) solid line is regression for $\alpha_{NAP}$-$\alpha_{CDOM}$ and $\alpha_{NAP}$-$\alpha_{CDOM}$ type waters and dashed line is for $\alpha_{CDOM}$ and $\alpha_{NAP}$-$\alpha_{CDOM}$ type waters. Relationship between salinity and (c.) $\alpha_{CDOM}(442)$ and (d.) $\alpha_{NAP}^*(442)$ with the sIOP cluster groups shown in Figure 4c. In (c.) and (d.) solid line is regression for cluster 2 sIOP type and dashed line is for cluster 3 sIOP type.
similar log_{10}-RMS, but MERIS had a lower S. The F_{med} was closer to 1 for HYDROPT, but the F_{max} was closer to 1 for MERIS (Table 2, Fig. 9C, D), which resulted in a regression slope closer to 1 for HYDROPT compared to MERIS TSM. For HYDROPT RPD and APD were higher due to a higher scatter at lower TSM values (Fig. 9D). This resulted in a lower estimate in HYDROPT TSM values in the Celtic Sea, WEC and in Norwegian waters in April 2003, compared to MERIS TSM, but a higher estimate in the Southern Bight, Belgium, Dutch and UK coastal waters (Fig. 10C, D). TSM concentrations were similar for both algorithms along the German Bight.

The range in aCDOM(442) and a_{dg}(442) at the validation stations was 0.01 to 0.67 m^{-1} and 0.027 to 1.71 m^{-1}, respectively. Compared to MERIS a_{dg}(442) algorithm, the RMS values were lower for HYDROPT aCDOM(442) and indicate an agreement with in situ values of ~1.5, whereas the difference for MERIS a_{dg}(442) was a factor of ~3 (Table 2). The random error (S), bias (M and RPD), APD and intercept for the HYDROPT algorithm were also lower, F_{med} and F_{min} values and slope were closer to 1, which also shows a closer agreement between in situ and HYDROPT aCDOM(442) compared with MERIS a_{dg}(442) (Table 2, Fig. 9E, F). There was a slight tendency for HYDROPT to over-estimate aCDOM(442) at high values when Cluster 2 was implemented (Fig. 9F). For MERIS a_{dg}(442) there was a consistent under-estimation when values were ~0.06 m^{-1}. The spatial pattern in MERIS a_{dg}(442) and HYDROPT aCDOM(442) satellite maps of 22 April 2003 was similar, but the values in some areas were very different (Fig. 10E, F). For example, in the Celtic Sea, SE North Sea and West Jutland Belgium and Dutch coasts, MERIS a_{dg}(442) was an order of magnitude higher than HYDROPT aCDOM(442).

### 4. Discussion

#### 4.1. Variation in inherent and specific-inherent optical properties of the North Sea

A comparison of the mean absorption properties of the North Sea from our data with historic studies is given in Table 3. There is high similarity in our a_{ph}(442) and a_{ph}*(442) with those from previous studies indicating that the 468 data we collected is representative of the variability in IOP sIOP of the North Sea. Our mean a_{ph}(442) for the North Sea was 0.16 m^{-1} and similar to that of Babin et al. (2003b) and Vantrepotte et al. (2007). Our mean a_{ph}*(442) was 0.044 m^2 mg Chla^{-1} and similar to the values given in Staehr et al. (2004) and Tilstone et al. (2005). The aCDOM(442) values we report are also similar to those given for the North Sea (Astoreca et al., 2009), English Channel (Vantrepotte et al., 2007) and other UK coastal areas (Foden et al., 2008), but lower than some data sets for the Baltic Sea and Skagerrak. When only data from coastal regions were included in our analysis, aCDOM(442) was significantly lower on the East Anglia, UK and Belgium coasts (mean ~0.2 m^{-1}; F_5, 346 = 2.32, P = 0.043), whereas it was higher and similar along the German Bight (mean ~0.42 m^{-1}), Skagerrak (~0.38 m^{-1}), Dutch coast (~0.34 m^{-1}) and West Jutland (~0.31 m^{-1}). We found our a_{NAP}(442) values, to be slightly higher than those values previously reported for the North Sea, English Channel and Irish Sea, 50% less than those values reported for other European estuarine and coastal waters (Table 3), but within a similar range to those given in Babin et al. (2003a) and Ferrari et al. (2003). The higher a_{NAP}(442) is due to high values along the Dutch coast, resulting from a high organic
Solid line is 1:1. The regression equation is given in the inset.

ly higher on the West Jutland coast due to comparatively low TSM content of the TSM in the Wadden Sea (Hommersom et al., 2009), probably resulting from high Chla in these waters and agricultural runoff to the coast. For $\text{a}_\text{NAP}^\ast(442)$, few values have been reported for the North Sea (Table 3). We found that $\text{a}_\text{NAP}^\ast(442)$ was significantly higher on the West Jutland coast due to comparatively low TSM (Fig. 2G), indicating high organic detritus in these waters, possibly due to the soil type and agricultural runoff on the West coast of Denmark as suggested by Stedmon et al. (2000). A detailed analysis of $b_\text{p}$ for this area has already been conducted by Babin et al. (2003a), who showed that light scattering at 555 nm was principally due to minerals with a low clay and silt content that occur along the European shelf. Babin et al. (2003a) reported mean $b_\text{p}^\ast(559) = 0.54 \text{ m}^2\text{g}^{-1}$ for coastal waters of the North Sea. Our mean value of 0.44 $\text{m}^2\text{g}^{-1}$ for the North Sea and WEC is slightly lower than this due to the inclusion of more stations in coastal waters and possibly due to the difference in pore size of filters used. In our study, the same protocols were used by each laboratory and inter-calibration exercises showed that there was no significant bias in measurements between laboratories. The 95% confidence interval of $\text{a}_\text{CDOM}^\ast(442)$, $\text{a}_\text{NAP}^\ast(442)$, $b_\text{p}^\ast(560)$ and $\text{a}_\text{CDOM}^\ast(442)$ were low and did not produce significant deviations from the mean, indicating that the error associated with this data set was low. In addition, we confirmed that our IOP and sIOP values were typical of the North Sea by comparing with previous literature values (Table 3).

The power law commonly used for $a_\text{ph}$ as a function of Chla is $a_\text{ph}(440) = 0.0654(\text{TChla})^{0.728}$ (Bricaud et al., 2004). Using the 392 Chla data points from this study, we used the Bricaud et al. (2004) relationship and our model to calculate $a_\text{ph}(440)$ and found a significant difference between models ($F_1, 569 = 17.76, P < 0.0001$). The Bricaud et al. (2004) data was predominantly collected in Case 1 waters with some stations in coastal waters, whereas our data was mostly from Case 2 waters, where the difference in the underwater light regime due to higher TSM and $a_\text{CDOM}^\ast$ may modify the $a_\text{ph}$–Chla relationship. For $a_\text{CDOM}^\ast(442)$ and TSM we found that $a_\text{CDOM}^\ast(442) = 0.0242 \times \text{TSM}$ ($r^2 = 0.60$). Similarly Bowers and Mitchelson-Jacob (1996) reported that $a_\text{CDOM}^\ast(443) = 0.0235 \times \text{TSM}$. The relationship reported by Babin et al. (2003b) was slightly higher $a_\text{CDOM}^\ast(443) = 0.031 \times \text{TSM}$, probably because their data included more open ocean stations and they used a smaller filter pore size 0.2 $\mu$m. For the 343 TSM data collected during this study we used each model to re-calculate $a_\text{CDOM}^\ast(443)$ and found no difference between our model and those of Bowers and Mitchelson-Jacob (1996) and Babin et al. (2003b) ($F_{2, 1028} = 2.41, P = 0.090$), suggesting that any of these relationships could be used with the same relative accuracy to derive TSM from satellite.

The ternary plot of absorption (Fig. 4A), indicates that the North Sea is principally dominated by $a_\text{CDOM}^\ast(442)$ or co-dominated by $a_\text{CDOM}^\ast(442)$ and $a_\text{ph}^\ast(442)$. Less than 1% of the stations were dominated by $a_\text{NAP}^\ast(442)$ which represent waters with a high organic TSM content that absorb light. However, $a_\text{NAP}^\ast(442)$ is a poor proxy for classifying inorganic sediments which have little capacity for absorbing light. Alternatively, Siegel et al. (2005b) used the single scatter approximation and the absorption of phytoplankton and CDOM as a ternary plot to assess the contribution of these to the diffuse attenuation coefficient, $k_d(\lambda)$. On a global basis, they found that the contribution of $b_\text{p}^\ast(\lambda)$ to $k_d(\lambda)$ was < 10%, Chla contributed 40% and $a_\text{ph}$ accounted for 50% of the variability. Scattering and backscattering properties are as important to ocean colour as absorption properties, but in the absence of a comprehensive $b_\text{p}^\ast(\lambda)$ and $b_\text{p}^\ast(\lambda)$ data sets, we employed cluster analysis on specific absorption properties to assess the relatedness in these properties between stations. This approach is also complementary with the optical water types original identified by Prieur and Sathyendranath (1981). From the principal clusters identified, there were broadly three main groups which radiated in bands of Chla (Fig. 2G). Cluster 1 had low $a_\text{NAP}^\ast(442)$, $a_\text{CDOM}^\ast(442)$ and high $a_\text{NAP}^\ast(442)$, occupying open ocean stations. Cluster 2 with low $a_\text{NAP}^\ast(442)$, high $a_\text{NAP}^\ast(442)$ and $a_\text{CDOM}^\ast(442)$ occurred close to the coast. Cluster 3 occupied stations between the coast and open ocean and in the Skagerak with medium $a_\text{ph}^\ast(442)$, $a_\text{NAP}^\ast(442)$ and $a_\text{CDOM}^\ast(442)$ (Fig. 4C). The Norwegian coast is influenced by a deep inflow of Atlantic water and a surface outflow of Baltic water, which results in high $a_\text{CDOM}$ along the southern Norwegian (Hekedal et al.,

---

**Fig. 8.** Comparison of in situ $n_L^w$ with MERIS $n_L^w$ for (A) 442, (B) 560 and (C) 665 nm. Solid line is 1:1. The regression equation is given in the inset.
and Danish coasts (Stedmon et al., 2000). The east–west separation in sIOP characterised by Clusters 2 and 3 therefore seems to be influenced by riverine run-off from continental Europe and UK coasts (Cluster 2) and those in influenced by Baltic Sea and shelf areas (Cluster 3). Though the European Continental coastal margin is influenced by high $a_{	ext{CDOM}}$ from the fresh water outflow of the Elbe, Rhine and Scheldt rivers (Warnock et al., 1999), our analysis suggests that these stations are also associated by high $a_{	ext{NAP}}^*(442)$, which differentiates stations further offshore with lower $a_{	ext{NAP}}^*(442)$ values. There were similarities between the cluster analysis and the

![Graphs showing various comparisons and equations](image)

**Fig. 9.** Comparison of in situ and satellite derived (A) MERIS Algal Pigment 2 Chla, (B) HYDROPT sIOP Chla, (C) MERIS TSM, (D) HYDROPT sIOP TSM, (E) MERIS $a_{	ext{ap}}(442)$ and (F) HYDROPT sIOP $a_{	ext{CDOM}}(442)$. Faint dotted lines are the 1:1 line, upper and lower 20% quartiles. In (B), (D) and (F) Cluster 1 is diamond, Cluster 2 is cross, Cluster 3 is circle. The regression equation is given in the inset.
ternary plot of absorption properties; Cluster 3 had a similar geographic distribution to aφCDOM (Fig. 4B, C). Cluster 1 corresponded to the location of aφ and aφCDOM-dominated stations and Cluster 2 had a similar geographic distribution to aφCDOM-aNAP type stations. Temporally in spring and summer, coastal North Sea areas were dominated more by aφ and aNAP. In autumn and winter there was a tendency for these areas to become more strongly influenced by aφCDOM and aNAP due to the low phytoplankton biomass, increased riverine runoff and sediment resuspension. It has previously been observed that in winter, the entrance of warm, high saline water into the North Sea, through the Orkney–Shetland inflow in the north (off NE Scotland) and through the English Channel–Strait of Dover in the south, drives a cyclonic pattern of circulation which causes resuspension of sediment over the shallow North Sea shelf (Reid et al. 1988). In the Southern Bight, high TSM concentrations also occur (>30 mg m\(^{-3}\)) due to the influence of the River Thames outflow and the re-suspension of sediment over the shallow shelf (<50 m), which forms a characteristic sediment plume off the south east UK coast (van der Woerd & Pasterkamp, 2004). We only had data available in winter from the WEC and German Bight. The WEC switched from sIOP type Cluster 1 from June to September to Cluster 3 from October to April. Similarly in the eastern English Channel, Vantrepotte et al. (2007) found that aφCDOM dominates the optical signal during winter, and from spring to summer phytoplankton and aφCDOM co-dominate. By contrast, in the German Bight Cluster 3 was the predominant sIOP type from March to August and Cluster 2 occurred from October to February (data not shown).

A negative correlation between blue spectral bands of aφCDOM and salinity is commonly reported in European Coastal waters (Kowalczuk et al., 2006; Stedmon et al., 2000; Warnock et al., 1999). The regressions between aφCDOM (442) and salinity highlighted two principal optical types; one co-dominated by aφNAP-aφ-aφCDOM which occupied stations close to the coast; the other co-dominated by aφNAP-aφCDOM which dominated stations further offshore. The regression between aφNAP (442) and salinity and sIOP Cluster types suggest three distinct optical waters in the North Sea: 1.) Waters dominated by aφCDOM and aφ typical of stations in the Skagerrak and transitional coastal–offshore zone with a salinity range of 15 to 35 characterised by low aφCDOM-salinity slope (sIOP Cluster type 3); waters dominated by aφCDOM and aNAP mainly comprised of continental European and UK coastal stations also with a high range in salinity but with a higher aφCDOM-salinity slope (sIOP Cluster type 2); and waters dominated by aφ typical of stations in the Celtic and SE North Seas with a salinity range of 30.5 to 35.5 (sIOP type Cluster 1). These optical water types are similar to those described by Aarup et al. (1996) and Høijerslev et al. (1996) based on the regression between aφCDOM and salinity alone, but the geographic regions differ slightly when Cluster analysis on sIOP data was used: (1.) North Sea water with high salinity and low CDOM, (similar to Cluster 1), (2.) Baltic Sea water with low salinity and intermediate to high CDOM (similar to Cluster 3 which also included coastal–offshore transition waters) and (3.) German Bight/Southern North Sea water with intermediate to high salinity and high CDOM (similar to Cluster 2 which shows a zonal band that links European coastal areas).

4.2. Accuracy assessment of regional sIOP MERIS algorithm

4.2.1. Normalized Water leaving radiance

This is the first study of the validation of MERIS 2nd reprocessed R2005 in highly turbid waters and therefore complementary to the validation of these MERIS data in Case 1 waters (Antoine et al., 2008; Zibordi et al., 2006b). Recent studies based on continuous in situ measurements from towers or buoys have shown that MERIS over-estimates nLw (442) globally, by 44% (Maritorena et al., 2010) and at coastal sites in the Adriatic–Baltic by 39% (Zibordi et al., 2006b, 2009), in the Mediterranean by 36% (Antoine et al., 2008) and in the Skagerrak 40% (Sørensen et al., 2007). In North Sea coastal waters, we found the difference to be 64%. This may be attributed to errors in the standard aerosol model of optical thickness used in the atmospheric correction (Aznay & Santer, 2009) or to failure in the correction in turbid waters or at cloud borders (Gomez-Chova et al., 2007) which will potentially be improved in the 3rd reprocessing of MERIS data (Lerebourg & Bruniquel, 2011). At least 65% of the stations in our validation data set had TSM >3.0 g m\(^{-3}\), where atmospheric correction may start to fail (Esaias et al., 1998), which was evident for MERIS nLw (412), nLw(442) and nLw(490) (Fig. 8, Table 2). The difference between in situ and MERIS nLw improved at 560 nm and the 665 nm (Table 2) and the RPD and APD for North Sea coastal areas were similar to those reported both globally (APD; 20% at 560 nm, 125% at 665 nm), in the Baltic and Adriatic (APD; 18% at 560 nm, 47% at 665 nm), the Mediterranean (RPD; 25% at 560 nm, 70% at 665 nm) and in the Skagerrak (RPD; 10% at 560 nm, 40% at 665 nm) (Antoine et al., 2008; Zibordi et al., 2006a).

4.2.2. Chlorophyll-a

By implementing median sIOP values at MERIS bands 1–9 from three the principal cluster analysis groups, we found that HYDROPT Chla was more accurate than MERIS AP2 and log10-RMS improved from 0.26 for MERIS AP2 to 0.17 for HYDROPT. The differences in Chla retrieval between the algorithms is likely to be due to the calibration data sets used. The AP2 algorithm is a NN calibrated on a global dataset, which included a large IOP data set from North Sea coastal waters of the German Bight (Schiller & Doerffer, 2005), where Chla, TSM and aφCDOM are high compared to other regions (Fig. 2). In this version of HYDROPT, the calibration data set includes IOP from a wider variety of coastal waters, including the Skagerrak, NW North

Table 2

Performance indices for relative errors in MERIS products compared with in situ nLw, Chla, TSM, aCDOM(442) and aNAP(442).

<table>
<thead>
<tr>
<th>N</th>
<th>RPD</th>
<th>APD</th>
<th>M</th>
<th>S</th>
<th>RMS</th>
<th>Fmed</th>
<th>Fmax</th>
<th>Fmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERIS nLw</td>
<td>412</td>
<td>51</td>
<td>49 (120)</td>
<td>69 (63)</td>
<td>−0.23</td>
<td>0.18</td>
<td>0.30 (0.04)</td>
<td>0.59</td>
</tr>
<tr>
<td>442</td>
<td>51</td>
<td>65 (−2)</td>
<td>64 (143)</td>
<td>−0.27</td>
<td>0.16</td>
<td>0.31 (0.06)</td>
<td>0.54</td>
<td>0.77</td>
</tr>
<tr>
<td>490</td>
<td>50</td>
<td>66 (163)</td>
<td>65 (217)</td>
<td>−0.37</td>
<td>0.20</td>
<td>0.42 (0.08)</td>
<td>0.43</td>
<td>0.68</td>
</tr>
<tr>
<td>560</td>
<td>50</td>
<td>9 (−5)</td>
<td>24 (17)</td>
<td>0.03</td>
<td>0.08</td>
<td>0.09 (0.11)</td>
<td>1.06</td>
<td>1.28</td>
</tr>
<tr>
<td>665</td>
<td>51</td>
<td>29 (−7)</td>
<td>64 (16)</td>
<td>0.02</td>
<td>0.06</td>
<td>0.08 (0.06)</td>
<td>1.06</td>
<td>1.22</td>
</tr>
<tr>
<td>MERIS Case 2</td>
<td>Chla</td>
<td>61</td>
<td>34 (8)</td>
<td>56 (40)</td>
<td>−0.06</td>
<td>0.25</td>
<td>4.74 (0.26)</td>
<td>0.88</td>
</tr>
<tr>
<td>14</td>
<td>36 (40)</td>
<td>155 (13)</td>
<td>−0.24</td>
<td>0.51</td>
<td>0.44 (0.58)</td>
<td>0.58</td>
<td>1.47</td>
<td>0.18</td>
</tr>
<tr>
<td>TSM</td>
<td>52</td>
<td>70 (22)</td>
<td>85 (33)</td>
<td>0.22</td>
<td>0.24</td>
<td>8.77 (0.33)</td>
<td>0.61</td>
<td>1.07</td>
</tr>
<tr>
<td>HYDR</td>
<td>Chla</td>
<td>61</td>
<td>29 (13)</td>
<td>36 (9)</td>
<td>0.08</td>
<td>0.15</td>
<td>3.43 (0.17)</td>
<td>0.82</td>
</tr>
<tr>
<td>OPT</td>
<td>aCDOM</td>
<td>14</td>
<td>−8 (−28)</td>
<td>31 (19)</td>
<td>0.11</td>
<td>0.28</td>
<td>0.37 (0.31)</td>
<td>1.29</td>
</tr>
<tr>
<td>sIOP</td>
<td>TSM</td>
<td>52</td>
<td>90 (−62)</td>
<td>98 (50)</td>
<td>−0.14</td>
<td>0.31</td>
<td>7.49 (0.34)</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Columns are the relative percentage difference (RPD), absolute percentage difference (APD) mean (M), standard deviation (S), and root mean square (RMS) of the difference error. The geometric mean and one-sigma range of the ratio (F = \text{Value}_{\text{in situ}}/\text{Value}_{\text{MERIS}}) are given by Fmed, Fmax and Fmin, respectively; values closer to 1 are more accurate. RPD, APD and RMS values in brackets are values on log data. The algorithm with the highest precision is highlighted in bold. nLw RMS is mW cm\(^{-2}\) \(\mu\)m\(^{-1}\) sr\(^{-1}\). Chla RMS is mg m\(^{-3}\); TSM is g m\(^{-3}\) and aφCDOM and aNAP are in m\(^{-1}\).
Sea and Celtic Sea, where Chla, TSM and aCDOM are lower (Fig. 2). The calibration dataset used for HYDROPT is therefore probably more representative of variations in IOP in North Sea coastal waters. Though the difference in RPD was only 5%, this represents a significant improvement for optically complex coastal waters where the retrieval accuracy of Chla can be 73–100% (Hooker & McClain, 2000; Moore et al., 2009). In addition, HYDROPT selects on a pixel by pixel basis the sIOP group that matches the modeled and MERIS reflectance spectra, so that any number of sIOP data sets can be input, as illustrated here. By comparison, the NN derives a$_{ph}$ and b$_{ph}$ and through empirical bio-optical relationships, IOP are converted to Chla and TSM concentrations, but any modification to the NN requires extensive ‘internal’ calibration. Where MERIS AP2 tended to underestimate Chla, the HYDROPT algorithm proved to have a greater accuracy over the range tested (Fig. 9A, B) and especially at low Chla values where Clusters 1 and 3 were the predominant sIOP type (Fig. 9B). For MERIS AP2, Chla = 26.21*a$_{ph}$(442)$^{0.771}$, and for all data in this study Chla = 25.65*a$_{ph}$(442)$^{0.979}$. For HYDROPT the relationships varied from Chla = 2.45*a$_{ph}$(442)$^{0.289}$ for Cluster 1, Chla = 28.62*a$_{ph}$(442)$^{0.925}$ for Cluster 2 and Chla = 20.81*a$_{ph}$(442)$^{0.876}$ for Cluster 3, which accounts for the differences at the lower end of the Chla range tested when Clusters 1 and 3 sIOP types were implemented (Fig. 9B). The original HYDROPT algorithm was reported to be accurate for Chla concentrations between 1 and 20 mg m$^{-3}$, with accuracy decreasing when Chla < 0.5 mg m$^{-3}$, when aCDOM(442) > 1 m$^{-1}$ or when TSM is > 20 g m$^{-3}$ (van der Woerd & Pasterkamp, 2008). The HYDROPT algorithm used in this study is a new variant of the model parameterized on a more comprehensive sIOP dataset for the North Sea, and has extended the range of Chla to ~30 mg m$^{-3}$ and is accurate at high TSM and aCDOM(442) values. In addition, this new

**Fig. 10.** Ocean colour maps of (A) MERIS Chla Algal Pigment 2, (B) HYDROPT sIOP Chla, (C) MERIS TSM, (D) HYDROPT sIOP TSM, (E) MERIS aCDOM(442) and (F) HYDROPT sIOP aCDOM(442) for 22 April 2003.
and under-estimate in MERIS nLw(560) and nLw(665) would result in lower \(a_{NAP}^*\) (4.2.3. Total suspended matter

The original version of HYDROPT was optimized for retrieving Chla in the North and Celtic Seas. To improve TSM retrieval at concentrations \(b_p^* (0.27, -0.19)\) for TSM retrieval. If these values were 0.62 442

Table 3

Comparison of range and mean ± standard deviation in \(a_{ph}, a_{NAP}, a_{CDOM}, a_{NAP}^*, a_{NAP}^*\) and \(b_p^*\) from our data with other studies in the North Sea and surrounding environments.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>N</th>
<th>Range</th>
<th>Mean ± SD</th>
<th>(\lambda) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_{ph} (m^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babin et al. (2003a)</td>
<td>North Sea</td>
<td>96</td>
<td>0.015–0.40</td>
<td>0.15</td>
<td>443</td>
</tr>
<tr>
<td>Vantrepotte et al. (2007)</td>
<td>English Channel</td>
<td>272</td>
<td>0.036–0.272</td>
<td>0.17</td>
<td>440</td>
</tr>
<tr>
<td>Bricaud et al. (2004)</td>
<td>North Atlantic</td>
<td>281</td>
<td>0.02–0.15</td>
<td>Nd</td>
<td>440</td>
</tr>
<tr>
<td>Tilstone et al. (2005)</td>
<td>Irish Sea</td>
<td>30</td>
<td>0.014–0.558</td>
<td>0.079±0.141</td>
<td>442</td>
</tr>
<tr>
<td>This study</td>
<td>North Sea</td>
<td>413</td>
<td>0.007–0.969</td>
<td>0.161±0.006</td>
<td>442</td>
</tr>
<tr>
<td>a_{NAP} (m^2 mg Chla^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babin et al. (2003a)</td>
<td>North Sea</td>
<td>96</td>
<td>0.008–0.10</td>
<td>0.008</td>
<td>443</td>
</tr>
<tr>
<td>Vantrepotte et al. (2007)</td>
<td>English Channel</td>
<td>272</td>
<td>0.015–0.05</td>
<td>0.025</td>
<td>440</td>
</tr>
<tr>
<td>Bricaud et al. (2004)</td>
<td>North Atlantic</td>
<td>281</td>
<td>0.044–0.092</td>
<td>Nd</td>
<td>440</td>
</tr>
<tr>
<td>Tilstone et al. (2005)</td>
<td>Irish Sea</td>
<td>30</td>
<td>0.02–0.09</td>
<td>0.045±0.006</td>
<td>442</td>
</tr>
<tr>
<td>Staehr et al. (2004)</td>
<td>Danish Coast</td>
<td>244</td>
<td>0.03–0.06</td>
<td>0.042</td>
<td>442</td>
</tr>
<tr>
<td>This study</td>
<td>North Sea</td>
<td>413</td>
<td>0.006–0.163</td>
<td>0.044±0.039</td>
<td>442</td>
</tr>
<tr>
<td>a_{CDOM} (m^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babin et al. (2003a)</td>
<td>North Sea</td>
<td>96</td>
<td>0.04–0.30</td>
<td>Nd</td>
<td>443</td>
</tr>
<tr>
<td>Vantrepotte et al. (2007)</td>
<td>English Channel</td>
<td>169</td>
<td>0.007–0.65</td>
<td>0.30±0.07</td>
<td>442</td>
</tr>
<tr>
<td>Warnock et al. (1999)</td>
<td>North Sea</td>
<td>293</td>
<td>0.066–0.21</td>
<td>Nd</td>
<td>442</td>
</tr>
<tr>
<td>Bowers et al. (2000)</td>
<td>NW UK coast</td>
<td>25</td>
<td>0.089–1.57</td>
<td>0.378</td>
<td>440</td>
</tr>
<tr>
<td>Foden et al. (2008)</td>
<td>UK coast</td>
<td>585</td>
<td>0.004–0.48</td>
<td>0.031</td>
<td>442</td>
</tr>
<tr>
<td>Tilstone et al. (2005)</td>
<td>Irish Sea</td>
<td>30</td>
<td>0.009–0.957</td>
<td>0.376±0.039</td>
<td>442</td>
</tr>
<tr>
<td>Darecki et al. (2003)</td>
<td>Baltic Sea</td>
<td>51</td>
<td>0.015–1.7</td>
<td>Nd</td>
<td>440</td>
</tr>
<tr>
<td>Stedmon et al. (2000)</td>
<td>Skagerrak</td>
<td>586</td>
<td>0.031–1.08</td>
<td>0.56±0.16</td>
<td>442</td>
</tr>
<tr>
<td>Sørensen et al. (2007)</td>
<td>Skagerrak</td>
<td>91</td>
<td>0.2–2</td>
<td>0.62</td>
<td>442</td>
</tr>
<tr>
<td>Hejerslev and Aas (2001)</td>
<td>Skagerrak</td>
<td>1305</td>
<td>Nd</td>
<td>0.74±0.16</td>
<td>442</td>
</tr>
<tr>
<td>Kowalczyk et al. (2006)</td>
<td>Baltic Sea</td>
<td>888</td>
<td>0.1–1.44</td>
<td>0.37±0.19</td>
<td>442</td>
</tr>
<tr>
<td>Astoreca et al. (2009)</td>
<td>Belgium Coast</td>
<td>210</td>
<td>0.20–1.31</td>
<td>Nd</td>
<td>442</td>
</tr>
<tr>
<td>This study</td>
<td>North Sea</td>
<td>384</td>
<td>0.020–0.2164</td>
<td>0.348±0.013</td>
<td>442</td>
</tr>
<tr>
<td>a_{NAP} (m^2 mg Chla^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babin et al. (2003a)</td>
<td>North Sea</td>
<td>96</td>
<td>0.02–1.00</td>
<td>Nd</td>
<td>443</td>
</tr>
<tr>
<td>Ferrari et al. (2003)</td>
<td>European coast</td>
<td>60</td>
<td>0.06–0.36</td>
<td>0.12</td>
<td>442</td>
</tr>
<tr>
<td>Vantrepotte et al. (2007)</td>
<td>English Channel</td>
<td>272</td>
<td>0.02–0.08</td>
<td>0.047±0.034</td>
<td>440</td>
</tr>
<tr>
<td>Tilstone et al. (2005)</td>
<td>Irish Sea</td>
<td>30</td>
<td>0.02–0.08</td>
<td>0.034±0.024</td>
<td>442</td>
</tr>
<tr>
<td>Darecki et al. (2003)</td>
<td>Baltic Sea</td>
<td>51</td>
<td>0.01–0.7</td>
<td>Nd</td>
<td>440</td>
</tr>
<tr>
<td>This study</td>
<td>North Sea</td>
<td>413</td>
<td>0.002–2.00</td>
<td>0.125±0.010</td>
<td>442</td>
</tr>
<tr>
<td>a_{CDOM} (m^2 g TSM^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrari et al. (2003)</td>
<td>European coast</td>
<td>60</td>
<td>0.06–0.12</td>
<td>Nd</td>
<td>442</td>
</tr>
<tr>
<td>This study</td>
<td>North Sea</td>
<td>367</td>
<td>0.001–0.159</td>
<td>0.025±0.021</td>
<td>442</td>
</tr>
<tr>
<td>b_p^* (m^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowers and Binding (2006)</td>
<td>Irish Sea</td>
<td>200</td>
<td>0.04–6.32</td>
<td>1.22</td>
<td>555</td>
</tr>
<tr>
<td>Martinez-Vicente et al. (2010)</td>
<td>English Channel</td>
<td>99</td>
<td>0.125–1.76</td>
<td>0.555±0.272</td>
<td>532</td>
</tr>
<tr>
<td>This study</td>
<td>North Sea</td>
<td>177</td>
<td>0.115–1.84</td>
<td>0.059±0.739</td>
<td>560</td>
</tr>
<tr>
<td>b_p^* (m^{-1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Babin et al. (2003a)</td>
<td>North Sea</td>
<td>56</td>
<td>Nd</td>
<td>0.54±1.6</td>
<td>555</td>
</tr>
<tr>
<td>Bowers and Binding (2006)</td>
<td>Irish Sea</td>
<td>200</td>
<td>Nd</td>
<td>0.22±0.02</td>
<td>555</td>
</tr>
<tr>
<td>Martinez-Vicente et al. (2010)</td>
<td>English Channel</td>
<td>99</td>
<td>0.177–0.735</td>
<td>0.366±0.30</td>
<td>532</td>
</tr>
<tr>
<td>This study</td>
<td>North Sea</td>
<td>177</td>
<td>0.030–2.018</td>
<td>0.469±0.313</td>
<td>560</td>
</tr>
</tbody>
</table>

parameterization of the algorithm, has extended its accuracy to Case 1 waters to Chla <0.5 mg m\(^{-3}\).

4.2.3. Total suspended matter

For TSM, \(\log_{10}RSM\) was similar for both algorithms and they showed similar retrieval accuracy for values from 1 to 95 g m\(^{-3}\) TSM, though the regression slope for HYDROPT was closer to 1 than that for MERIS TSM. MERIS however showed better retrieval accuracy at TSM concentrations <1.0 g m\(^{-3}\), which reduced the APD, RPD and S (Table 2). The number of spectra available for validation was lower than for Chla and TSM validations. If these values were removed from the data set, HYDROPT had a lower \(\log_{10}RSM\) and \(S (0.27, -0.07)\) compared to MERIS (0.32, -0.19) for TSM retrieval. To improve TSM retrieval at concentrations <1 g m\(^{-3}\), more \(b_p^*\) data are required to parameterise HYDROPT for the Case 1 waters of the North and Celtic Seas.

4.2.4. Coloured dissolved organic matter

HYDROPT outputs \(a_{CDOM}\) whereas MERIS NN only outputs \(a_{ph}\) and cannot distinguish \(a_{CDOM}\) from \(a_{NAP}\). HYDROPT \(a_{CDOM}\) was consistently more accurate than MERIS \(a_{ph}\), though the number of points available for validation was lower than for Chla and TSM validations. The over-estimate in MERIS \(nLw(442)\) and the error in the MERIS \(a_{ph}\) probably occurs in the partitioning between \(a_{ph}, a_{NAP}\) and \(b_p^*\) by the NN. The original version of HYDROPT was optimized for retrieving Chla in the English Channel (Loisel et al., 2007; Martinez-Vicente et al., 2010), but higher than those reported for the neighboring Irish Sea (Bowers & Binding, 2006).
waters with $a_{CDOM}(442)$ from 0.01 to 1.0 $m^{-1}$. This new version of the algorithm parameterized with three different sIOP groups can accurately retrieve Chla and $a_{CDOM}(442)$ from 0.01 to 2.6 $m^{-1}$. The ability to distinguish $a_{CDOM}$ from $a_{ANAP}$, and to predict $a_{CDOM}$ accurately is ultimately what is required for water quality monitoring in the coastal zone, to derive dissolved organic carbon (DOC) due to the tight coupling between DOC and $a_{CDOM}$ in coastal waters (Keith et al., 2002). In this paper we have proven that this is possible for HYDROPT. Improvements in the atmospheric correction procedure for MERIS due in 3rd reprocessing data are likely to improve the accuracy of both the standard MERIS $a_{bg}$ and HYDROPT $a_{CDOM}(442)$.

We found that trends in specific-absorption properties alone can be used to develop accurate ocean colour regional algorithms for Chla and $a_{CDOM}(442)$ in both coastal and offshore waters. This approach was also accurate for retrieval of TSM $>1$ g m$^{-3}$, but for values $<1$ g m$^{-3}$ a better characterization of $b_{ph}$ properties in waters dominated by $a_{ph}$ is required. The 3rd reprocessing of MERIS data is likely to improve both the MERIS Case 2 and HYDROPT algorithms due to the new vicarious adjustment of the marine reflectance and the new ‘bright pixel’ atmospheric correction model for AP2, TSM and $a_{bg}$ products. It will be interesting to quantify how future changes in the next generation MERIS reprocessing will affect the accuracy of standard MERIS and HYDROPT products in coastal waters. This study demonstrates the benefits and future potential of HYDROPT products for monitoring coastal areas.

4.3. The benefits and limitations of the sIOP HYDROPT method

For the HYDROPT algorithm, no pre-defined boundaries of the sIOP types characterized by the cluster analysis are necessary, since the algorithm chooses the sIOP based on the best match by minimising the difference between observed and modeled reflectance spectra from HYDROLIGHT. The retrieval of biophysical variables from optical data can be problematic (Defoin-Platel & Chami, 2007). With several combinations of biophysical variables resulting in similar remote sensing reflectance, it is important to limit the possible ranges of biophysical values. To accommodate this, Defoin-Platel and Chami (2007) suggested dividing the global problem-set into more localized versions that better represent bio-optical conditions found in common environments. In this study we achieved this by using a forward model and by classifying the principal sIOP types over coastal and shelf seas using cluster analysis. This has previously been advocated (Blondeau-Patissier et al., 2009) and achieved (Komick et al., 2009) over short spatial scales from estuaries to coastal areas with MODIS data. This has never been done over such large spatial scales as the North Sea due to a lack of IOP data and with MERIS data. We characterised both the spatial and temporal patterns in sIOP using a large data base, and simplified these to three principal clusters. Some empiricism is involved in this approach in the relationship between IOP and biogeochemical concentrations. Even where there is large variability in the spatial and temporal trends in the sIOP (Figs. 2, 4, 5), as long as the basis vector of $a_{sIOP}$ in the region is well characterised, the retrievals should be accurate, which we proved to be the case with the exception of TSM at concentrations $<1$ g m$^{-3}$. The only deviation from these will come from errors in $n_{V}N_{L}$(N) arising from the atmospheric correction model or low signal to noise ratio. These should be significantly improved in future generation MERIS products.

Rather than using fixed bands, the HYDROPT algorithm uses full spectral dependence from radiative transfer model output and retains full angular dependence of the radiative transfer output (van der Woerd & Pasterkamp, 2008). This is highly advantageous for sensing in coastal waters when swaths from current spectrometers, such as MERIS and MODIS, are large. It also employs a $\chi^2$ test to indicate which sIOP suite is most accurate on a pixel by pixel basis. This can also be used to give an uncertainty value of the retrieved product on a pixel by pixel basis (van der Woerd & Pasterkamp, 2008), and could be used to indicate the sIOP type or provide IOP maps (van der Woerd et al., 2004). The HYDROPT algorithm can be implemented quickly and easily using specific-absorption and scattering coefficients from a LUT which tabulates the relationship between remote sensing reflectance and a range of IOP calculated from a forward radiative transfer model. HYDROPT can also be quickly re-calibrated, using an ‘external’ suite of IOP, making it simple and easy to transfer to other regions using representative specific-absorption groups. The only limitations are that the vertical distribution of IOP is not accounted for as the method presented is based solely on surface sIOP, which is justified when water column is homogeneous but may incur errors in non-homogeneous water bodies.

Similar $a_{th}(442)$ and $a_{CDOM}(442)$ values to those we report for the North Sea are found along the Mid and Southern Atlantic Bights (Nelson et al., 1998), in the Mississippi river plume and US Louisiana coast (D’Sa & Miller, 2003) and the Rhode Island coast (Keith et al., 2002). This suggests that HYDROPT could be accurate for these areas and could be easily implemented using an sIOP suite characteristic of each region. The newly parameterized HYDROPT algorithm provides accurate Chla, TSM and $a_{CDOM}$ products for the North Sea and other coastal areas and may prove to be even more accurate with the 3rd reprocessing of MERIS data.

5. Conclusions

The high spatial and temporal variations in IOP in coastal waters make the construction of robust global coastal ocean colour models difficult. In this paper we addressed the question of whether trends in specific-absorption properties alone can be used to develop more accurate ocean colour regional algorithms. In situ data were collected from 468 stations sampled over 21 cruises between 1999 and 2003 in the North Sea covering an area of approximately 13 million km$^2$. There was a marked geographic difference between some parameters: Chla was significantly higher along the Dutch Coast, TSM was highest along the Dutch, Belgium and German coasts and $a_{CDOM}(442)$ was higher in the German Bight and Skagerrak. Cluster analysis on specific-absorption properties classified our study region into three main groups; low $a_{th}$, high $a_{ANAP}$ and $a_{CDOM}$ close to the coast, medium $a_{th}$, $a_{ANAP}$ and $a_{CDOM}$ over the shelf and high $a_{th}$, low $a_{ANAP}$ and $a_{CDOM}$ further offshore.

Based on ~60 independent, co-incident satellite match-up stations, we found that the semi-analytical ocean colour algorithm HYDROPT, parameterized with sIOP data sets derived from the cluster analysis, gave more accurate Chla and $a_{CDOM}(442)$ products and similarly accurate TSM retrievals at values $>1$ g m$^{-3}$ compared to standard MERIS Case 2 products. These results suggest that careful parameterization of semi-analytical ocean colour algorithms with sufficient sIOP data to be representative of the salient trends in the absorption properties, can significantly improve the accuracy of ocean colour products in coastal waters. These improved HYDROPT products using MERIS data could benefit the ongoing monitoring of phytoplankton in coastal waters under changing anthropogenic and climatic conditions.

Acknowledgements

We thank the captains and crews of RV Belgica, RRS Discovery, RV Heincke, RRS James Clark Ross, RV Mitra, RV Squila, RV Trygve Braarud, MS Wappen von Hamburg and RV Water Guardian and NEODAAS UK for cruise support. We also thank Alice Chapman of the EA UK for ship time, Reinold Pasterkamp, Jo Hakedal and Rosa Astoreca for sample collection and analyses. We are indebted to Denise Cummings, Merete Grung and Kirsten Heymann for HPLC analysis. We also thank Dr. Roland Doerffer as part of the REVAMP team. The research was conducted within the EU FP 5 ‘Regional Validation of MERIS Chlorophyll Products in North Sea Coastal Waters’ (contract EVG1-CT-2001-00049) which supported all authors except Dr. Shutler. Dr. Kevin Ruddick was also supported by the Belgian Federal Science