References

Braarud, T. 1962. Species distribution in marine phytoplankton. J. Oceanogr. Soc. Jap. **20**: 628-649.

CURL, H., JR., AND G. C. McLeod. 1961. The physiological ecology of a marine diatom, Skeletonema costatum (Grev.) Cleve. J. Mar. Res. 19: 70–88.

Droop, M. R. 1973. Some thoughts on nutrient limitation in algae. J. Phycol. 9: 261-272. Dugdale, R. C. 1977. Modelling, p. 789-806.

DUGDALE, R. C. 1977. Modelling, p. 789–806.
In E. Goldberg [ed.], The sea, v. 6. Interscience.

EPPLEY, R. W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063-1085.

Goldman, J. C., and E. J. Carpenter. 1974. A kinetic approach to the effect of temperature on algal growth. Limnol. Oceanogr. 19: 756-766.

——, AND J. H. RYTHER. 1976. Temperature-influenced species competition in mass cultures of marine phytoplankton. Biotechnol. Bioeng. 18: 1125–1144.

JORGENSEN, E. G. 1968. The adaptation of plankton algae. 2. Aspects of the tempera-

ture adaptation of *Skeletonema costatum*. Physiol. Plant. **21:** 423–427.

MALONE, T. C. 1976. Phytoplankton productivity in the apex of the New York Bight: Environmental regulation of productivity/chlorophyll a. Am. Soc. Limnol. Oceanogr. Spec. Symp. 2: 260–272.

MORRIS, I., AND H. E. GLOVER. 1974. Questions on the mechanism of temperature adaptation in marine phytoplankton. Mar. Biol. 24: 147-154.

RYTHER, J. H., AND OTHERS. 1975. Physical models of integrated waste recycling-marine polyculture systems. Aquaculture 5: 163–177.

SMAYDA, T. J. 1973. The growth of Skeletonema costatum during a winter-spring bloom in Narragansett Bay, Rhode Island. Norw. J. Bot. 20: 219–247.

WILLIAMS, F. M. 1971. Dynamics of microbial populations, p. 197-267. In B. C. Patten [ed.], Systems analysis and simulation in ecology, v. 1. Academic.

> Submitted: 26 July 1976 Accepted: 14 February 1977

Growth of *Capitella capitata* cultured on various levels of detritus derived from different sources¹

Abstract—Capitella capitata was cultured on three levels of five organic sources of detritus (Spartina alterniflora, Zostera marina, mixed cereal, Fucus, and Gracilaria sp.). Standing crops increased with increasing food levels of all types of detritus, with a general gradation in the nutritional value of marsh grass < eelgrass < mixed cereal < rockweed < Gracilaria.

The best index of nutritional value was the amount of nitrogen supplied to the polychaetes. The biomass obtained at the highest feeding level of nitrogen-poor eelgrass was about the same as that at the medium feeding level of rockweed. Once a given level of nitrogen (50 mg m⁻² d⁻¹) was available, caloric value apparently affected the nutritive quality of the detritus: the high feeding levels of rockweed resulted in greater standing crop of the polychaete than diets of *Gracilaria* containing similar levels of nitrogen but fewer calories.

¹This research was supported by funds from the Oceanography Section of National Science Foundation (grant DES 75-19065).

The importance of detritus-based food chains in marine environments has long been recognized (see Darnell 1967; Mann 1972; Tenore 1976). But while it is tempting to equate nutritional importance with the total quantity of detritus present in a system, it is misleading because of the heterogenous nature of the detrital pool. Detritus, depending on its source, has different caloric and biochemical characteristics that affect its decomposition (de la Cruz and Poe 1975; Gunnison and Alexander 1975) and nutritive value to detritivores. In fact many seeming contradictions in the literature dealing with the significance of detritus as a food resource are probably related to differences in detrital age and in the development of an associated microbenthic community. For example, both initial particle size and aging significantly affected the incorporation of ¹⁴Clabeled eelgrass detritus (probably actually

the associated microbes) by the polychaete *Capitella capitata* (Tenore 1975). It could be misleading to infer the nutritional value of detritus from short term tracer experiments that do not take into account decompositional changes.

Although long term growth experiments would provide information about the relative nutritive value of different detritus. few such data are available. Seki (1972) grew the brine shrimp Artemia salina on the microorganisms associated with sedimented organic materials. Tenore and Gopalan (1974) found differences in the feeding rate and growth efficiency of the polychaete Nereis virens cultured on different sources of detritus. The addition of marsh detritus to fish food did not increase the growth of the killifish Fundulus heteroclitus (Prinslow et al. 1974). However, there are no extensive comparisons of the nutritive value of different sources of detritus.

The experiments reported here were conducted to determine possible differences in the growth of *C. capitata* when fed different levels of detritus derived from macrophytes. I thank D. Wachter for his assistance in conducting these experiments and D. Menzel for reviewing the manuscript.

Growth experiments were done in plastic trays (0.1 m²) that each received 100 ml min⁻¹ of 1-μm-filtered, temperature-regulated seawater (Tenore and Huguenin (1973). Each tray was aerated. The trays were layered with clean fine grain (<0.3 mm) sand and four replicate trays at 10° and 20°C received three food levels (50, 150, and 250 mg dry wt d⁻¹) of marsh grass Spartina alterniflora, eelgrass Zostera marina, rockweed Fucus, the red algae Gracilaria, or Gerber's mixed cereal. The marsh grass was collected on Skidaway Island, Georgia; rockweed in Plymouth Harbor, eelgrass in West Falmouth Harbor, Massachusetts; the *Gracilaria* was provided by ESL at Woods Hole Oceanographic Laboratory. All plant material was rinsed with freshwater, freeze-dried, ground to 120 μ m with a Wiley mill, and kept frozen until used. Caloric values were determined with a Parr microbomb and carbon-nitrogen with a Perkin-Elmer elemental analyzer (model 240).

After several additions of the daily food levels, each tray received 30 Capitella from a stock culture. The worms were cultured for 3 months at the appropriate temperature and food level, a period adequate for several generations (Grassle and Grassle 1974) and for obtaining maximum saturation density (K). At the end of this time all the sediment in each tray was sieved (0.297-mm mesh). The worms were allowed to free themselves of debris, collected, counted, and their biomass determined by drying (90°C for 24 h) and ashing (500°C for 12 h). The various treatments were completed over a period of 1 vear. No effect of season was detected.

There was a wide range in caloric value and nitrogen content of the different types of detritus, but these were not correlated (Table 1).

There were no significant differences (F-test in ANOVA) in the biomass of Capitella due to temperature at given food levels of a particular detritus, so data at 10° and 20°C were combined for comparison of a particular detritus and food level.

Variations in the number of worms were too high for consistent detection of significant differences (by t-test analysis) due to feeding effects, but the biomass showed increasing standing crops with increased food levels for all types of detritus. There was a gradation in the nutritional value of the different kinds of detritus, as indicated by the worm biomass attained in the trays, from marsh and eelgrass (the lowest) to Gracilaria and rockweed detritus (the highest).

Differences in the slopes between marsh and eelgrass versus rockweed and *Gracilaria* detritus suggested differences in absolute amount of some limiting constituent (Fig. 1). No relation was found between food value and caloric content of the detritus. For example, although marsh grass had the highest caloric content, it yielded the least *Capitella*, while *Gracilaria*, with the

Table 1. Numbers and biomass (AFDW = mg ash-free dry wt per 0.1-m² tray of Capitella capitata cultured on different detrital sources. Values given are mean ±SD based on four observations.

						_			
	0	200C		No. AFDW	461±122 125.0±51.4	472±153 160.6±51.9	041±249 416.8±81.6	577±71.6 1,962±160 545.1±71.4	332±557 537.2±92.3
	250	1000		No. AFDW No. AFDW No. AFDW No. AFDW	66.5±16.4	3 142±15.0	- 1	577±71.6 1,	571.3.57.4 2,
			ĺ	No.	48:19	505±108	'	897809	445±97
	<pre>-ood supplied (mg dry wt/day) 150</pre>	20°C		AFDW	65.5+31.6	84.3±20.9	757±71 168.0±94.6 -	278.9±39.2	290.4±77.3
				No.	214±113	247±63	757±71	1,410±132	1,073±206
		10°C		AFDW	47.5-16.5	85.9±43.5		256.4-27	302.2±79.3
	Food			No.	40±10	195±70	1	359=49	263±69
		10°C 20°C		AFDW	18.3±10.4	24.4±4.8	,	51.2±21.3 446±20 64.4±9.3 359±49 256.4±27 1,410±132 278.9±39.2 608±68	111.1±10.7
	50			No.	51±40	72±14	•	446±20	237±291
				AFDW	6.6±2.1	6.7±2.0	ı	51.2±21.3	110.8±20.2
					23±7		1	294±122	114±47
		Cal	9 dry	×۲	4,320	3,820		3,953	
				C:N %0M	34.3 91.0	31.5 1.5 21.0 54.0 3,820	16.6	35.9 3.4 10.7 77.3	6.2 70.0
				N% 3%	41.2 1.2	31.5 1.5	42.6 2.6	35.9 3.4	35.0 5.7
			Detrital	source	Marshgrass	Eelgrass	Mixed cereal 4	Rockweed	Gracilaria

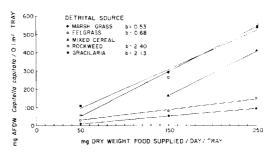


Fig. 1. Biomass of Capitella capitata fed three food levels of five different types of detritus. Each mean value is based on eight replicates (four each at 10° and 20°C).

lowest caloric content, produced the most. However, there was a good correlation between growth and percentage of nitrogen in the detritus. A plot of biomass against the caloric values of the detritus supplied (Fig. 2a) shows differences in the slopes for the different detrital sources; in contrast, a plot of biomass against the absolute amount of nitrogen of the detritus (Fig. 2b) gives a reasonable linear regression fit $(r^2 = 0.80)$, especially if the higher two food levels of *Gracilaria* or rockweed are omitted $(r^2 = 0.96$ and 0.91, respectively).

Put in another way, at low food levels nitrogen limited growth throughout the range of observation, whereas at the high food level the biomass attained did not significantly change after the N of the food exceeded 3.5% (Fig. 3). These data suggest that at the lower levels of nitrogen supplied, nitrogen is the overwhelming limiting factor but that at the higher diet levels of nitrogen (>5 mg N d⁻¹ tray⁻¹) caloric content affects food value.

Trays with large populations had an overwhelming percentage of small young worms. Although population numbers fluctuated widely, little temporal fluctuation ($\pm 15\%$) in standing crop at saturation density was observed at a given food level.

Biomass is a more conservative index of processes in the food chain than population numbers. Certainly quantitative information on reproduction and recruitment rates is important to understanding population dynamics and the strategy and potential

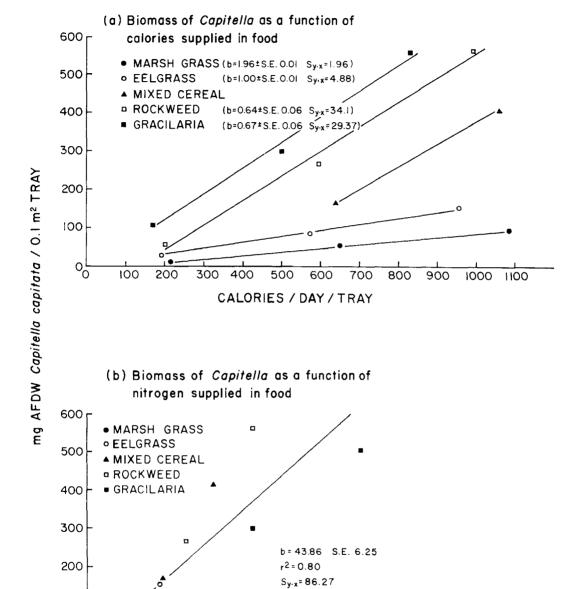


Fig. 2. Biomass of Capitella capitata at three food levels of five different types of detritus: a—based on calories; b—based on amount of nitrogen. Each value is based on eight replicates (four each at 10° and 20°C).

mg NITROGEN / DAY / TRAY

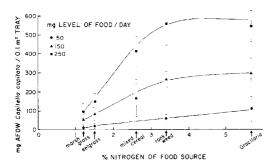


Fig. 3. Biomass of *Capitella capitata* at three food levels based on percentage of nitrogen of different types of detritus. Each value is based on eight replicates (four each at 10° and 20°C).

exploitation of a given environment by a particular species. However, biomass carrying capacity is a direct measure of the food chain transfers involved in secondary production. This is especially true for *Capitella* because individual sizes and weights vary considerably depending on the quality of food available. The numbers of individuals observed in the above experiments reflected differences in the stage of reproduction of the population when sampled.

The absence of consistent differences in the biomass produced at a given food level due to temperature is not surprising. Although initial growth rates at 10° C were probably lower than at 20° C, the population level obviously reached a carrying capacity (K) determined by the food level. The absence of predatory pressure probably enhanced this dominance of feeding effects. The temperature range between 10° and 20° C was optimum for the culture of Capitella, but temperatures above 20° C reduced reproductive rates.

The general approach of most food chain studies is centered on measurements of either energy or carbon as best representing intertrophic relations. In many "ecosystems approach" investigations caloric content has been used as the unit of measurement of trophic transfer. This is a valuable and appealing common denominator when we consider the broad problem of energy flow through different trophic levels. How-

ever, when the various uses and efficiency of transfer of energy at a given trophic level are considered, especially the food chain budget of a particular species, the sole use of the energetic component can be misleading. Even the use of carbon, the major structural component, does not adequately describe factors regulating trophic transfer. In most work in nutrition, fisheries, and aquaculture, the dominant role of nitrogen and of particular amino acids in secondary production has been recognized (see Natl. Res. Counc. 1975; Mann 1969).

The dietary calorie: protein ratio also effects transfer efficiencies and growth, and calculations of transfer efficiencies based only on calories miss this interaction. For example, fish fed diets with varying levels of energy and protein but with the same calorie: protein ratio have significantly different growth rates (Garling 1975). Though this point was emphasized early (Gerking 1955), many ecologists have not fully considered such data and have thus overlooked the regulatory role of nitrogen in secondary production.

The importance of the regulatory role of nitrogen can be seen especially in detrital food chains. The vast quantity of detritus entering coastal regions is generally quite low in nitrogen. The main sources of such detritus are species of marsh and seagrasses, poor nutritional sources for detritivores. Some ecologists have suggested that the reason for the poor food quality of these substances is that much of their caloric content is tied up in complex structural materials not readily available to the detritivores. But these plant materials also typically have an unfavorably high C: N ratio when they enter into the detrital pool. As the nitrogen content of the decaying plant material increases with aging, due to microbial activity, there is an increase in the nutritional value to the detritivores (Tenore 1975, 1977). In the study reported here, I added fresh detritus to the trays so that the oldest possible particle of detritus was 3months old when the growing period ended.

Because organic nitrogen seems so im-

portant for the growth of Capitella, the possible use of alternate nitrogen sources should be considered further in investigations of the regulation of food chain dynamics. Certainly the role of nitrogen enrichment by the microbial community associated with detrital particles is of paramount importance in detrital food chains (Fenchel 1972). However, we should also consider the possible significance of nitrogen-rich particulate materials such as seaweeds and of dissolved organic nitrogen (DON) that occur in relatively low amounts in marine systems. Stephens (1972, 1975) demonstrated the uptake of naturally occurring primary amines by Capitella and suggested that the net influx could represent a significant supplement to the nutritional budget of animals. Although this idea has been criticized because of the concurrent levels of DON excretion (Johannes and Webb 1965), the DON pool might still function not so much as an energy source for detritivores but as a supplemental nitrogen source for organisms feeding on a nitrogen-limited food resource. Also, N₂ fixation by microorganisms in the guts of detritus feeders might supplement a nitrogen-poor detrital source.

Kenneth R. Tenore

Skidaway Institute of Oceanography Savannah, Georgia 31406

References

- Darnell, R. M. 1967. Organic detritus in relations to the estuarine ecosystem, p. 376–382. In G. H. Lauff [ed.], Estuaries. Publ. Am. Assoc. Adv. Sci. 83.
- DE LA CRUZ, A. A., AND W. E. POE. 1975. Amino acids in salt marsh detritus. Limnol. Oceanogr. 20: 124-127.
- Fenchel, T. 1972. Aspects of decomposer food chains in marine benthos. Verh. Dtsch. Zool. Ges. 65: 14–20.
- Garling, D. L., Jr. 1975. The optimum dietary calorie to protein ratio for channel catfish fingerlings, *Ictalurus punctatus*. Ph.D. thesis, Miss. State Univ. 172 p.
- Gerking, S. 1955. Influence of rate of feeding on body, composition and protein metabolism

of blue-gill sunfish. Physiol. Zool. 28: 264–282.

- Grassle, J. F., and J. P. Grassle. 1974. Opportunistic life historics and genetic systems in marine benthic polychaetes. J. Mar. Res. 32: 253–284.
- Gunnison, D., and M. Alexander. 1975. Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol. Oceanogr. 20: 64–70.
- JOHANNES, R. E., AND K. L. WEBB. 1965. Release of dissolved amino acids by marine zooplankton. Science 150: 76-77.
- Mann, K. H. 1969. The dynamics of aquatic ecosystems. Adv. Ecol. Res. 6: 1-81.
- —. 1972. Macroscopic production and detritus food chains in coastal areas. Mem. Ist. Ital. Idrobiol. 29(suppl.): 353-384.
- National Reseach Council. 1975. Nutrient requirement of warmwater fishes. Nat. Acad. Sci. 131 p.
- Prinslow, T. E., I. Valiella, and J. M. Teal. 1974. The effect of detritus and ration size on the growth of *Fundulus heteroclitus*. J. Exp. Mar. Biol. Ecol. **16**: 1–10.
- SEKI, H. 1972. The role of microorganisms in the marine food chain with reference to organic aggregate. Mem. Ist. Ital. Idrobiol. 29 (suppl.): 245–259.
- STEPHENS, G. C. 1972. Amino acid accumulation and assimilation in marine organisms, p. 155–184. *In* J. W. Campbell and L. Goldstein [eds.], Nitrogen metabolism and the environment. Academic.
- ——. 1975. Uptake of naturally occurring primary amines by marine annelids. Biol. Bull. **149**: 397–407.
- Tenore, K. R. 1975. Detrital utilization by the polychaete, *Capitella capitata*. J. Mar. Res. **33**: 261–274.
- feeding benthic communities: A review, with new observations on sediment resuspension and detrital recycling, p. 37–54. *In B. C. Coull [ed.]*, Ecology of marine benthos. Univ. South Carolina.
- poration of aged eelgrass detritus by the polychaete, *Nephthys incisa*. J. Fish. Res. Bd. Can. In press.
- ——, AND U. K. GOPALAN. 1974. Food chain dynamics of the polychaete, *Nereis virens* cultures on animal tissue and detritus. J. Fish. Res. Bd. Can. **31**: 1675–1678.
- ———, AND J. E. HUGUENIN. 1973. A flowing experimental system with filtered and temperature-regulated sea water. Chesapeake Sci. 14: 280–282.

Submitted: 4 October 1976 Accepted: 24 February 1977