REPORT OF THE INTERNATIONAL FISHERIES COMMISSION

APPOINTED UNDER THE TREATY BETWEEN THE UNITED STATES
AND CANADA FOR THE PRESERVATION OF THE
NORTHERN PACIFIC HALIBUT FISHERY

NUMBER 10

HYDROGRAPHIC SECTIONS AND CALCULATED CURRENTS

IN THE

GULF OF ALASKA

1929

BY

THOMAS G. THOMPSON, GEORGE F. McEWEN

AND

RICHARD VAN CLEVE

COMMISSIONERS:

WILLIAM A. FOUND FRANK T. BELL EDWARD W. ALLEN
JOHN PEASE BABCOCK
Chairman

SEATTLE, WASHINGTON 1936 Printed by
WRIGLEY PRINTING Co. LTD.
VANCOUVER, B. C.
1936

FOREWORD

The present is a further report upon the hydrographical investigations carried on by the International Fisheries Commission under the terms of the Conventions of 1924 and 1930 between Canada and the United States, for the preservation of the halibut fishery of the Northern Pacific Ocean, including Bering Sea.

Reports 3 and 4, dealing with the hydrographic conditions and the currents in the Gulf of Alaska, were published in 1930. In Number 4, page 5, a brief statement of the purpose of the work was given. It is to determine the physical character and drift of the water within which the eggs and young of the halibut float. This drift determines the degree of interdependence of the regulatory areas adopted by the Commission. The areas and their separate control are of fundamental importance in the pronounced success which the Commission has had in rebuilding the supply of halibut. Report 9 deals with drift bottle experiments having the same purpose, and gives a summary of existing knowledge of currents in less technical language, in addition to a discussion of the distribution of young and adult halibut. The present report is, however, technical in character.

The International Fisheries Commission has had the help of an advisory board of four members: Dr. C. McLean Fraser, Dr. W. A. Clemens, N. B. Scofield, and Dr. Willis H. Rich.

The investigations have been carried on as part of a program directed by Dr. William F. Thompson, with a staff having its laboratories and headquarters at the University of Washington, Seattle, U. S. A.

JOHN P. BABCOCK, Chairman Victoria, B. C.

FRANK T. BELL Washington, D. C.

WILLIAM A. FOUND Ottawa, Canada

EDWARD W. ALLEN, Secretary Seattle, Wash.

REPORTS BY THE INTERNATIONAL FISHERIES COMMISSION

1. Report of the International Fisheries Commission appointed under the Northern Pacific Halibut Treaty, by John Pease Babcock, Chairman, and William A. Found, Miller Freeman, and Henry O'Malley, Commissioners. Dominion of Canada, Ottawa, 1928.

Same. Report of the British Columbia Commissioner of Fisheries for 1928, pp. 58-76. Victoria, 1929.

Same. Report of the United States Commissioner of Fisheries for 1930, Appendix 1. U.S. Bureau of Fisheries Document No. 1073. Washington, 1930.

- 2. Life History of the Pacific Halibut (1) Marking Experiments, by William F. Thompson and William C. Herrington. Victoria, B. C., 1930.
- 3. Determination of the Chlorinity of Ocean Waters, by Thomas G. Thompson and Richard Van Cleve. Vancouver, B. C., 1930.
- 4. Hydrographic Sections and Calculated Currents in the Gulf of Alaska, 1927 and 1928, by George F. McEwen, Thomas G. Thompson, and Richard Van Cleve. Vancouver, B. C., 1930.
- 5. The History of the Pacific Halibut Fishery, by William F. Thompson and Norman L. Freeman. Vancouver, B. C., 1930.
- 6. Biological Statistics of the Pacific Halibut Fishery (1) Changes in Yield of a Standardized Unit of Gear, by William F. Thompson, Harry A. Dunlop, and F. Heward Bell. Vancouver, B. C., 1931.
- 7. Investigations of the International Fisheries Commission to December 1930, and their Bearing on Regulation of the Pacific Halibut Fishery, by John Pease Babcock, Chairman, William A. Found, Miller Freeman, and Henry O'Malley, Commissioners. Seattle, Washington, 1930.
- 8. Biological Statistics of the Pacific Halibut Fishery (2) Effect of Changes in Intensity upon Total Yield and Yield per Unit of Gear, by William F. Thompson and F. Heward Bell. Seattle, Washington, 1934.
- 9. Life History of the Pacific Halibut (2) Distribution and Early Life History, by William F. Thompson and Richard Van Cleve. Seattle, Washington, 1936.
- 10. Hydrographic Sections and Calculated Currents in the Gulf of Alaska, 1929, by Thomas G. Thompson, George F. McEwen, and Richard Van Cleve. Seattle, Washington, 1936.

Further reports will bear serial numbers and will be issued separately by the Commission.

HYDROGRAPHIC SECTIONS AND CALCULATED CURRENTS IN THE GULF OF ALASKA, 1929

By THOMAS G. THOMPSON, GEORGE F. McEWEN, and RICHARD VAN CLEVE

CONTENTS

	Page
Introduction	. 5
Methods of collection, analysis, and calculation	. 6
The Sections	. 6
Ocean Cape section—1929	. 6
Cape Cleare section—1929	. 7
Cape Chiniak section—1929	. 9
Summary	. 10

INTRODUCTION

The results of a hydrographical study of the Gulf of Alaska, based upon data collected in 1927 and 1928, were given in a previous report by the present authors. The three sections at Ocean Cape, Cape Cleare, and Cape Chiniak investigated in 1928, extended seaward from points about four or five miles from shore and for a distance of sixty to seventy miles. In all three sections the outermost stations were just beyond the continental shelf, and it is interesting to note that it was at these stations that the currents of greatest intensity were obtained.

The prime purpose of the hydrographic studies, as mentioned previously, was to supply information that would be of value in the study of the drift of halibut eggs and larvæ. The greatest numbers of eggs and larvæ have been found just over the edge of the continental slope and some have been found floating far out in the Gulf. In view of this fact and because of the nature of the currents noted over the continental shelf, the number of stations in the sections were extended to conform to the general program of the International Fisheries Commission. Accordingly in 1929 samples were collected at the same time of year at all stations in the sections previously studied and at additional stations located at 20-mile intervals for over a hundred miles beyond the continental shelf. The original plan for the work in 1929 called for sections of 250 miles in length, but this was slightly modified because of the bad weather encountered. Thus the Ocean Cape section extended for 224 miles, the Cape Cleare section, 234 miles, and the Cape Chiniak section ran for only 175 miles.

The previous publication and the present paper are confined to the calculations of the resultant currents from fundamental data. In the future the International Fisheries Commission plans to check these theoretical computations with direct measurements by means of current meters, drift bottles, and drift buoys.

METHODS OF COLLECTION, ANALYSIS, AND CALCULATION

The methods of collection of the samples, the system of analysis, and the hydrodynamical treatment of the data are the same as previously described (McEwen, Thompson, and Van Cleve, 1930, pp. 9-12).

The results obtained from the various samples of water collected at the several sections are shown in the tables and diagrams. In Tables 1, 4, and 7, showing the fundamental data, the significance of the columns is as follows:

Column 1. Station number.

- " 2. Depth of water in meters.
- ' 3. Depth at which samples were taken.
- ' 4. Dynamic depth.
- " 5. Temperature.
- ' 6. Chlorinity.
- " 7. $\sigma_{s,t,o} = (\text{Density} 1) \cdot 10^{s}$, where the density is computed from the temperature and chlorinity but is not corrected for the pressure p.
- 8. $V_{s,t,p}$ equals the last three figures of the specific volume in situ.

$$V_{s,t,p} = \left(\frac{1}{\frac{\sigma_{s,t,p}}{1000} + 1}\right) 10^{5}.$$

" 9. Location of station.

THE SECTIONS

OCEAN CAPE SECTION-1929

The fundamental data for the Ocean Cape section are given in Table 1 and illustrated in Figure 1.

Temperatures: The temperatures of the waters in the Ocean Cape section in 1929 are markedly higher than those of the same section in 1928. While in 1928 there was only a subsurface band of water, corresponding roughly to the intermediate water, that had a temperature of 6.0° to 6.4°C., in 1929 the temperatures over the bank varied from 6.5° to 7.1°. The colder water found on the bottom at station 2 was noticed in 1928 as the colder water of higher chlorinity extending into the gully that lies between the shore and Yakutat Spit.

The drop from 6.5° to 5.5° in 1929 is comparatively rapid and forms a bank of water slanting from about 36 to 52 miles south of the Cape at the bottom, upward, and outward to about 59 to 77 miles south of the Cape at the surface. The temperatures in the surface layers are very uniform, varying from 5.0° to 5.5° and extending to 200 meters depth at stations 8 and 9 and to about 100 meters depth beyond. A spot of warmer water is noted at 0 to 25 meters in station 10.

From 5.0° to 4.0° the change is also comparatively rapid and takes place in the intermediate waters. The isotherms in the upper layers drop very markedly at the edge of the continental slope.

The uniformity of temperature of these waters, noted in 1927 and 1928, is again demonstrated. The greatest difference shown, that between 1400 meters depth at station 12 and 100 meters depth at station 3, is 4.7°.

Chlorinity: Separating the waters into the same categories according to their chlorinity as in the report on the 1927 and 1928 data, the coastal waters are found to extend from about 6 miles south of Ocean Cape on the bottom, upward and outward, varying in depth from 125 meters at station 3 to 55 meters at station 6. It reaches 74 miles south of the Cape, well beyond the continental slope. Beyond station 7 the intermediate waters may be seen to consist of two distinct layers. The upper uniform surface water of 18.00 o/oo C1 to 18.10 o/oo C1 averages about 50 meters in depth. The lower layer, which may be designated as the discontinuity layer, has a chlorinity of 18.10 o/oo to 18.70 o/oo. The discontinuity layer extends southward from station 8 at nearly the same level, averaging about 150 meters in thickness with its upper surface at 50 meters depth from stations 8 to 14 but dropping to a depth of 100 meters at the outermost station. At station 7 the isochlors slant downwards. The 18.70 isochlor drops to a depth of 350 meters at this point from a depth of 200 meters at station 8. It rises again over the edge of the bank so that the intermediate water covers the bank from 6 to 46 miles south of the Cape.

The ocean waters of chlorinity above 18.70 o/oo are very uniform in character, and its upper surface lies at about 200 meters depth except at station 7. It extends over the edge of the bank almost as far as station 5.

The results of the dynamical computations are given in Tables 2 and 3 and are illustrated in Figure 2. Parts of the section characterized by currents directed to the west alternated with those directed to the east. The marked irregularity indicated throughout the section which terminated with station 7 in 1928 extends to the end of the longer section of 1929. As before, the westward velocity was greatest off the continental slope, but its maximum value of 0.80 miles per hour was double that found for 1928, and the westward movement prevailed much farther downward than in 1928.

The average flow throughout the section was to the west, in accordance with the 1928 results.

CAPE CLEARE SECTION—1929

The fundamental data for the Cape Cleare section are given in Table 4 and illustrated in Figure 3.

Temperatures: The temperatures found in this section are noticeably higher than in 1928. The same body of warmer water is noted lying on the bottom from about 4 to 22 miles SE. of the Cape. Rising toward the surface, it extends almost to station 104, 34 miles from Cape Cleare.

The surface temperatures are low at the inner end of the section due to the presence of large outlets of fresh water in Prince William Sound and the Copper River. The temperatures increase outwards beyond the edge of the continental slope culminating in the body of warm water lying at stations 106 and 107 about 44 to 80 miles SE. of the Cape. Beyond this area of greater warmth, with the exception of a body of water found at stations 109 and 110 (about 102 to 144 miles offshore) that has a temperature exceeding 5.5°, they become lower. They reach a minimum 214 miles from the coast, increasing slightly at the last station.

The temperatures of the lower layers are, on the whole, very uniform. The isotherms rise toward the surface from the coast outward, indicating a warmer coastal zone. As in 1928 it is noted that in general the temperatures of the upper layers are lower than those of Ocean Cape, although the comparatively warmer surface temperatures seem to extend about 200 meters deeper in the Cape Cleare section. No such rapid temperature change is noticed in the Cape Cleare section as at Ocean Cape, and the extreme temperature range is even less than at the latter; i.e., 6.4° to 2.3°, or a difference of 4.1°.

Chlorinity: The lower chlorinities found in the coastal waters in this section show the effects of the proximity of Prince William Sound and the Copper River. Although in general the chlorinity of Cape Cleare is not much lower than that of the Ocean Cape section, the coastal waters show a much greater range of chlorinity values.

The 18.00 o/oo water covers only the inner edge of the bank to about 16 miles SE. of the Cape where it lies at a depth of 120 meters. Rising outwards toward the edge of the continental slope, it reaches a level of 85 meters below the surface at station 105, 44 miles offshore and just over the edge of the bank. It drops to a depth of 112 meters 10 miles farther out, then gradually rises, reaching the surface at station 110, 134 miles offshore.

Beyond station 110 the surface waters with 18.00 o/oo to 18.10 o/oo chlorinity show the same uniformity down to about 50 meters as was noticed at Ocean Cape. The water of the outermost station however shows a marked increase in chlorinity.

The intermediate water here covers the outer part of the bank from 16 to 34 miles offshore, extending to the edge of the continental slope. Its lower surface lies at approximately 210 meters at station 106, 20 miles to the southeast of the edge of the continental slope. One peak lies at station 108 at a depth of 178 meters and another at station 112 at 150 meters. The trough between the two "waves" lies at about 190 meters at station 110. Sixty miles beyond station 112, at station 115, it has again sunk to 180 meters. The whole discontinuity layer, including water of 18.10 o/oo C1 to 18.70 o/oo is seen to maintain approximately a constant level and a thickness of about 130 meters with the exception of the very decided drop and coincident thickening at station 106. The wave-like appearance described for the lower surface (the 18.70 o/oo isochlor) is exhibited by the entire layer.

The ocean water is found on the average at about 180 meters depth. The sinking of the isochlors at station 106 and their subsequent rise over the bank is

exhibited in a very marked degree by the 18.80 o/oo isochlor, which, sinking to 400 meters at 54 miles SE. of Cape Cleare, rises to 300 meters 10 miles farther in. The chlorinity generally is higher at the edge of the slope than at the next station 10 miles farther out.

The results of the dynamical computations are given in Tables 5 and 6 and illustrated in Figure 4. The irregularities in direction of the currents over the banks found in the 1928 sections were not observed in 1929. The currents are directed westward at all of the 5 inner stations. However, just at the edge of the continental slope a marked eastward current is found amounting to 0.73 knots at the surface and extending to a depth of 700 meters. The variability of the conditions is demonstrated here by comparing this result with that of the year previous when a current of 0.4 knots in a westerly direction was found at the same place. Farther out from the coast, just outside this eastward current, a westward current of a velocity of approximately 0.3 of a knot was calculated at the surface. This surface velocity increases to 0.4 knots farther out and thereafter decreases until a slight eastward current is again noticed between stations 112 and 114.

With slight variations the currents of the deeper layers are progressively less than those of the surface. The eastward current extended farther from the edge of the bank in the deeper layers than in the upper layers, although the velocity was very slight. A slight eastward current was also noticed from 400 to 1200 meters depths between stations 110 to 111, although a westward current was calculated for the upper 200 meters. While between stations 113 and 114, a slight westward current was found below 200 meters, a slight eastward current was shown in the surface layers.

In general the alternation of eastward and westward currents observed in 1928 was found to extend far into the Gulf and is quite evidently not constant in position or intensity from one year to the next. The westerly currents are dominant.

CAPE CHINIAK SECTION-1929

The fundamental data for the Cape Chiniak section are given in Table 7 and illustrated in Figure 5.

Temperatures: As in 1928 the temperatures of the entire Chiniak section are seen to be considerably lower than those of the other two sections, and in general the water is more nearly like true ocean water, being less affected by land drainage than the other localities. The temperatures are about 0.5° higher over the banks in 1929 than in 1928. The maximum temperatures are found at station 205 just at the edge of the bank.

The greatest range of temperature is 3.5°. The uniformity of temperature shown by the surface waters may be due to the lack of any large fresh water outlets near the section as well as to the great mixing of the waters by currents produced by winds and tides over the shallow banks. The occurrence of the warmer water at the edge of the continental shelf is a condition peculiar to Cape Chiniak and was noticed in 1928. It may be explained by the westward current

running with a velocity of 0.87 knots calculated between stations 207 and 208. This current gradually diminishes towards shore until between stations 203 and 204 a slight eastward current is observed. These two opposing currents cause the lighter warmer water to collect over the edge of the continental shelf.

Chlorinity: The chlorinity at Cape Chiniak in 1929 is seen to be higher over the banks than in the same section in 1928, but beyond the edge of the bank it is much the same as before. At the four inner stations it shows, like the temperatures, a remarkable homogeneity, varying only 0.04 o/oo throughout.

The coastal water is here confined to the bank proper covering the entire bank beyond station 204, about 35 or 36 miles ESE. of Cape Chiniak. It forms an almost perpendicular barrier with the intermediate water. Beyond the edge of the continental slope the intermediate water shows the same characteristics as in the Cape Cleare and Ocean Cape sections and may be divided into the very distinct surface water which is quite uniform and extends to about 50 meters depth at the outermost stations, then sinks to 100 meters at stations 206, 207, and 208.

From station 206 outwards to station 208, the discontinuity layer is about 100 meters in thickness and lies between the 100 and 200-meter levels. It rises at station 209, 115 miles offshore, to about 65 meters and is here about 125 meters in thickness. It continues to rise toward station 210 and reaches the 50-meter level at station 211. The isochlors exhibit a marked downward slope at the edge of the bank, the intermediate water dropping from about 185 meters at station 206 to 384 meters where it strikes the bank 13 miles farther in. It lies on the edge of the bank from 36 to 41 miles offshore at depths of 172 to 384 meters, respectively.

The results of the hydrodynamical computations are given in Tables 8 and 9 and illustrated in Figure 6. Very little movement of the water is shown over the bank, but a strong westward current of 1.00 knot is shown just over the edge. These results are in general agreement with those of 1928.

The westerly velocity extended to the depth of 500 meters and for 55 miles between stations 4 and 8. As in 1928, the average flow was to the west. Only between stations 208 and 209 was an easterly velocity found.

SUMMARY

In general the temperatures in the upper layers of all the sections are about 0.5° higher than those of 1928, although they were both taken at the same time of year.

The Ocean Cape and Cape Chiniak sections both show through their temperatures a sinking of the waters at the edge of the continental slope. At Cape Cleare there is a depression of the isotherms about 20 miles outside the edge of the bank, and they rise again over the edge of the bank. Thus at Ocean Cape and Cape Chiniak a strong westward current is noted immediately over the edge of the bank. At Cape Cleare it lies farther out while an eastward current is calculated for the waters at the edge of the slope.

The same depression of the isochlors near the edge of the continental slope is indicated in both the Ocean Cape and the Cape Cleare sections. This depression lies about 10 miles beyond the edge at Ocean Cape and 20 miles at Cape Cleare. In both these sections the isochlors rise noticeably over the edge of the bank. At Cape Chiniak the downward trend of the isotherms at the edge of the continental slope is analogous to the marked drop of the isochlors.

In all the sections the temperatures were higher inshore, decreasing out to sea. The position of the warmest water presented an interesting variation. At Ocean Cape it lay as a small body of water on the bank from 14 to 34 miles offshore at about 70 meters depth. At Cape Cleare two bodies of warmer water were noticed, separated by a tongue of slightly cooler water. The inner body covered the bank from station 101 to within 2 miles of station 103 and then proceeded outward off the bottom just reaching station 104 at 100 meters. Its upper surface lay at 50 meters depth. The outer body was found at station 106, 54 miles offshore, where it reached from the surface to a depth of 220 meters and extended from station 105 to 6 miles SE. of station 107. At Cape Chiniak the warm water was concentrated at station 205 just at the edge of the continental slope.

Beyond the areas where the chlorinities are affected by land drainage, etc., the three sections all show that the mixing effects of the stormwinds and waves are carried to approximately 50 meters depth. Below this is found the discontinuity layer which varies from 100 to 200 meters in depth, and beneath this, typical ocean water is found.

Table 1.—Hydrographical data from the waters of the Gulf of Alaska off Ocean Cape, 1929.

	Depth in		Dynamic	Temp.	Chlor.			a off Ocean Cape, 1929.
Station	Bottom	Sample	Depth Depth	°C.	0/00	$\sigma_{s,t,o}$	$V_{s,t,p}$	Location
. 1	115	0 25 50 100	0 24.38625 48.76725 97.52000	6.00 6.78 6.8 6.8	17.57 17.78 17.80 17.81	25.00 25.20 25.23 25.24	559 531 517 494	4 mi. S. of Ocean Cape. 59:28:15 N. 139:54:40 W.
2	168	0 25 50 100 125 150	0 24.38212 48.76162 97.50837 (121.86937) ¹ 146.21787	6.7 6.8 6.75 7.0	17.83 17.83 17.83 17.83 17.97	25.28 25.27 25.27 25.45 26.38	533 524 512 475 (433) 363	14 mi. S. of Ocean Cape. 59:19:40 N. 140:03:50 W.
3	137	0 25 50 100 125	0 24.38125 48.75987 97.50837 121.87675	6.80 6.85 6.85 7.10 7.05	17.86 17.86 17.86 17.91 17.99	25.32 25.31 25.31 25.35 25.46	530 520 509 485 462	24 mi. S. of Ocean Cape. 59:10:40 N: 140:13:30 W.
4	143	0 25 50 100 125	0 24.38137 48.75975 97.50475 121.87012	6.85 6.85 6.85 7.00 6.68	17.86 17.86 17.87 17.99 18.05	25.31 25.31 25.32 25.47 25.60	531 520 507 473 450	34 mi. S. of Ocean Cape. 59:02:10 N. 140:22:50 W.
5	185	0 25 50 100 125 175	0 24.38062 48.75712 97.49662 (121.85462) 170.54962	6.5 6.7 6.75 6.65	17.84 17.88 17.95 18.04	25.33 25.35 25.45 25.59 26.46	529 516 496 462 (445) 346	44 ml. S. of Ocean Cape. 58:53:20 N. 140:32:00 W.
6	320	0 25 50 100 175 200	0 24.38037 48.75662 97.49612 (170.55223) 194.88462	6.95 6.95 7.00 7.00	17.90 17.90 17.99 18.06	25.34 25.34 25.47 25.58 26.70	527 516 494 464 (373) 312	54 mi. S. of Ocean Cape. 58:44:30 N. 140:41:30 W.
7	1463 NB	25 50 100 200 300 400 500 600 700 800 900 1000 1200	0 24.37637 48.74912 97.48337 194.89637 (292.22345) 389.47137 486.64687 583.76987 680.83987 777.85337 874.81637	6.1 6.2 5.9 5.5 5.5 5.4 4.7 3.6 3.15	17.94 17.95 17.98 18.27 18.85 18.90 18.93 18.96 19.00	25.52 25.53 25.60 25.65 26.06 26.89 27.04 27.09 27.25 27.33 27.37	511 500 482 455 371 (283) 204 147 099 041 940	64 mi. S. of Ocean Cape. 58:35:30 N. 140:50:20 W.
8	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1100 1300	0 24.36987 48.73687 97.45962 194.82862 292.10062 (389.31095) 486.46762 583.57862 (680.64095) 777.65162 (874.60764)	5.2 5.3 5.3 5.3 4.0 3.5 3.8	18.06 18.06 18.07 18.17 18.72 18.84 18.91 19.02	25.80 25.80 25.80 25.92 26.73 27.04 27.19 27.19 27.37	485 474 462 429 309 235 (178) 132 090 (043) (902)	84 mi. S. of Ocean Cape. 58:35:30 N. 140:50:20 W.
9	1463 NB	25 50 100 200 300 400 500	0 24.37075 48.73862 97.45862 194.81612 292.08562 389.30062 486.46662	5.1 5.2 5.3 5.2 5.0 4.2 4.2 3.9	18.03 18.04 18.04 18.26 18.75 18.83 18.84 18.88	25.77 25.77 25.76 26.08 26.81 27.01 27.02 27.11	489 477 466 414 301 238 192 140	104 mi. S. of Ocean Cape. 58:00:40 N. 141:27:20 W.

^{&#}x27;All figures in parenthesis are interpolated.

TABLE 1.—(Continued).

		· 		TABLE	1.—(Conti	nued).		
Station	Depth in	Meters Sample	Dynamic Depth	Temp.	Chlor. o/oo	$\sigma_{s,t,o}$	$\mathbf{v}_{s,t,p}$	Location
	,	600 700 800 900 1000 1100 1300	583.58012 680.64112 777.65312 874.61812 971.53312 1261.99762	3.8 3.4 3.5 3.1 2.9	18.95 18.97 18.99 19.00 19.04	27.22 27.29 27.31 27.36 27.44	087 035 989 941 889	
10	1463 NB	0 25. 50 100 200 300 400 500 600 700 800 900 1200 1400	0 24.37312 48.74212 97.46037 194.80937 292.07387 389.28687 486.44737 583.55687 680.61637 777.62537	5.7 5.3 5.3 3.9 3.6 3.8 3.7 3.6 3.8 3.7	18.00 18.01 18.04 18.32 18.74 18.80 18.83 18.93 18.95 18.98	25.66 25.67 25.76 26.15 26.91 27.07 27.19 27.23 27.31 27.35	499 486 466 407 291 238 188 133 086 033 985	124 mi. S. of Ocean Cape. 57:42:50 N. 141:45:00 W.
11	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200	0 24.37112 48.73787 97.44962 194.78812 292.04912 389.25912 486.41862 583.52712 680.58662 777.59612 874.55712 971.46962	5.4 4.8 5.4 4.9 3.6 3.6 3.6 3.6 3.3 3.3 3.3 2.9	18.01 18.02 18.10 18.43 18.72 18.83 18.85 18.95 18.97 19.00 19.03 19.05	25.70 25.79 25.82 26.35 26.92 27.07 27.20 27.24 27.34 27.34 27.45	494 475 459 388 289 233 187 132 085 937 888	144 mi, S. of Ocean Cape. 57:25:20 N. 142:03:20 W.
12	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400	0 24.37125 48.73937 97.46287 194.81887 292.07937 389.28737 486.44287 583.54887 680.60537 777.61287 874.57287 971.48687 1165.17187 1165.17187	5.2 5.0 5.2 3.4 3.5 3.5 3.5 3.1 3.1 3.1 2.9 2.6	18.00 18.02 18.02 18.18 18.74 18.80 18.87 18.92 18.95 18.98 19.00 19.04 19.04	25.71 25.77 25.77 25.96 26.95 27.03 27.13 27.21 27.26 27.36 27.42 27.44 27.52 27.59	493 477 468 426 235 181 130 082 083 936 890 796 703	164 mi. S. of Ocean Cape. 57:07:40 N. 142:21:15 W.
13	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400	0 24.36962 48.73600 97.44750 194.78450 292.04400 389.25150 486.40850 583.51550 680.57200 777.57750	5.2 5.2 5.6 4.6 3.6 3.6 3.5 3.4 3.3	18.07 18.07 18.07 18.41 18.76 18.83 18.83 18.91 18.95 18.99 19.03	25.81 25.84 26.36 26.96 27.07 27.14 27.19 27.26 27.33 27.40	484 473 458 388 286 233 182 082 083 980	184 mi. S. of Ocean Cape. 56:50:00 N. 142:38:40 W.
14	1463 NB	0 25 50 100 200	0 24.36962 48.73600 97.45550 194.81000	5.3 5.2 5.1 5.3 3.5	18.07 18.08 18.08 18.23 18.71	25.80 25.82 25.84 26.02 26.90	485 472 459 419 290	204 mi. S. of Ocean Cape. 56:32:30 N. 142:56:20 W.

Table 1.—(Continued).

Station	Depth in	Meters	Dynamic	Temp.	Chlor.	<i>a</i>	$V_{s,t,p}$				
_	Bottom	Sample	Depth	Temp. °C.	0/00	$\sigma_{s,t,o}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Location			
15	1463 NB	300 400 500 600 700 800 900 1200 1400 0 25 50 100 200 300 400 500 600 700 800 900 1200 1400	292.07050 389.27500 486.48100 583.53950 680.59700 777.60500 	3.5 3.5 3.5 3.5 3.5 3.1 5.5 4.6 4.2 3.9 3.6 3.5 3.5 5.5 4.6 4.2	18.83 18.89 18.89 18.95 18.95 18.98 19.00 17.99 17.98 18.08 18.69 18.77 18.91 18.96 18.99	27.08 27.16 27.16 27.25 27.32 27.36 	231 178 134 083 082 984 496 486 475 432 246 (190) 137 084 0988) 798 707	224 mi. S. of Ocean Cape. 56:25:10 N. 143:13:50 W.			

Table 2.—Tabulation of $10^5\Delta_n$ and $10^5\Delta_{nb}$, dynamic depth differences for stations 115-114, etc., in Ocean Cape Section, 1929.

Depth in							STAT	ION						-
Meters	115-114	114–113	113-112	112–111	111–110	110-109	109108	108-107	107-106	106-105	105-104	104-103	103-102	102-101
0	0 -3188	0 2750	0 -3537	0 1625	0 -2925	0 -2775	0 1048	0 -20873	0 1175	0 261	0 -1550	0-663	738	0 -1163
25	300 -3488	0 2750	-163 -3374	13 1612	-200 -2725	237 -3012	88 960	-650 -20223	-400 1575	-25 286	-75 -1475	12 -675	-87 825	-413 -750
50	675 -3863	0 2750	-337 -3200	150 1475	-425 -2500	350 -3125	175 873	$-1225 \\ -19648$	-750 1925	-50 311	-263 -1287	-12 -651	-175 913	-563 -600
100	1400 -4588	800 1950	-1537 -2000	1325	-1075 -1850	175 -2950	-100 1148	$-2375 \\ -18498$	-1275 2450	-50 311	-813 -737	-362 301	738	-1163 0
200	2700 -5888	2550 200	-3437 -100	3075 -1450	-2125 -800	675 -2100			1175 0					
300	4100 -7288	2650 100	-3537 0	3025 -1400	-2475 -450	-1175 -1600	-1500 2548	-12283 -8590						
400	533 -3721	2350 400	-3587 50	2825 -1200	-2775 -150	-1375 -1400	-1033	-16042						
500	-3650 462	2250 500	-3437 -100	2425 -800	-2875 -50	-1925 -850	-100 1148	$-17925 \\ -2948$	-					
600	-3450 262	2400 350	-3337 -200	2175 -550	-2975 -50	-2325 -45 0	150 898	-19125 -1748						
								-19892 -981						
700	-3300	2500 250	-3337 -200	1875 -250	-2975 50	-2475 -300	17	-20175 -698						
800	-3188 0	2750 0	-3537 0	1675 -50	-2925 0	-2775 0	150 898	-20873						
900				1575 50			0							_

Table 3.—Tabulation of computed velocity in knots relative to the bottom between stations 15-14, etc., perpendicular to a Section directed south from Ocean Cape, January, 1929.

			**				STATIO	N						
Depth in Meters	15-14	14-13	13-12	12-11	1110	10-9	9-8	8-7	76	6–5	5-4	4-3	3-2	2-1
Meters	K=.0000424	.0000424	.0000424	.0000424	.0000424	.0000424	.0000424	.0000424	.0000848	.0000848	.0000848	.0000848	.0000848	.0000848
0	14	+.12	15	.07	12	12	.04	88	.10	.02	13	06	.06	10
25	15	.12	14	.07	11	13	.04	86	.13	.02	13	06	.07	06
50	16	.12	14	.06	10	13	.04	82	.16	.03	11	06	.08	05
100	19	.08	08	.01	07	12	.05	76	.21	.03	06	03	.06	.00
125			}								.00	.00	.00	
140		}						Ì)				
150					•					-	-			
175)											
200	25	.01	.00	06	04	09	.09	59	.00	.00			!	
300	31	.00	.00	06	02	07	.10	- 36						
400	16	.02	.00	05	01	06	.09	20				į		
500	.02	.02	004	04	.00	04	.05	12						
600	.01	.01	01	03	.00	02	.04	07				ļ		!
700	.00	.01	01	01	.00	01	.04	04	'					
800	.00	.00	.00	.00	.00	.00	.04	03			İ			l
900				.00			.00	.00						
1000	1			.00										<u> </u>
Distance etween stations n Km.	37.06	37.06	37.06	37.06	37.06	37.06	37.06		18.53	18.53	18.53	18.53	18.53	18.53

in meters

Table 4.—Hydrographical data from the waters of the Gulf of Alaska off Cape Cleare, January, 1929.

Station	Depth in	Meters	Dynamic	Temp.	Chlor.	<i>a</i>	$V_{s,t,p}$.
Station	Bottom	Sample	Depth	°C.	0/00	$\sigma_{s,t,o}$	v s,t,p	Location
101	53	0 25 50	0 24.39012 48.77537	5.00 5.00 5.60	17.44 17.44 17.62	24.94 24.94 25.13	566 555 527	4 mi. SE. of Cape Cleare. 59:43:00 N. 147:53:00 W.
102	124	0 25 50 100	0 24.38750 48.76975 97.51875	4.90 5.20 6.00 6.30	17.51 17.54 17.75 17.85	25.05 25.05 25.26 25.36	556 544 514 482	14 mi. SE of Cape Cleare. 59:33:30 N. 147:41:45 W.
103	155	0 25 50 100 140	0 24.38375 48.76262 97.50637 136.48317	5.50 5.80 6.00 6.40 6.00	17.64 17.74 17.80 17.96 18.18	25.17 25.26 25.33 25.51 25.87	546 524 507 468 416	24 mi. SE. of Cape Cleare. 59:24:10 N. 147:40:30 W.
104	210	25 50 100 140 200	0 24.37825 48.75262 97.48912 (136.46103) 194.87662	5.80 5.90 6.00 5.98	17.86 17.87 17.94 18.00	25.44 25.44 25.53 25.62 26.64	519 507 488 458 (417) 317	34 mi. SE. of Cape Cleare. 59:14:50 N. 147:34:40 W.
105	837 `	25 50 100 200 300 400 500 600 700 800	0 24.37987 48.75650 97.49325 194.87325 292.15325 389.37375 486.54025 583.65475 680.72025 777.73225	5.90 5.97 6.00 5.30 4.67 4.15 3.92 3.72 3.55 3.15	17.83 17.83 17.86 18.07 18.70 18.80 18.83 18.88 18.93 18.94 19.02	25.38 25.38 25.42 25.72 26.70 26.90 27.01 27.11 27.20 27.22 27.38	525 514 499 448 312 248 193 140 089 042 982	44 mi. SE. of Cape Cleare. 59:05:15 N. 147:28:20 W.
106	1463 NB	25 50 100 200 300 400 500 600 700 800 900 1000 1200	0 24.37887 48.75512 97.49687 194.91287 292.22287 389.44937 486.62037 583.73887 680.80437 777.81737 874.78187 971.69787 1165.38487 1358.88487	6.15 6.15 6.20 6.20 6.27 4.20 4.00 3.80 3.55 3.40 3.12 2.75 2.40	17.87 17.87 17.87 17.95 18.39 18.76 18.80 18.86 18.91 18.97 19.04 19.04	25.41 25.41 25.41 25.53 26.14 26.83 26.96 27.07 27.16 27.27 27.32 27.37 27.42 27.50 27.55	521 510 560 467 365 255 198 144 093 988 941 796 704	54 mi. SE. of Cape Cleare. 59:55:30 N. 147:22:20 W.
	1463 NB	0 25 100 200 300 400 500 600 700 800 900 1000 1200	0 48.75687 97.49187 194.87037 292.15187 389.37687 486.54487 588.66337 680.73087 777.74737 971.63037 1165.31637 1358.81637	5.40 5.80 6.470 5.40 4.80 4.25 3.90 3.80 3.50 3.50 2.70 2.45	17.73 17.80 17.95 18.04 18.73 18.76 18.82 18.86 18.95 18.95 19.05 19.05 19.08	25.31 25.35 25.50 25.72 26.73 26.84 26.98 27.08 27.13 27.24 27.29 27.36 27.42 27.35 27.42 27.51	532 516 491 308 255 195 143 094 094 992 942 890 796	76 mi. SE. of Cape Cleare. 58:35:00 N. 147:10:00 W.
108	1463 NB	0 25 50 100 200 300 400 500 600 700 800	0 (24.37627) 48.74475 97.45825 194.79775 292.06675 389.28075 486.44275 583.55425 680.61525 777.62775	5.30 5.15 5.20 4.58 4.07 4.00 3.85 3.60 3.45 3.30	17.91 17.98 18.50 18.75 18.80 18.87 18.90 18.94 18.97 18.98	25.57 25.68 26.43 26.85 26.97 27.01 27.22 27.22 27.28 27.31	507 (496) 472 382 297 241 187 137 086 036	98 mi. SE. of Cape Cleare. 58:14:10 N. 146:56:40 W.

Table 4—(Continued).

	Depth in	n Meters	Dynamic	Temp.	Chlor.		V	
Station	Bottom	Sample	Depth	°C.	0/00	$\sigma_{s,t,o}$	$\mathbf{V}_{s,t,p}$	Location
		900 1000 1200 1400	874.59175 971.50675 1165.19675 1358.70375	3.20 2.95 2.67 2.40	19.02 19.03 19.06 19.06	27.38 27.42 27.48 27.51	939 891 799 708	
109	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200	0 24.37912 48.75150 97.47175 194.82325 292.09525 389.31175 486.476575 680.64975 777.66145 874.62475 971.54125 1165.23325	5.20 5.75 5.50 5.50 5.10 4.12 3.98 3.92 3.65 3.45 3.40 3.00 2.78 2.50	17.70 17.91 17.96 18.37 18.76 18.79 18.84 18.85 18.95 19.02 19.03 19.05	25.28 25.51 26.21 26.81 26.95 27.04 27.12 27.23 27.29 27.42 27.45 27.45	534 500 479 402 301 140 086 034 (986) 941 892 800 705	120 mi. SE. of Cape Cleare. 57:53:15 N. 146:43:50 W.
110	1463 NB	0 25 50 100 200 300 400 600 700 800 900 1000 1200	24.37112 48.73937 97.46162 194.82262 292.09262 389.30612 486.46812 583.57962 680.64212 777.65362 874.61362 971.52562 1165.20762	5.20 5.15 5.15 5.80 4.15 3.90 3.62 3.42 3.20 2.80 2.80 2.55	18.02 18.02 18.02 18.25 18.75 18.81 18.86 18.89 18.94 19.01 19.05 19.05 19.05	25.74 25.74 25.74 25.99 26.98 27.08 27.13 27.22 27.24 27.45 27.45 27.59	479 479 422 300 240 187 137 086 039 984 936 888 794	142 mi. SE. of Cape Cleare. 57:32:15 N. 146:31:00 W.
111	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200	0 24.37025 (48.73450) 97.44350 194.78350 292.04950 389.26100 486.42150 583.53250 680.59250 777.60250 874.56400 971.47700 1165.16100 1358.66000	4.90 5.00 4.50 4.10 3.90 3.75 3.60 3.40 3.21 2.90 2.60 2.35	18.03 18.04 18.46 18.77 18.82 18.90 18.95 18.97 19.00 19.05 19.07 19.07	25.79 25.80 26.37 26.89 27.11 27.15 27.24 27.29 27.34 27.39 27.45 27.50 27.58	487 475 (477) 387 293 239 184 137 085 985 985 938 888 796 703	164 mi. SE. of Cape Cleare. 57:11:25 N. 146:18:10 W.
112	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400	0 24.36962 48.73662 97.44462 194.77512 292.03862 389.24912 486.40912 583.51862 680.57562 777.58162 971.44912 1165.12912 1165.12912	4.75 4.90 4.90 5.20 4.72 4.00 3.87 3.75 3.40 3.20 3.20 2.87 2.87 2.60 2.35	18.04 18.04 18.04 18.58 18.80 18.83 18.87 18.91 19.00 19.02 19.05 19.06 19.09 19.09	25.82 25.81 26.54 26.90 27.03 27.09 27.16 27.25 27.33 27.43 27.47 27.45 27.45	483 474 462 370 291 236 185 135 084 030 982 983 887 793	186 ml. SE. of Cape Cleare. 56:50:30 N. 146:05:50 W.
113	1463 NB	25 50 100 200 300 400 500 600	0 24.36875 48.73400 97.44200 194.77350 (292.03225) (389.24184) 486.39900 583.50500	4.80 4.75 4.85 4.80 4.18 3.62 3.40	18.06 18.06 18.10 18.49 18.81 18.92 18.97	25.85 25.85 25.88 26.45 26.98 27.20 27.29	481 469 453 379 284 (236) (161) 133 079	208 mi, SE. of Cape Cleare. 56:29:20 N. 145:53:20 W.

Table 4.—(Continued).

	Depth in	Meters						
Station	Bottom	Sample	Dynamic Depth	Temp. °C.	Chlor. o/oo	$\sigma_{s,t,o}$	$V_{s,t,p}$	Location
		700 800 900 1000 1200 1400	680.56000 777.56550 874.52750 971.44350 1165.13350 1358.63450	3.27 3.15 3.02 2.87 2.60 2.32	19.00 19.00 19.00 19.02 19.06 19.09	27.34 27.35 27.37 27.41 27.49 27.56	029 984 940 892 798 703	
114	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200	0 24.36775 48.73287 97.44537 194.78737 292.04937 389.25687 486.41387 583.52137 680.57737 777.58387 174.54187 971.45287 1165.13887 1358.63987	4.30 4.47 4.50 4.40 4.12 3.60 3.60 3.45 3.30 3.15 3.30 2.85 2.60 2.37	18.06 18.06 18.06 18.34 18.77 18.82 18.89 18.91 18.96 18.99 19.02 19.04 19.05 19.06 19.10	25.90 25.88 25.88 26.28 26.93 27.15 27.15 27.26 27.33 27.33 27.43 27.45 27.45	475 466 455 2899 2350 134 0811 982 934 8798 703	232 mi. SE. of Cape Cleare. 56:06:45 N. 146:40:10 W.
115	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1400	0 24.36650 48.73000 97.44350 194.78700 292.04250 389.24650 486.40050 583.50650 680.56450 777.57350 874.53250 971.44050 1165.11550 1358.60950	4.85 4.87 4.87 4.75 3.55 3.50 3.47 3.32 3.20 3.20 2.82 2.57 2.32	18.12 18.14 18.14 18.29 18.80 18.85 18.92 18.95 18.97 19.00 19.09 19.11	25.91 25.94 26.94 26.17 27.09 27.16 27.26 27.30 27.35 27.43 27.51 27.53 27.59	473 460 448 406 281 230 178 130 082 934 934 934 882 793	256 mi. SE. of Cape Cleare. 55:43:40 N. 145:27:10 W.

Table 5.—Tabulation of $10^5\Delta_n$ and $10^5\Delta_{nb}$, dynamic depth differences for stations 115-114, etc., in Cape Cleare Section, 1929.

Depth in							STA'	TION						
Meters	115-114	114-113	113-112	112–111	111-110	110-109	109-108	108-107	107-106	106-105	105-104	104-103	103-102	102101
0	0 -3037	0 537	0 638	0 -3188	0 -4262	0 -3563	0 -3450	0 11262	0 -6850	0 8512	0 -337	0 -2214	0 -1238	0 -562
25	-125 -2912	-100 637	-87 725	-63 -3125	-87 -4175	-800 -2763	285 3165	-473 -10789	213 -7063	-100 8612	-162 -499	-550 -1664	-375 -863	-262 -300
50	-287 -2750	-113 650	-262 900	212 -3400	-487 -3775	-1213 -2350	675 2775	-1212 -10050	175 -7025	-138 8650	-388 -725	-1000 -1214	-713 -525	-5 62 0
100	-187 -2850	337 200	-262 900	112 -3300	-1812 -2450	-1013 -2550	1350 2100	-3362 -7900	500 -6350	362 8150	-413 -750	-1725 -489	-1238 0	
200	-1037 -3000	1387 -850	-162 800	-838 -2350	-3912 -350	-63 -3500	2550 900	-7262 -4000	-4250 -2600	3962 4550	-337 0			
300	-687 -2350	1712 -1175	-637 1275	-1088 -2100	-4312 50	-263 -3300	2850 600	-8512 -2750	-7100 -250	6962 1550				
400	-1037 -2000	1503 -966	-728 1366	-1188 -2000	-4512 250	-563 -3000	3100 350	-9 612 -1 6 50	-7250 -400	7562 950				
500	-1337 -1700	1487 -950	-1012 1650	-1238 -1950	-4662 400	-863 -2700	3400 50	-10212 -1050	-7550 700	8012 500				
600	-1487 -1550	1637 -1100	-1362 2000	-1388 -1800	-4712 450	-1013 -2550	3550 100	-10912 -350	-7550 700	8412				
700	-1287 -1750	1737 -1200	-1562 2200	-1688 -1500	-4962 700	-763 -2800		-11562 300		8412				
800	-1037 -2000	1837 -1300	-1612 2250	2088 -1100	-5112 850		3366 84	-11962 700	-7000 150	8512 0		-		
900	-937 -2100	1437 -900	-1162 1800	-2488 -700	-4962 700	-1113 -2450		-12262						
1000	-1237 1800	937	-562 1200	-2788	-4862 600	-1563 -2000	3450	-11962 1100	-6850 -100					
1200	-2337 -700	537 0	438 200	-3188 0	-4662 400	$^{-2563}_{-1000}$	3650 -200	-11262 700	-6850 0					
1400	-3037 0	537 0	638 0	-3188 0	-4262 0	-3563 0	3450 0							

Table 6.—Tabulation of computed velocity in knots relative to the bottom between stations 115-114, etc., perpendicular to a section directed southeast from Cape Cleare, January, 1929.

						_	STATIO	ON						
Depth in Meters	115-114	114-113	113-112	112–111	111-110	110-109	109-108	108-107	107-106	106-105	105-104	104-103	103-102	102-1
	K=.0000347	.0000357	.0000389	.0000389	.0000389	.0000306	.0000534	.0000407	.0000389	.0000855	.0000855	.0000855	.0000855	.000085
0	11	+.02	+.02	12	16	109	+.18	45	27	+.73	03	190	106	04
25	10	.02	.03	12	16	085	,17	43	27	.73	04	142	074	02
50	10	.020	.03	13	15	072	.15	41	27	.74	06	104	045	.00
100	10	.01	.03	13	09	078	.11	32	25	.69	06	042	.00	
125											1			
140												·		
150								,						
175														
200	11	03	.03	09	01	11	.05	16	.103	.39	.00	.00		
300	08	04	.05	08	.00	100	.03	11	.010	.13		'		
400	07	03	.05	08	.01	092	.02	07	.01	.08				
500	06	03	.06	07	.01	082	.00	04	.03	.04				
600	05	04	.08	07	.02	078	.00	01	.03	.01	i			
700	06	04	.09	06	.03	⊢.08	.00	.012	.02	.01			:	
800	07	05	.09	04	.03	08	.003	.027	.01	.00				
900	07	03	.07	03	<u>.</u> 03	07	.01	.039	.00					
1000	06	01	.05	01	.02	061	.00	.043	.00			ļ		I
1200	021	.00	.01	.00	.01	030	01	.027	.00					
1400	.00	.00	.00	.00	.00	.00	.00	.00		l		į		
stance tween ations Kms.	44.50	44.50	40.78	40.78	40.78	51.90	29.66	38.92	40.78	18.53	18.53	18.53	18.53	18.5

in meters

Table 7.—Hydrographical data from the waters of the Gulf of Alaska off Cape Chiniak, February, 1929.

					., ., ., ., ., ., ., ., ., ., ., ., ., .			
Station		Meters	Dynamic Depth	Temp. °C	Chlor. o/oo	$\sigma_{s,t,o}$	$V_{s,t,p}$	Location
i i	Bottom	Sample						
201	112	0 25 50 75 100	0 24.37100 48.73900 (73.10383) 97.46650	4.8 4.6 4.6 4.5	17.99 17.99 17.99 17.99	25.74 25.76 25.76 25.77	490 478 466 (455) 444	5 mi. ESE. of Cape Chiniak. 57:33:20 N. 152:03:00 W.
202	88	0 25 50 75	$\begin{array}{c} 0 \\ 24.36900 \\ 48.73675 \\ 73.10175 \end{array}$	4.6 4.6 4.4	18.00 17.99 17.99	25.78 25.76 25.78	(476) 476 466 454	15 mi. ESE. of Cape Chiniak. 57:26:20 N. 151:49:40 W.
203	73	0 25 50 70	0 24.36987 48.73662 68.22832	4.7 4.5 4.5 4.5	18.01 18.02 18.01 18.01	25.78 25.82 25.80 25.80	487 472 462 455	25 mi. ESE. of Cape Chiniak. 57:19:10 N. 151:36:45 W.
204	152	0 25 50 100 140	0 24.37087 48.73862 97.46637 136.44057	4.7 4.6 4.6 4.6 4.5	17.98 18.00 17.99 17.99 17.99	25.74 25.78 25.76 25.76 25.76 25.77	491 476 466 455 426	35 mi. ESE. of Cape Chiniak. 57:12:00 N. 151:23:30 W.
205	152	0 25 50 100 140 200 300	0 24.37187 48.74087 97.46562 (136.43930) 194.87162 292.19362	5.5 5.5 5.7 5.7 5.0	18.02 18.02 18.02 18.19 18.21 18.73	25.71 25.71 25.71 25.92 25.95 26.78	493 482 470 429 (410) 383	45 mi. ESE. of Cape Chiniak. 57:12:00 N. 151:23:30 W.
		375	365.12025	4.3	18.79	26.18	261 210	
206	987	0 25 50 100 200 300 400 500	0 24.36762 48.73237 97.44862 194.80262 292.07462 389.29012 (486.45536)	4.6 4.4 4.6 4.4 4.7 4.2 3.8	18.07 18.07 18.07 18.22 18.76 18.76	25.88 25.90 25.88 26.11 26.85 26.91 27.10	477 464 454 411 297 247 184 (131)	55 mi. ESE. of Cape Chiniak. 56:57:30 N. 150:57:30 W.
		600 700 800 900	(583.57185) 680.64112 (777.65128) 874.64412	4.3 3.5	18.95	27.17	(085) 050 (999) 953	
207	1463 NB	0 25 50 100 200 300 400 500 600 700 800	0 24.36975 48.73500 97.45350 194.81350 292.07950 389.28950 (486.4911) 583.55850 680.61750 (777.62850)	4.8 4.6 4.5 4.7 4.4 3.6 3.6	18.00 18.05 18.07 18.17 18.72 18.83 18.84 	25.76 25.85 25.89 26.01 26.83 27.07 27.08 27.25	489 469 453 421 299 233 187 (134) 082 036 (987)	75 mi. ESE. of Cape Chiniak. 56:43:25 N. 150:32:00 W.
		900 1000 1200 1400	874.59050 971.50250 1165.18450 1358.68250	3.0 2.8 2.5 2.3	19.02 19.06 19.06 19.09	27.40 27.47 27.50 27.56	937 887 795 703	
207A		0	0	4.4	18.10	25.93	473	85 mi. ESE, of Cape Chiniak, 56:36:30 N. 150:19:20 W.
208	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200	0 24.36550 48.72725 97.44000 194.78700 292.04400 389.25000 486.40250 583.50250 777.55600 874.51800 971.42200 1165.09800 1358.559000	4.3 4.2 4.2 3.6 3.5 3.1 3.0 2.7 4.2 2.7 4.2	18.11 18.13 18.16 18.20 18.80 18.85 18.96 18.99 19.02 19.01 19.06 19.06 19.09	25.96 26.00 26.03 26.10 27.00 27.08 27.17 27.26 27.33 27.39 27.47 27.48 27.55 27.58	469 4559 4282 282 232 125 075 025 932 886 702	95 mi. ESE. of Cape Chiniak. 56:29:15 N. 150:06:10 W.

Table 7.—(Continued).

				TABLE /	.—(Conir	muew).				
Station	Depth in Meters		Dynamic Depth	Temp.	Chlor.	σ _{s,t,o}	V	Location		
	Bottom	Sample	Depth	°C.	0/00		V s,t,p	Bookwan		
209	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200 1400	0 24.36550 48.72625 97.43625 194.78726 292.04825 389.25325 486.41725 (583.53025) 680.59125 777.59925 874.56075 971.47875 1165.15475 1358.65175	4.5 4.2 4.2 4.8 3.7 3.6 3.6 3.2 4.2 2.5 2.3	18.09 18.18 18.18 18.25 18.75 18.85 18.85 18.99 19.00 19.03 19.06 19.07	25.91 26.05 26.07 26.18 26.94 27.08 27.09 27.09 27.32 27.35 27.38 27.38 27.55	474 450 436 404 232 182 (088) 032 939 887 794	115 mi. ESE. of Cape Chiniak. 56:15:10 N. 149:40:20 W.		
209A		0	0	· · · · · · · · · · · · · · · · · · ·				125 mi. ESE, of Cape Chiniak.		
210	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1200 1400	0 24.36575 48.72775 97.43850 194.78350 292.04400 389.25400 486.41100 583.51750 680.57600 777.58400 874.54300 971.45650	4.3 4.3 4.3 3.7 3.6 3.5 3.3 3.3 3.2 3.9	18.12 18.12 18.17 18.26 18.77 18.80 18.92 18.95 18.95 19.03 19.03	25.97 25.96 26.05 26.18 26.97 27.02 27.11 27.21 27.25 27.30 27.38 27.42 27.43	468 458 438 435 285 236 130 0834 982 936 891	135 mi, ESE, of Cape Chiniak. 56:01:00 N. 149:14:30 W.		
211	1463 NB	0 25 50 100 200 300 400 500 600 700 800 900 1000 1200	0 24.36525 48.72637 97.42662 194.75012 292.00812 389.21562 486.371.62 583.47862 680.58662 777.54612 874.50862 971.42262 1165.10762	4.4 4.4 4.3 3.7 3.6 3.6 3.5 3.1 3.5 2.6	18.13 18:15 18:20 18.55 18.80 18.82 18.91 18.95 18.91 18.97 18.99 19.03 19.05	25.98 26.01 26.08 27.01 27.05 27.15 27.19 27.26 27.30 27.35 27.45 27.50	468 454 435 281 281 132 082 985 940 888 797	155 mi. ESE. of Cape Chiniak. 55:46:50 N. 148:49:50 W.		

Table 8.—Tabulation of $10^{5}\Delta n$ and $10^{5}\Delta nb$, dynamic depth differences for stations 211-210, etc., in Cape Chiniak Section, 1929.

Depth in Meters		STATION											
	211-210	210-209	209-208	208-207	207-206	206-205	205-204	204-203	203-202	202-201			
0	0 -3388	0 -1725	0 6175	0 9250	0 -5362	0 -12893	0 -127	0 221	0 -12	0 -208			
25	-50 -3338	25 1750	0 6175	-425 -8825	213 -5575	-425 -12468	100	100 121	87 -99	-200 -8			
50	-138 -3250	150 -1875	-100 6275	-775 -8475	263 -5625	-850 -12043	225 -352	200 21	 1	-225 17			
70								221	12 0	-261			
100	$-1188 \\ -2200$	225 -1950	-375 6550	-1350 -7900	488 -5850	-1700 -11193	-75 -52						
140				-		-3848	-127						
200	-3338	-375 -1350	25 6150	-2650 -6600	1088 -6450	-6900 -5993			 -				
300	-3588	-75 -1800	-75 6250	-3550 -5700	488 -5850	-11900 -993							
375						-12893							
400	-3838 450	75 -1800	325 5850	-3950 -5300	-62 -5300								
500	-3938	-625 -1100	1475	-4661 -4589	-625 -4737					-			
600	-3888	-1275 -450	2775 3400	-5600 -3650	-1335 -4027								
700	-3938 550	-1525 -200	3875 2300	-6500 -2750	-2362 -3000								
800	-3788	-1525 -200	4325 1850	-7250 -2000	-2278 -3084								
900	-3438	-1775	4775 1400	-7750 -1500	-5362								
1000	-3388 0	-1725 0	5175 1000	-8050 -1200									
1200	-4713 .		5675	-8650 600									
1400			6175 0	-9250 0									

Table 9.—Tabulation of computed velocity in knots relative to the bottom between stations 211-210, 210-209, etc., perpendicular to a section directed south from Cape Chiniak, January, 1929.

Depth in Meters	STATION											
	211-210	210-209	209-208	208-207	207-206	206205	205-204	204-203	203-202	202-201		
	K _n =.0000431	.0000431	.0000431	.0000431	.0000431	.0000862	.0000862	.0000862	.0000862	.000086		
0	15	07	.27	40	23	-1.11	01	.02	.00	02		
25	14	07	.27	38	24	-1.08	02	.01	01	.00		
50	14	-,08	.27	36	243	∸1.04	03	.00	.00	.00		
70								.00	.00	.00		
75		į								.00		
100	09	08	.28	34	25	96	.00					
125												
140						78	.00					
150												
175		į .										
200	.00	06	.27	- 28	28	52						
300	.01	08	.27	24	26	09						
375		-	!			.00						
400	.02	08	.25	23	23							
500	.02	05	.20	20	20							
. 600	.02	02	.15	16	17							
700	.02	01	.10	12	13							
800	.02	01	.08	09	13							
900	.00	.00	.06	06	.00							
1000	.00	.00	.04	05								
1200			.02	03								
1400			.00	.00								
Distance etween tations n Kms.	37.06	37.06	37.06	37.06	37.06	18.53	18.53	18.53	18.53	18.53		

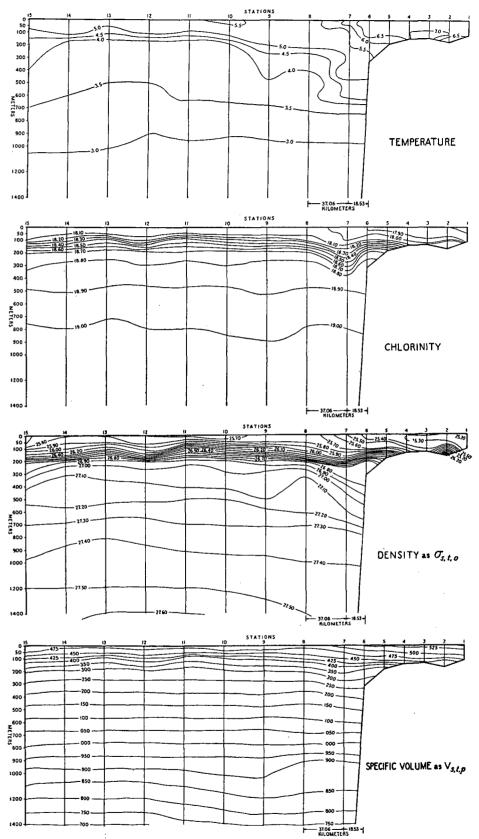


FIGURE 1.—Diagram of distribution of Temperature, Chlorinity, and Density as $\sigma_{s, t, o}$ for Ocean Cape Section.

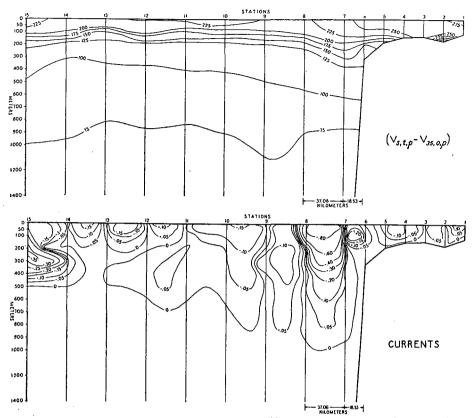


FIGURE 2.—Diagram of distribution of the specific volume as $V_{s, t, p}$, its anomaly $(V_{s, t, p}, -V_{35, o, p})$, and the currents in knots in the Ocean Cape Section.

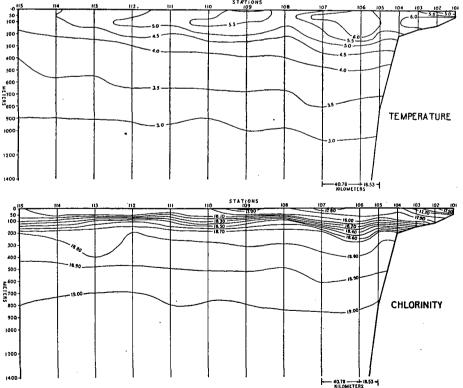


Figure 3.—Diagram of distribution of Temperature, Chlorinity, and Density as $\sigma_{s,\ t,\ o}$ for Cape Cleare Section.

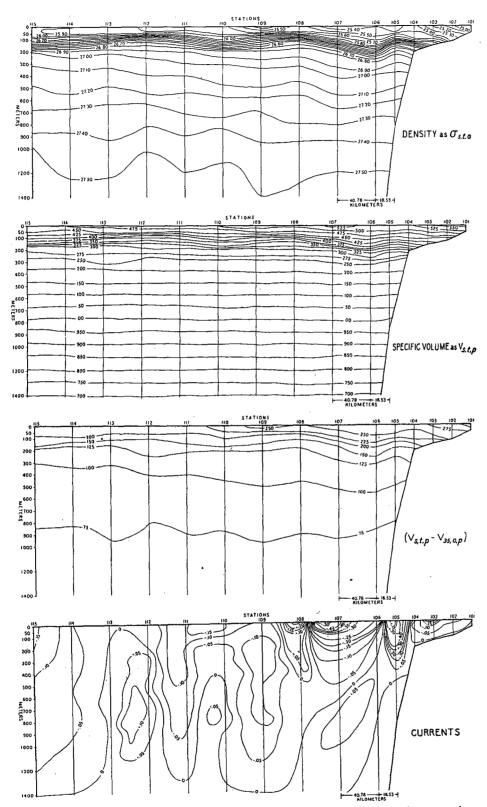


FIGURE 4.—Diagram of distribution of the specific volume as $V_{s, t, p}$, its anomaly $(V_{s, t, p} - V_{35, o, p})$, and the currents in knots in the Cape Cleare Section.

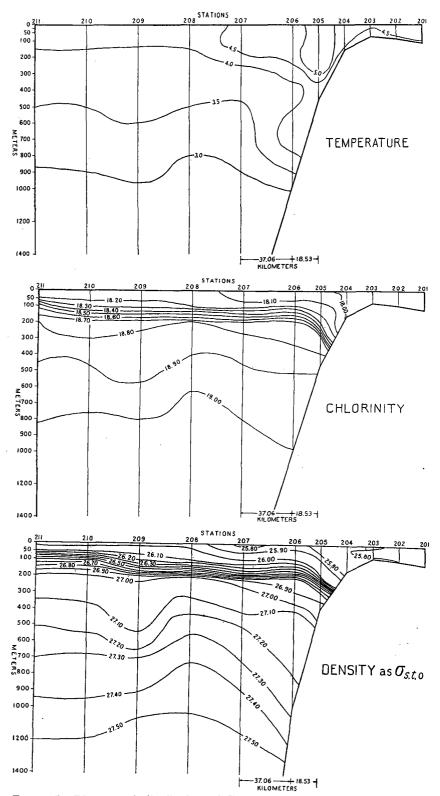


Figure 5.—Diagram of distribution of Temperature, Chlorinity, and Density as $\sigma_{s,\ t,\ o}$ for Cape Chiniak Section.

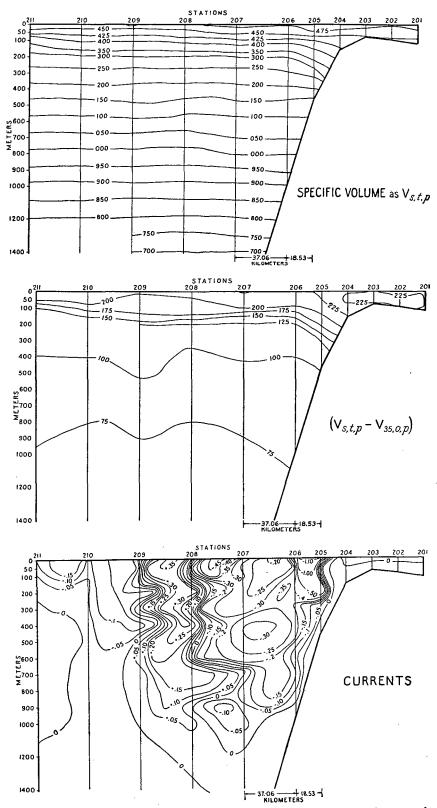


FIGURE 6.—Diagram of distribution of the specific volume as $V_{s, t, p}$ its anomaly $(V_{s, t, p} - V_{35, o, p})$, and the currents in knots in the Cape Chiniak Section.

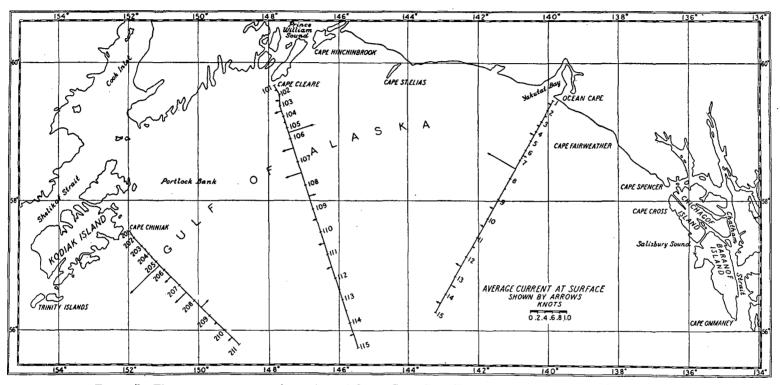


FIGURE 7.—The average current at the surface of Ocean Cape, Cape Cleare, and Cape Chiniak Sections in January.

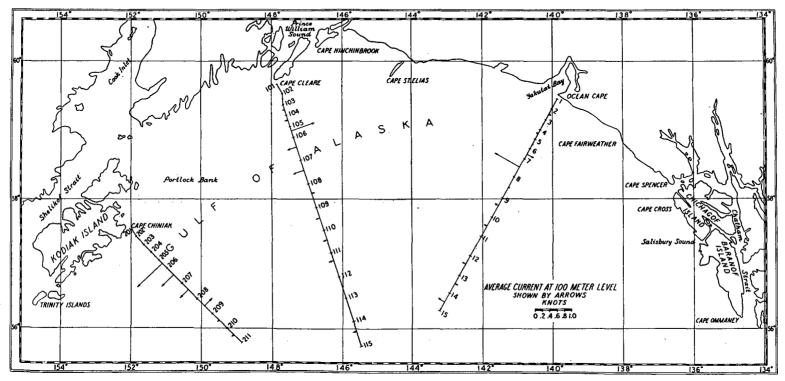


FIGURE 8.—The average current at the 100-meter level of Ocean Cape, Cape Cleare, and Cape Chiniak Sections in January.