Sediment dynamics of the Severn Estuary and inner Bristol Channel

P. McLaren¹, M.B. Collins², S. Gao² & R.I.L. Powys³
¹GeoSea Consulting (Canada) Ltd, 2810 Fulford Ganges Road, Fulford Harbour, British Columbia, Canada V0S 1C0
²Department of Oceanography, The University, Southampton SO9 5NH, UK
³GeoSea Consulting (UK) Ltd, PO Box 310, Cambridge CB3 9HU UK

Abstract: Net sediment transport pathways have been determined in many environments by studying grain size trends. This approach is extended here to an inner shelf environment, with improved statistical techniques.

Patterns of net surficial sediment transport are proposed, indicating that the area is dominated by up-estuary transport. Exceptions exist in the form of radial mud transport at the river mouths and (clockwise) sand circulation around linear sandbanks.

Six different sedimentary environments are defined on the basis of the shape of the 'transfer function' and its relationship to the grain size distributions. Erosion takes place along the axis of the estuary. Dynamic equilibrium is reached around the linear sandbanks, whilst accretion occurs at the head of the estuary and where there are riverine inputs.

The results are compared with numerical model outputs, representing water movement and sediment transport. Over the seaward part of the study area, there is agreement between the two approaches; contradictions increase, however, towards the upper reaches of the estuary. The discrepancies can be attributed to: (1) inherent differences between patterns of water and sediment movement; (2) difficulties in modelling intertidal boundary conditions; (3) inadequate representation of river influences in the models; and (4) time-scale differences, associated with sediment transport processes.

Marine sediment transport investigations are concerned mainly with: (1) determination of the direction of net sediment transport; (2) estimation of sediment transport rates; and (3) identifying the location of accretional or erosional conditions.

Mechanics-orientated approaches are based upon empirical equations for transport rates, related to tidally- and wave-induced near-bed shear stresses. The validity of such solutions is variable (Heathershaw 1981; Pattiaratchi & Collins 1985).

Transport pathways can be determined qualitatively from the deposits themselves. For example, progressive improvements in sorting or decreases in mean grain size have been considered as indicating net sediment transport. Recently, net transport paths have been related to grain size trends; this is based upon the concept that grain size distributions are the result of erosion, transport and accumulation processes, rather than the sedimentary environment (e.g. beaches and rivers) alone (McLaren & Bowles 1985).

The present contribution applies this new technique to the macrotidal Severn Estuary and Bristol Channel (Fig. 1) to: (1) determine net sediment transport patterns; (2) define sediment transport environments on the basis of grain size and dynamic stability (i.e. erosion, accretion or equilibrium); and (3) undertake preliminary comparisons between the derived results and observations based upon other methods.

Study area
Geology and geomorphology
The Bristol Channel is 50–60 m deep at its seaward end, with extensive shallow water areas (10–20 m) up-channel (Fig. 1). The coastline is characterized by cliffs, with low coastal plains near the outlets of the tributary rivers (Harris & Collins 1988). The Severn Estuary is bordered by extensive mud flats and wetlands, currently being eroded (Allen & Rae 1987; Allen 1990).

The surficial sediment cover is thin (generally less than 10 m) over most of the Channel, with large areas of bedrock (Mesozoic and older strata) exposed (Lloyd et al. 1973; Brooks & James 1975). Large amounts of sediments are deposited within the linear sandbanks, such as the Nash, Holm and Culver Sands (Fig. 1); these are formed by residual circulations in the estuarine waters. The areas sampled for the grain size trend analysis lie mainly in the inner part of the Channel and Severn Estuary, where the cover of loosely-consolidated sediments is almost continuous, together with the Nash Sands.

Waves and tides
The Channel receives high wave energy being exposed to the Atlantic Ocean, with a fetch of up to 6000 km (Collins 1987). Storm waves over 10 m in height have been recorded.
for the outer Bristol Channel. Wave heights with a 50 year return period reach 4.7 m near Nash Point, but reduce to 3.5 m towards the east of Flat Holm.

Semi-diurnal tides predominate over the region, with the M_2 (lunar semidiurnal) component accounting for 72% of the overall tidal amplitude in Swansea Bay (Wilding & Collins 1980). Mean spring tidal ranges increase from 5.0 m at the mouth of the Channel (Harris & Collins 1988) to over 14 m at the head of the estuary (Kirby 1986), in response to the 'funnelling effect' of the bathymetry and reduction in channel width. Neap tidal ranges are around half that of the spring tides.

The macrotidal regime results in strong and essentially rectilinear tidal currents, which range between 1.0 m s$^{-1}$ and 2.0 m s$^{-1}$ on spring tides. In some sub-tidal channels, they reach, however, 2.5 m s$^{-1}$ on spring tides and 1.5 m s$^{-1}$ on neap tides (Kirby 1986).

Sediment supply and transport paths

Surficial sediments in the Bristol Channel/Severn Estuary are supplied, at least partially, by the rivers. The total freshwater drainage basin area is 2.5×10^4 km2 (Collins 1983), with a mean water discharge ranging from 9.5×10^9 to 15.8×10^9 m3 s$^{-1}$ (Murray et al. 1980). Annually, around 1.6×10^9 tonnes of fine-grained sediments are discharged from the basin; a large proportion (1.25×10^9 tonnes) of this is supplied by the Rivers Wye, Avon and Severn. The presence of fine-grained material causes the formation of extensive peripheral salt marshes (140 km2 in area) and high suspended sediment concentrations in the water column (i.e. 20 g l$^{-1}$, during spring tides; Kirby 1986) of the Severn Estuary. Overall, it has been estimated that between 4.5×10^6 (on neap tides) and 13.4×10^6 (on spring tides) tonnes of suspended sediment are present in the overlying waters (Collins 1983).

Other sediment sources are sea-bed and coastal erosion (Harris & Collins 1988), reworking of the glacial tills (Culver & Banner 1979; Fereninos & Collins 1985) and input from the Celtic Sea (Sollas 1883; Murray & Hawkins 1976; Culver & Banner 1979).

Numerous investigations have been undertaken to understand sediment transport in the Bristol Channel and Severn Estuary over the past 25 years (for reviews see Parker & Kirby 1982; Collins 1983, 1987, 1989; Dyer 1984). Within this context, controversy has arisen recently between the use of 'bedload parting' (Stride & Belderson 1990, 1991) and 'mutually evasive transport' models (Harris & Collins 1991) to explain sand movement within the system. Nevertheless, it has been concluded that 'in general terms the bed-load parting and the mutually evasive sand transport systems are not exclusive of one another. The bed-load partings exist mainly offshore and the mutually evasive paths mainly in sand-choked estuaries' (Stride & Belderson 1991). Notwithstanding this observation, the present state of knowledge is still insufficient to understand fully sediment supply and transport within such a complex system.
Methods

Data acquisition and analysis

Sea-bed sampling was carried out, during April/May 1988, using a Day grab for the sub-tidal areas. During June 1988, the intertidal zone was sampled from a small hovercraft. The sampling strategy was based upon a grid coverage of the area, from the Severn Road Bridge to a line of 3°54′W longitude (Fig. 1). The sampling interval was approximately 1.5 km, with a reduced density over rocky sea-bed areas. Conversely, sampling density was increased within the coastal zone and over bathymetric features, such as sandbanks and subtidal channels.

Sediment was collected at 901 of the stations, whilst 247 others were characterized by ‘hard ground’ (or exposed bedrock; Fig. 2). Grain size analysis was carried out using a Malvern 26001 Laser Particle Sizer, for both the sand- and mud-sized material. Where necessary, dry sieving was used for the gravel fractions.

Grain size parameters (mean, μ; sorting coefficient, σ²; and skewness, Sk) were derived using the moment formulae, as follows:

\[
\mu = \int_{-\infty}^{\infty} s \, d(s) \, ds \\
\sigma^2 = \int_{-\infty}^{\infty} (s - \mu)^2 \, d(s) \, ds \\
Sk = \frac{1}{(\sigma^2)^{3/2}} \int_{-\infty}^{\infty} (s - \mu)^3 \, d(s) \, ds
\]

where \(s \) is the grain size (in \(\phi \) units) and \(d(s) \) is the frequency distribution function.

Identification of net transport pathways

Net sediment transport pathways can be inferred from grain size trends. For sampling sites \(D_1 \) and \(D_2 \), \(d_1(s) \) and \(d_2(s) \) are assumed to be the grain size distributions, respectively. Along a transport pathway from \(D_1 \) to \(D_2 \), \(d_2(s) \) is related to \(d_1(s) \) through a ‘transfer function’ \(X(s) \), defined by:

\[
d_2(s) = kX(s) \, d_1(s)
\]

where \(k \) is a scaling coefficient. \(X(s) \) provides the statistical relationship between the two deposits. The shape of \(X(s) \) depends upon the energy gradient along the transport paths; it can be negatively or positively skewed (but with a lower frequency). If \(X(s) \) is negatively skewed, then sediment will become finer and more negatively skewed in the direction of transport; if \(X(s) \) is positively skewed, then sediment will become coarser and more positively skewed (McLaren & Bowles 1985). Hence, from \(D_1 \) to \(D_2 \), at least one of the following two cases (Cases B and C; Case A is associated with the grain-size changes for the source area; McLaren & Bowles 1985) will dominate:

Case B: \(\sigma_1^2 < \sigma_2^2, \mu_2 > \mu_1 \) and \(Sk_2 < Sk_1 \)

Case C: \(\sigma_1^2 < \sigma_2^2, \mu_2 < \mu_1 \) and \(Sk_2 > Sk_1 \)

where subscripts 1 and 2 represent sampling sites \(D_1 \) and \(D_2 \), respectively. If no sediment exchange takes place between the two sites, however, the probability of occurrence of
either Case B or C is very low. If the probability is high, then the most probable transport direction can be identified. A procedure for calculating the probabilities of Case B and C occurrences, together with a significance test to determine if the probability is high enough for such transport, has been proposed (McLaren & Bowles 1985). For n samples along a survey line, \(N = (n^2 - n)/2 \) possible pairs are formed. For each direction, \(N_x \) (the observed numbers of pairs representing Case B or C) is then established. Finally, a Z-score for each case and each direction is calculated, using the formula:

\[
Z = \frac{N_x - pN}{[Np(1-p)]^{1/2}}
\]

where \(p \) is the background probability. A Z-score which exceeds a certain level indicates that transport in a preferred direction is highly probable. The 95% and 99% levels of significance are \(Z = 1.645 \) and \(Z = 2.330 \), respectively.

Equation (5) can be rewritten as:

\[
[p(1-p)]^{1/2}Z/N^{1/2} - N_x/N + p = 0
\]

The relationship between \(Z/N^{1/2} \) and \(N_x/N \) with various values of \(p \) is shown on Fig. 3 by the solid lines, under the condition \(Z = 2.330 \). The lower limit of \(N_x/N \) exceeding the significance level is defined by the intersection of a solid line (representing influence from \(p \)) and a dashed line (representing influence from \(N_x \)). For example, if 100 sediment samples are collected along a line and \(p = 1/8 \) is used, then \(N_x/N \) must exceed 0.22 in order to define the transport direction.

McLaren & Bowles (1985) used \(p = 1/8 \) for the determination of the Z-score. Gao & Collins (1991) have suggested recently, however, that higher values should be used. Figure 3 shows that if \(p \) is too low, then the Z-scores for both directions may be above the 99% significance level, as reported by McLaren & Collins (1989). In order to avoid the ambiguity, Z-scores for the assumptions that \(p = 1/5 \), \(p = 1/6 \), \(p = 1/7 \) and \(p = 1/8 \) have been calculated.

Z-scores, based upon a particular background probability and without any ambiguity, are used in the significance test. It is more difficult to establish lines of samples for detailed investigation over an inner shelf area, than along a river channel. A possible method is to contour one of the grain-size parameters, so that lines associated with the largest gradient of the parameter can be selected. In practice, however, this is inappropriate because various grain-size parameters are involved and the transport pathways are not necessarily associated with the largest gradient. For the present study, therefore, around 500 lines associated with a gradient in the three parameters and with various directions were examined. All of the lines with their Z-scores exceeding the 95% significance level (with \(p = 1/8 \)) were then selected for further analyses.

Sediment stability

Equation (4) implies also that \(X(s) \) defines the relative probability of each particular grain size fraction being eroded, transported and deposited. Consequently, upon the successful derivation of a transport trend, the shape of transfer functions may be used to assess the 'status' of the transport regime. Four shapes of \(X(s) \) can be related to the \(D_1 \) and \(D_2 \) grain size distributions (Fig. 4; McLaren & Collins 1989), as outlined below.

(a) The shape of \(X(s) \) resembles those of \(d_1(s) \) and \(d_2(s) \), with similar modes (Fig. 4a). The relative probability of grains being transported produces a grain size distribution similar to that of the actual deposits, suggesting that the environment is in dynamic equilibrium. As a consequence, for every grain within the deposit, there is an equal probability that it will be transported and re-deposited.

(b) The shapes of the three distributions are similar, but the mode of \(X(s) \) is finer than the modes of \(d_1(s) \) and \(d_2(s) \) (Fig. 4b). In this situation, more fine grains are being deposited than are being eroded and transported; thus, the environment is accreting.

(c) The shapes of the three distributions are similar, but the mode of \(X(s) \) is coarser than those of \(d_1(s) \) and \(d_2(s) \) (Fig. 4c). More grains are being eroded than deposited and the environment is eroding.

(d) Regardless of the shapes of \(d_1(s) \) and \(d_2(s) \), \(X(s) \)

\[A : \text{DYNAMIC EQUILIBRIUM} \quad B : \text{NET ACCRETION} \]

\[C : \text{NET EROSION} \quad D : \text{TOTAL DEPOSITION} \]

Fig. 4. Status of sediment transport regime, on the basis of the relationship between the transfer function and the distributions of deposits at \(D_1 \) and \(D_2 \) (from McLaren & Collins 1989). Weight values increase upwards and \(\Phi \) values increase to the right.
Results

Net transport pathways

Altogether, 78 lines were identified as having their Z-scores exceeding 95% significance level on the basis of $p = 1/8$, as summarized in Table 1 and Fig. 5. Within the data set, some Z-scores exceed the acceptable significance level for both directions, when only a low background probability (i.e. $p = 1/8$) criteria is applied (e.g. Lines 5 and 7). This ambiguity almost disappears, however, when a high background probability ($p = 1/6$) is applied. Therefore, only lines with a Z-score exceeding the 95% significance level, at $p = 1/6$, are used hereafter to infer net sediment transport. Hence, Lines 2, 26, 35, and 37 are rejected because of their low Z-scores. Likewise, one of the directions of Lines 5, 7, 34, 70, 71, 72 and 77 is rejected for being under the 95% significance level (Table 1). The inferred transport pathways are shown on Fig. 6.

Identification of ‘transport’ environments

Parts of the study area where loosely-consolidated sediments occur can be classified into six different ‘transport environments’ (see Fig. 7 and Table 2), based upon:

Table 1. Sediment trend statistics for the survey lines, with the significant Z-scores

<table>
<thead>
<tr>
<th>Line</th>
<th>Case</th>
<th>Direction</th>
<th>N</th>
<th>N_{99}</th>
<th>$Z_{1%}$</th>
<th>Z_{99}</th>
<th>$Z_{1%6}$</th>
<th>Z_{996}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>Up</td>
<td>91</td>
<td>34</td>
<td>7.17</td>
<td>6.29</td>
<td>5.30</td>
<td>4.14</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>Up</td>
<td>91</td>
<td>21</td>
<td>3.05</td>
<td>2.40</td>
<td>1.64</td>
<td>0.73</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>Up</td>
<td>36</td>
<td>11</td>
<td>32.78</td>
<td>2.80</td>
<td>2.24</td>
<td>1.38</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>Up</td>
<td>225</td>
<td>88</td>
<td>7.61</td>
<td>6.27</td>
<td>4.74</td>
<td>2.91</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Down</td>
<td>165</td>
<td>21</td>
<td>2.22</td>
<td>1.57</td>
<td>0.92</td>
<td>0.50</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>Up</td>
<td>105</td>
<td>41</td>
<td>8.23</td>
<td>7.25</td>
<td>6.15</td>
<td>4.88</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>Up</td>
<td>28</td>
<td>11</td>
<td>4.29</td>
<td>3.78</td>
<td>2.71</td>
<td>2.55</td>
</tr>
<tr>
<td>8</td>
<td>C</td>
<td>Up</td>
<td>28</td>
<td>8</td>
<td>2.57</td>
<td>2.16</td>
<td>1.69</td>
<td>1.13</td>
</tr>
<tr>
<td>9</td>
<td>B</td>
<td>Up</td>
<td>253</td>
<td>78</td>
<td>8.82</td>
<td>7.52</td>
<td>6.05</td>
<td>4.31</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>Down</td>
<td>253</td>
<td>48</td>
<td>3.11</td>
<td>2.13</td>
<td>0.98</td>
<td>-0.41</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>Up</td>
<td>28</td>
<td>8</td>
<td>2.57</td>
<td>2.16</td>
<td>1.69</td>
<td>1.13</td>
</tr>
<tr>
<td>12</td>
<td>B</td>
<td>Up</td>
<td>15</td>
<td>10</td>
<td>6.34</td>
<td>5.80</td>
<td>5.20</td>
<td>4.58</td>
</tr>
<tr>
<td>13</td>
<td>C</td>
<td>CW</td>
<td>78</td>
<td>24</td>
<td>4.88</td>
<td>4.16</td>
<td>3.34</td>
<td>2.38</td>
</tr>
<tr>
<td>14</td>
<td>B</td>
<td>CCW</td>
<td>210</td>
<td>101</td>
<td>15.60</td>
<td>14.00</td>
<td>12.22</td>
<td>10.18</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>CCW</td>
<td>45</td>
<td>21</td>
<td>6.93</td>
<td>6.21</td>
<td>5.40</td>
<td>4.47</td>
</tr>
<tr>
<td>16</td>
<td>B</td>
<td>CCW</td>
<td>55</td>
<td>15</td>
<td>3.31</td>
<td>2.75</td>
<td>2.11</td>
<td>1.35</td>
</tr>
<tr>
<td>17</td>
<td>B</td>
<td>CCW</td>
<td>78</td>
<td>33</td>
<td>7.96</td>
<td>7.07</td>
<td>6.08</td>
<td>4.93</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>Up</td>
<td>45</td>
<td>19</td>
<td>6.03</td>
<td>5.36</td>
<td>4.60</td>
<td>3.73</td>
</tr>
<tr>
<td>19</td>
<td>B</td>
<td>Up</td>
<td>120</td>
<td>36</td>
<td>5.80</td>
<td>4.92</td>
<td>3.92</td>
<td>2.74</td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>Up</td>
<td>55</td>
<td>24</td>
<td>6.98</td>
<td>6.22</td>
<td>5.37</td>
<td>4.28</td>
</tr>
<tr>
<td>21</td>
<td>B</td>
<td>Up</td>
<td>78</td>
<td>42</td>
<td>11.04</td>
<td>9.99</td>
<td>8.81</td>
<td>7.47</td>
</tr>
<tr>
<td>22</td>
<td>B</td>
<td>Up</td>
<td>45</td>
<td>15</td>
<td>4.23</td>
<td>3.65</td>
<td>3.00</td>
<td>2.24</td>
</tr>
<tr>
<td>23</td>
<td>B</td>
<td>Up</td>
<td>45</td>
<td>21</td>
<td>6.93</td>
<td>6.21</td>
<td>5.40</td>
<td>4.47</td>
</tr>
<tr>
<td>24</td>
<td>B</td>
<td>Up</td>
<td>21</td>
<td>9</td>
<td>4.21</td>
<td>3.74</td>
<td>3.22</td>
<td>2.62</td>
</tr>
<tr>
<td>25</td>
<td>B</td>
<td>Up</td>
<td>36</td>
<td>20</td>
<td>7.81</td>
<td>7.08</td>
<td>6.26</td>
<td>5.33</td>
</tr>
<tr>
<td>26</td>
<td>B</td>
<td>Up</td>
<td>36</td>
<td>14</td>
<td>4.79</td>
<td>4.22</td>
<td>3.58</td>
<td>2.83</td>
</tr>
<tr>
<td>27</td>
<td>B</td>
<td>Up</td>
<td>171</td>
<td>87</td>
<td>15.17</td>
<td>13.67</td>
<td>12.00</td>
<td>10.69</td>
</tr>
<tr>
<td>28</td>
<td>B</td>
<td>Up</td>
<td>35</td>
<td>22</td>
<td>8.82</td>
<td>8.21</td>
<td>7.33</td>
<td>6.34</td>
</tr>
<tr>
<td>29</td>
<td>B</td>
<td>Up</td>
<td>36</td>
<td>9</td>
<td>2.27</td>
<td>1.84</td>
<td>1.34</td>
<td>0.75</td>
</tr>
<tr>
<td>30</td>
<td>B</td>
<td>Up</td>
<td>105</td>
<td>57</td>
<td>12.95</td>
<td>11.71</td>
<td>10.34</td>
<td>8.78</td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td>Down</td>
<td>15</td>
<td>5</td>
<td>2.44</td>
<td>2.11</td>
<td>1.73</td>
<td>1.29</td>
</tr>
<tr>
<td>32</td>
<td>B</td>
<td>Down</td>
<td>30</td>
<td>7</td>
<td>5.50</td>
<td>5.04</td>
<td>4.53</td>
<td>3.95</td>
</tr>
<tr>
<td>33</td>
<td>B</td>
<td>Down</td>
<td>55</td>
<td>15</td>
<td>3.31</td>
<td>2.75</td>
<td>2.11</td>
<td>1.35</td>
</tr>
<tr>
<td>34</td>
<td>B</td>
<td>Down</td>
<td>55</td>
<td>15</td>
<td>3.31</td>
<td>2.75</td>
<td>2.11</td>
<td>1.35</td>
</tr>
<tr>
<td>35</td>
<td>B</td>
<td>Down</td>
<td>91</td>
<td>31</td>
<td>6.22</td>
<td>5.59</td>
<td>4.45</td>
<td>3.36</td>
</tr>
<tr>
<td>36</td>
<td>C</td>
<td>Down</td>
<td>91</td>
<td>23</td>
<td>3.69</td>
<td>3.00</td>
<td>2.20</td>
<td>1.26</td>
</tr>
<tr>
<td>37</td>
<td>C</td>
<td>Down</td>
<td>91</td>
<td>19</td>
<td>2.42</td>
<td>1.80</td>
<td>1.68</td>
<td>0.81</td>
</tr>
<tr>
<td>38</td>
<td>C</td>
<td>Up</td>
<td>55</td>
<td>13</td>
<td>2.50</td>
<td>1.98</td>
<td>1.39</td>
<td>0.67</td>
</tr>
<tr>
<td>39</td>
<td>C</td>
<td>Up</td>
<td>35</td>
<td>10</td>
<td>9.54</td>
<td>8.06</td>
<td>6.97</td>
<td>4.28</td>
</tr>
</tbody>
</table>

Subsite E.V. licensed customer copy supplied and printed for Flanders Marine Institute Library (SL05X0022SE)
Table 1—(Continued)

<table>
<thead>
<tr>
<th>Line</th>
<th>Case</th>
<th>Direction</th>
<th>N</th>
<th>Np</th>
<th>Z1/8</th>
<th>Z1/7</th>
<th>Z1/6</th>
<th>Z1/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>C</td>
<td>Down</td>
<td>15</td>
<td>8</td>
<td>4.78</td>
<td>4.32</td>
<td>3.81</td>
<td>3.23</td>
</tr>
<tr>
<td>40</td>
<td>C</td>
<td>Down</td>
<td>21</td>
<td>17</td>
<td>4.94</td>
<td>8.73</td>
<td>7.91</td>
<td>6.98</td>
</tr>
<tr>
<td>41</td>
<td>C</td>
<td>Down</td>
<td>21</td>
<td>11</td>
<td>5.53</td>
<td>4.99</td>
<td>4.39</td>
<td>3.71</td>
</tr>
<tr>
<td>42</td>
<td>C</td>
<td>Down</td>
<td>21</td>
<td>15</td>
<td>6.32</td>
<td>9.17</td>
<td>7.43</td>
<td>6.57</td>
</tr>
<tr>
<td>43</td>
<td>B</td>
<td>Seaward</td>
<td>36</td>
<td>10</td>
<td>7.77</td>
<td>2.31</td>
<td>1.79</td>
<td>1.17</td>
</tr>
<tr>
<td>44</td>
<td>B</td>
<td>Seaward</td>
<td>66</td>
<td>28</td>
<td>7.35</td>
<td>6.53</td>
<td>5.62</td>
<td>4.55</td>
</tr>
<tr>
<td>45</td>
<td>B</td>
<td>Seaward</td>
<td>78</td>
<td>25</td>
<td>5.22</td>
<td>4.48</td>
<td>3.65</td>
<td>2.66</td>
</tr>
<tr>
<td>46</td>
<td>B</td>
<td>Seaward</td>
<td>78</td>
<td>26</td>
<td>7.52</td>
<td>9.99</td>
<td>6.09</td>
<td>5.06</td>
</tr>
<tr>
<td>47</td>
<td>B</td>
<td>Seaward</td>
<td>28</td>
<td>14</td>
<td>6.00</td>
<td>5.40</td>
<td>4.73</td>
<td>3.97</td>
</tr>
<tr>
<td>48</td>
<td>B</td>
<td>Seaward</td>
<td>28</td>
<td>15</td>
<td>6.57</td>
<td>9.17</td>
<td>7.43</td>
<td>6.37</td>
</tr>
<tr>
<td>49</td>
<td>B</td>
<td>Seaward</td>
<td>36</td>
<td>22</td>
<td>8.82</td>
<td>8.03</td>
<td>7.16</td>
<td>6.17</td>
</tr>
<tr>
<td>50</td>
<td>B</td>
<td>Seaward</td>
<td>28</td>
<td>14</td>
<td>6.00</td>
<td>5.40</td>
<td>4.73</td>
<td>3.97</td>
</tr>
<tr>
<td>51</td>
<td>B</td>
<td>Seaward</td>
<td>28</td>
<td>13</td>
<td>5.43</td>
<td>4.86</td>
<td>4.23</td>
<td>3.50</td>
</tr>
<tr>
<td>52</td>
<td>B</td>
<td>Seaward</td>
<td>28</td>
<td>14</td>
<td>6.00</td>
<td>5.40</td>
<td>4.73</td>
<td>3.97</td>
</tr>
<tr>
<td>53</td>
<td>B</td>
<td>Seaward</td>
<td>28</td>
<td>14</td>
<td>6.00</td>
<td>5.40</td>
<td>4.73</td>
<td>3.97</td>
</tr>
<tr>
<td>54</td>
<td>B</td>
<td>Seaward</td>
<td>28</td>
<td>14</td>
<td>6.00</td>
<td>5.40</td>
<td>4.73</td>
<td>3.97</td>
</tr>
<tr>
<td>55</td>
<td>B</td>
<td>Seaward</td>
<td>45</td>
<td>23</td>
<td>7.83</td>
<td>9.06</td>
<td>7.06</td>
<td>5.22</td>
</tr>
<tr>
<td>56</td>
<td>B</td>
<td>Seaward</td>
<td>45</td>
<td>19</td>
<td>6.03</td>
<td>5.39</td>
<td>4.60</td>
<td>3.73</td>
</tr>
<tr>
<td>57</td>
<td>B</td>
<td>Seaward</td>
<td>55</td>
<td>24</td>
<td>6.98</td>
<td>6.22</td>
<td>5.37</td>
<td>4.38</td>
</tr>
<tr>
<td>58</td>
<td>B</td>
<td>Seaward</td>
<td>55</td>
<td>24</td>
<td>4.88</td>
<td>4.16</td>
<td>3.34</td>
<td>2.38</td>
</tr>
<tr>
<td>59</td>
<td>B</td>
<td>Seaward</td>
<td>91</td>
<td>31</td>
<td>6.22</td>
<td>5.39</td>
<td>4.45</td>
<td>3.36</td>
</tr>
<tr>
<td>60</td>
<td>B</td>
<td>Seaward</td>
<td>28</td>
<td>15</td>
<td>6.57</td>
<td>5.94</td>
<td>5.24</td>
<td>4.44</td>
</tr>
<tr>
<td>61</td>
<td>B</td>
<td>Seaward</td>
<td>55</td>
<td>26</td>
<td>7.80</td>
<td>6.99</td>
<td>6.09</td>
<td>5.06</td>
</tr>
<tr>
<td>62</td>
<td>C</td>
<td>Down</td>
<td>36</td>
<td>29</td>
<td>12.35</td>
<td>11.36</td>
<td>10.29</td>
<td>9.08</td>
</tr>
<tr>
<td>63</td>
<td>C</td>
<td>Down</td>
<td>55</td>
<td>40</td>
<td>13.51</td>
<td>12.39</td>
<td>11.16</td>
<td>9.78</td>
</tr>
<tr>
<td>64</td>
<td>C</td>
<td>Down</td>
<td>56</td>
<td>15</td>
<td>5.29</td>
<td>4.70</td>
<td>4.03</td>
<td>3.25</td>
</tr>
<tr>
<td>65</td>
<td>B</td>
<td>Seaward</td>
<td>28</td>
<td>18</td>
<td>2.57</td>
<td>2.16</td>
<td>1.69</td>
<td>1.13</td>
</tr>
<tr>
<td>66</td>
<td>B</td>
<td>Up</td>
<td>66</td>
<td>31</td>
<td>8.47</td>
<td>7.59</td>
<td>6.61</td>
<td>5.48</td>
</tr>
<tr>
<td>67</td>
<td>B</td>
<td>Up</td>
<td>55</td>
<td>23</td>
<td>6.57</td>
<td>5.84</td>
<td>5.01</td>
<td>4.05</td>
</tr>
<tr>
<td>68</td>
<td>B</td>
<td>Up</td>
<td>55</td>
<td>23</td>
<td>6.57</td>
<td>5.84</td>
<td>5.01</td>
<td>4.05</td>
</tr>
<tr>
<td>69</td>
<td>C</td>
<td>Down</td>
<td>55</td>
<td>26</td>
<td>7.80</td>
<td>6.99</td>
<td>6.09</td>
<td>5.06</td>
</tr>
<tr>
<td>70</td>
<td>C</td>
<td>Down</td>
<td>55</td>
<td>28</td>
<td>7.80</td>
<td>6.99</td>
<td>6.09</td>
<td>5.06</td>
</tr>
<tr>
<td>71</td>
<td>C</td>
<td>Up</td>
<td>36</td>
<td>20</td>
<td>7.81</td>
<td>7.08</td>
<td>6.26</td>
<td>5.33</td>
</tr>
<tr>
<td>72</td>
<td>C</td>
<td>Down</td>
<td>36</td>
<td>19</td>
<td>7.31</td>
<td>6.50</td>
<td>5.81</td>
<td>4.92</td>
</tr>
<tr>
<td>73</td>
<td>C</td>
<td>Up</td>
<td>36</td>
<td>19</td>
<td>7.31</td>
<td>6.50</td>
<td>5.81</td>
<td>4.92</td>
</tr>
<tr>
<td>74</td>
<td>B</td>
<td>Seaward</td>
<td>36</td>
<td>19</td>
<td>5.96</td>
<td>6.30</td>
<td>5.19</td>
<td>4.34</td>
</tr>
<tr>
<td>75</td>
<td>B</td>
<td>Seaward</td>
<td>36</td>
<td>19</td>
<td>5.96</td>
<td>6.30</td>
<td>5.19</td>
<td>4.34</td>
</tr>
<tr>
<td>76</td>
<td>B</td>
<td>Seaward</td>
<td>21</td>
<td>12</td>
<td>6.19</td>
<td>5.61</td>
<td>4.98</td>
<td>4.26</td>
</tr>
<tr>
<td>77</td>
<td>B</td>
<td>Down</td>
<td>153</td>
<td>31</td>
<td>2.90</td>
<td>2.11</td>
<td>1.19</td>
<td>0.08</td>
</tr>
<tr>
<td>78</td>
<td>B</td>
<td>Up</td>
<td>153</td>
<td>63</td>
<td>10.73</td>
<td>9.51</td>
<td>8.14</td>
<td>6.55</td>
</tr>
</tbody>
</table>

N, number of possible pairs along the line of samples.
Np, number of pairs indicating a particular trend.
Z1/8, Z1/7, Z1/6, Z1/5, Z-scores for p = 1/8, p = 1/7, p = 1/6 and p = 1/5, respectively (Z = 1.645 for 90% significance level and Z = 2.330 for 95% significance level).

Direction of transport: Down, down-estuary; Up, up-estuary; CW, clockwise; CCW, counterclockwise; Seaward, dispersion away from a river mouth.

(i) Sediment facies (sand, sand and mud admixtures, or mud); (ii) sediment transport characteristics (Case B or C); and (iii) dynamic stability (i.e., accretion, dynamic equilibrium, or erosion), in terms of the relationship between the X-function and the grain-size distributions (see above). Average grain-size parameters for the environments identified are listed in Table 3. Based upon the information presented in Tables 1–3 and Figs 5–7, the characteristics of each of the environments are now described.

Environment I. This includes the beach and nearshore sands of eastern Bridgewater Bay, as the only environment where net sand erosion occurs. Exceptionally strong trends (Lines 62–64, Table 1) indicate down-estuary transport. Fine sands (2.57 phi) occur typically here, with a coarser mode of the X-function (Fig. 8a).

Environment II. This environment (i.e., sand, Case C transport, and in ‘dynamic equilibrium’) includes: the Nash Sands (IIa); the Culver Sands (IIb); Cardiff Grounds (IIc); and the upper Severn Estuary (IId). The sediments become...
Fig. 5. Sample lines used to determine sediment transport paths.

Fig. 6. Patterns of net sediment transport, defined by the grain size trend analysis.
steadily finer, from the Nash Sands to the upper Severn Estuary, ranging from medium \((1.34 \phi)\) to fine sands \(2.90 \phi\) (Table 2).

Transport around the Nash Sands is represented by Line 10, as (clockwise) sand circulation around a linear sandbank (cf. Pattiaratchi & Collins 1988). The X-function mode lies at \(1.0 \phi\), showing that coarse sand is the dominant size fraction in transit.

To the south of the Culver Sands, the trend analysis of Line 43 indicated westerly (down-estuary) transport. The

Table 2. Sediment transport environments in the Severn Estuary and Bristol Channel

<table>
<thead>
<tr>
<th>Environment*</th>
<th>Sample lines</th>
<th>Sediment type</th>
<th>Case</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>62-64</td>
<td>sand</td>
<td>C</td>
<td>net erosion</td>
</tr>
<tr>
<td>Ia</td>
<td>10</td>
<td>sand</td>
<td>C</td>
<td>equilibrium</td>
</tr>
<tr>
<td>Ib</td>
<td>3</td>
<td>sand</td>
<td>C</td>
<td>equilibrium</td>
</tr>
<tr>
<td>Ic</td>
<td>11-13</td>
<td>sand</td>
<td>C</td>
<td>equilibrium</td>
</tr>
<tr>
<td>Id</td>
<td>36</td>
<td>sand</td>
<td>C</td>
<td>equilibrium</td>
</tr>
<tr>
<td>IIIa</td>
<td>1, 3-9</td>
<td>sand</td>
<td>B</td>
<td>net accretion</td>
</tr>
<tr>
<td>IIIb</td>
<td>7</td>
<td>sand</td>
<td>B</td>
<td>net accretion</td>
</tr>
<tr>
<td>IIIc</td>
<td>14-22, 25, 78</td>
<td>sand</td>
<td>B</td>
<td>net accretion</td>
</tr>
<tr>
<td>IVa</td>
<td>38-42</td>
<td>mixed</td>
<td>C</td>
<td>net erosion</td>
</tr>
<tr>
<td>Va</td>
<td>44-49</td>
<td>mud</td>
<td>B</td>
<td>equilibrium</td>
</tr>
<tr>
<td>Vb</td>
<td>59, 65</td>
<td>mud</td>
<td>B</td>
<td>equilibrium</td>
</tr>
<tr>
<td>Vc</td>
<td>7</td>
<td>mud</td>
<td>B</td>
<td>equilibrium</td>
</tr>
<tr>
<td>Vd</td>
<td>75-77</td>
<td>mud</td>
<td>B</td>
<td>equilibrium</td>
</tr>
<tr>
<td>VIa</td>
<td>50-58, 60-61</td>
<td>mud</td>
<td>B</td>
<td>net accretion</td>
</tr>
<tr>
<td>VIb</td>
<td>66-68</td>
<td>mud</td>
<td>B</td>
<td>net accretion</td>
</tr>
<tr>
<td>Vlc</td>
<td>27-28</td>
<td>mud</td>
<td>B</td>
<td>net accretion</td>
</tr>
<tr>
<td>Vld</td>
<td>30-33</td>
<td>mud</td>
<td>B</td>
<td>net accretion</td>
</tr>
</tbody>
</table>

* Locations given in Fig. 8.

Table 3. Average grain-size characteristics in each of the transport environments (defined in Table 2 and on Fig. 9)

<table>
<thead>
<tr>
<th>Environment*</th>
<th>Grain-size parameters ((\phi))</th>
<th>Number of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\mu)</td>
<td>(\sigma^2)</td>
</tr>
<tr>
<td>I</td>
<td>2.69</td>
<td>1.00</td>
</tr>
<tr>
<td>IIa</td>
<td>1.34</td>
<td>0.71</td>
</tr>
<tr>
<td>IIb</td>
<td>1.87</td>
<td>0.88</td>
</tr>
<tr>
<td>IIc</td>
<td>2.13</td>
<td>1.93</td>
</tr>
<tr>
<td>IID</td>
<td>2.90</td>
<td>1.06</td>
</tr>
<tr>
<td>IIIa</td>
<td>1.85</td>
<td>1.02</td>
</tr>
<tr>
<td>IIIb</td>
<td>2.43</td>
<td>0.77</td>
</tr>
<tr>
<td>IIIc</td>
<td>2.59</td>
<td>1.69</td>
</tr>
<tr>
<td>IVa</td>
<td>2.44</td>
<td>2.37</td>
</tr>
<tr>
<td>IVb</td>
<td>3.87</td>
<td>2.53</td>
</tr>
<tr>
<td>Va</td>
<td>6.80</td>
<td>1.51</td>
</tr>
<tr>
<td>Vb</td>
<td>6.45</td>
<td>1.85</td>
</tr>
<tr>
<td>Vc</td>
<td>6.73</td>
<td>1.58</td>
</tr>
<tr>
<td>Vd</td>
<td>6.75</td>
<td>1.49</td>
</tr>
<tr>
<td>VIa</td>
<td>6.59</td>
<td>1.69</td>
</tr>
<tr>
<td>VIb</td>
<td>6.66</td>
<td>1.48</td>
</tr>
<tr>
<td>Vlc</td>
<td>6.94</td>
<td>1.44</td>
</tr>
<tr>
<td>Vld</td>
<td>6.38</td>
<td>1.78</td>
</tr>
</tbody>
</table>

* Locations given in Fig. 8.
The trend statistics indicate up-estuary transport and net accretion. Along all the lines, fine sand (3.0φ) is the material most easily transported, apart from Line 78 (2.5φ) located over the shoaling ground near the Severn Road Bridge.

Environment IV. This incorporates mixed bottom sediments, Case C transport and net erosion within two areas: between the Culver Sands and the English coastline (IVa); and the Bristol Deep/English Grounds (IVb).

IVa contains Lines 38–42, indicating westerly transport of sand and mud admixtures. The X-distribution shows coarse sand (1.0φ) to be the dominant size in transport; its modal position indicates erosion (Fig. 8d).

Ivb defines Vb, located in the central portion of the Severn Estuary and along its southern side. Similar to IIIb, the trends are dominantly up-estuary. Medium sand (1.5φ) is the dominant size fraction undergoing transport.

Environment V. This is identified by its muddy surficial sediments, Case C transport and dynamic equilibrium, this environment includes southern Bridgwater Bay (Va), the area offshore from the River Axe (Vb), inner Woodspring Bay (Vc), and the coastal zone to the north of the River Avon (Vd). Unlike the sand and the mixed transport environments, the mean grain size here does not decrease in an up-estuary direction. The finest mud occurs in southern Bridgwater Bay (6.80φ), whilst the coarsest is offshore and is associated with sub-environment Vb (6.5φ). The mean grain size is everywhere medium to fine silt, with no significant differences in size associated with the subenvironments (Table 3).

In southern Bridgwater Bay, the trends are highly significant, indicating transport from the River Parret. The mode of the X-function lies between 7.0 and 8.0φ (Fig. 8e). Trends of Lines 59 and 65 in Vb indicate seaward transport associated with the outflow from River Axe; the X-function shows that fine silt (7.0φ) is the dominant material in transport. In Vc (inner Woodspring Bay), mud appears to be associated with the River Yeo. The trend is significant (Line 74; Table 1) and indicates transport in an up-estuary direction.

Lines 75–77 (Vd) show strong trends of transport out of River Avon and up the Severn Estuary. Similar to other mud sub-environments, the mode of the X-function for the three lines is at 7.5φ.

Environment VI. This environment VI (i.e. mud, Case B transport, and net accretion) incorporates northern Bridgwater Bay (Vla), the inner River Axe (Vlb), the northern coastal zone (Vlc); and the area off the River Usk (Vld).

Similar to Vb, the sample sequences in northern Bridgwater Bay originate near the mouth of the River Parret and fan outwards across the embayment. The X-distributions show that very fine silt and clay are the predominant mobile sizes (8.0 to 9.0φ; Fig. 8f).

Lines 66–68 in Vlb suggest an association with the River Axe, whilst fine silt and clay transport dominates.
In Vic, Lines 27 and 28 indicate mud deposition near the
narrow (Severn Road Bridge), along the northern side of the
Severn Estuary. Transport is up-estuary, consistent with
the directions in the nearby sub-environments.
Lines 30–33 indicate a transport regime emanating from
the River Usk, trending down-estuary. The X-function is
indicative of net accretion.

Summary. The distribution of sedimentary environments
(described above) compared to areas of outcropping pre-
Quaternary rocks (indicative of erosion) represents, in
general, dynamic stability. Hence, along the main channel of
the Severn estuary and most of the longitudinal axis of the
Bristol Channel, erosion is taking place. Accretion is
associated generally with the head of the estuary and areas
adjacent to the tributary rivers, such as the Parret and Usk.
Linear sandbanks, such as the Nash, Culver and Holm
Sands, are considered to be in a state of dynamic equilibrium.

Discussion: comparison with previous investigations

Patterns of water movement
Investigations into residual water circulation and maximum
near-bed shear stresses (or speeds) for the Bristol Channel
have been undertaken on the basis of current meter
observations and seabed drifter recovery patterns (Collins &
Ferentinos 1984; Harris & Collins 1985) and numerical
modelling (Hamilton 1973; Robinson 1978; Pingree &
Griffiths 1979; Owen 1980a; b; Unles 1982a, b; 1984;
Uncles et al. 1985; Stephens 1986; Wolf 1987). Representative
results obtained from the higher resolution (2-D and
3-D) numerical modelling approaches are compared now
with transport patterns defined using sediment trends, as
follows: (1) residual currents (Owen 1980a); (2) residual
currents (Uncles 1982a); (3) near-bed and mid-depth
Eulerian residual water circulation (Wolf 1987 and pers.
comm.); and (4) tidally-induced maximum stresses on the
sea-bed, resulting from M2–M4 and residual current
interaction (Uncles 1984).

A 2-D numerical model to simulate residual currents in the
Channel, driven by the M2 tides and combined M2–S2
waves, was developed by Owen (1980a). The model used a
grid spacing of 1.29 km (east) by 1.37 km (north), with a
time step of 30 lunar seconds. Residual currents, due to M2
tides (Fig. 9a), agree with the sediment trends (Fig. 8) in
sub-environments Ila, Ilc, Ila, and Vla. Poor correlation
exists, however, for sub-environments I, Ilb, Ilc and Vd,
much of which lie close to the river systems.

Eulerian residual currents for the Channel, between
2°37.0’W and 4°58.4’W and using a grid spacing of
3.1 x 3.1 km, have been simulated by Unles (1982a). The
model incorporated M2 tides and a typical salinity
distribution. Residual water circulation patterns predicted
by the model are similar to the sediment trends in Ia, Ilc,
Ilb and Vla. Contradictions exist for I and Ilb (Fig. 9h).

A 3-D numerical model, with a grid size of around 1 km,
has been used to investigate flows throughout the water
column and near the bed (Wolf 1987, and pers. comm.). In
comparison to the near-bed flows (Fig. 9c), there is good
correlation between the model and the trends in Ia, Ilb,
Ilc, Ilb and Vla. The correlation is poor for sub-
environments I, Ilb, Ilc, Ivb, Va, Vb, Vc, Vla, Vlb and
Vic which again are mainly the areas receiving river inputs.

A 2-D model has been used to derive maximum
near-bed stresses, due to M2–M4 interaction and other
currents (Unles 1984; Fig. 9d). The model shows the stress
to be directed down-estuary over the central (longitudinal)
part of the Channel and up-estuary along both the sides.
The up-estuary flood-dominated zone increases in width
towards the head of the estuary. Such a pattern is similar to
that of the sediment trends derived for Bridgewater Bay
(Vla, Vb and Vla), but is contradictory to those in IIa, Ilc
and Vd.

All the model results representing water movement
include some areas of similarity and some of contradiction
with the grain size trends. The inconsistencies are associated
mainly with non-linear relationships between the current
speeds and sediment transport rates, as described below.

Suspended sediment transport rates can be expressed in
terms of current speed multiplied by the concentration of
suspended matter, integrated over the water depth.
Averaged over a period of time, however, the rate can be
decomposed into advective and dispersive terms (Dyer 1974;
Su & Wang 1986). Studies in estuarine environments have
shown, for example, that some dispersive terms are not small
compared with the advective terms (Su & Wang 1986).
Hence, the net transport of suspended matter is not
controlled, in many cases, by residual water movement or
maximum stresses (for example, see Gao et al. 1990).

Bedload transport is controlled, primarily, by sediment
properties (particle density, size and shape) and superimposed
-current speeds (tidally- and wave-induced motion and
other forms of water movement). This results in a non-linear
relationship, such that transport rates are proportional to
the nth power (n ≥ 3) of current speed. When averaged over
time, the rate is controlled by a combination of advective
and dispersive effects. Some deviation between bedload
transport and water movement is, therefore, likely. For
example, bed-load transport directions have been observed
to reverse under the superimposed influence of waves in
Swansea Bay (Pattiastrachi & Collins 1984). The same wave
action would not cause, however, a comparable reversal in
residual water movement.

The Bristol Channel and Severn Estuary combine to
create a complicated estuarine system in which, inevitably,
sediment transport is influenced strongly by dispersive
(non-linear) effects. Apparent contradictions which exist
near Bridgewater Bay and the Avon and Usk Rivers appear
to represent such an influence; this results from freshwater
discharges associated with the tributary river systems, which
have not been incorporated into the modelling approaches.

Sediment transport pathways
A 2-D numerical model to simulate residual currents in the
Channel, driven by the M2 tides and combined M2–S2
waves, was developed by Owen (1980a). The model used a
grid spacing of 1.29 km (east) by 1.37 km (north), with a
time step of 30 lunar seconds. Residual currents, due to M2
tides (Fig. 9a), agree with the sediment trends (Fig. 8) in
sub-environments Ila, Ilc, Ilb and Vla. Poor correlation
exists, however, for sub-environments I, Ilb, Ilc and Vd,
much of which lie close to the river systems.

Eulerian residual currents for the Channel, between
2°37.0’W and 4°58.4’W and using a grid spacing of
3.1 x 3.1 km, have been simulated by Unles (1982a). The
model incorporated M2 tides and a typical salinity
distribution. Residual water circulation patterns predicted
by the model are similar to the sediment trends in Ia, Ilc,
Ilb and Vla. Contradictions exist for I and Ilb (Fig. 9h).

A 3-D numerical model, with a grid size of around 1 km,
has been used to investigate flows throughout the water
column and near the bed (Wolf 1987, and pers. comm.). In
comparison to the near-bed flows (Fig. 9c), there is good
correlation between the model and the trends in Ia, Ilb,
Ilc, Ilb and Vla. The correlation is poor for sub-
environments I, Ilb, Ilc, Ivb, Va, Vb, Vc, Vla, Vlb and
Vic which again are mainly the areas receiving river inputs.

A 2-D model has been used to derive maximum
near-bed stresses, due to M2–M4 interaction and other
currents (Unles 1984; Fig. 9d). The model shows the stress
to be directed down-estuary over the central (longitudinal)
part of the Channel and up-estuary along both the sides.
The up-estuary flood-dominated zone increases in width
towards the head of the estuary. Such a pattern is similar to
that of the sediment trends derived for Bridgewater Bay
(Vla, Vb and Vla), but is contradictory to those in IIa, Ilc
and Vd.

All the model results representing water movement
include some areas of similarity and some of contradiction
with the grain size trends. The inconsistencies are associated
mainly with non-linear relationships between the current
speeds and sediment transport rates, as described below.

Suspended sediment transport rates can be expressed in
terms of current speed multiplied by the concentration of
suspended matter, integrated over the water depth.
Averaged over a period of time, however, the rate can be
decomposed into advective and dispersive terms (Dyer 1974;
Su & Wang 1986). Studies in estuarine environments have
shown, for example, that some dispersive terms are not small
compared with the advective terms (Su & Wang 1986).
Hence, the net transport of suspended matter is not
controlled, in many cases, by residual water movement or
maximum stresses (for example, see Gao et al. 1990).

Bedload transport is controlled, primarily, by sediment
properties (particle density, size and shape) and superimposed
-current speeds (tidally- and wave-induced motion and
other forms of water movement). This results in a non-linear
relationship, such that transport rates are proportional to
the nth power (n ≥ 3) of current speed. When averaged over
time, the rate is controlled by a combination of advective
and dispersive effects. Some deviation between bedload
transport and water movement is, therefore, likely. For
example, bed-load transport directions have been observed
to reverse under the superimposed influence of waves in
Swansea Bay (Pattiastrachi & Collins 1984). The same wave
action would not cause, however, a comparable reversal in
residual water movement.

The Bristol Channel and Severn Estuary combine to
create a complicated estuarine system in which, inevitably,
sediment transport is influenced strongly by dispersive
(non-linear) effects. Apparent contradictions which exist
near Bridgewater Bay and the Avon and Usk Rivers appear
to represent such an influence; this results from freshwater
discharges associated with the tributary river systems, which
have not been incorporated into the modelling approaches.

Sediment transport pathways
Various investigations have been undertaken to examine
sediment movement in the Bristol Channel, using a variety
of techniques (Table 4). Transport pathways defined by
previous studies are compared here with the results obtained
from the trend analysis, in terms of sand transport and
cohesive sediment movement.

(i) Sand (bed-load) transport. Sand is present within the
system in the form of linear sandbanks, or as thin sand
sheets. The Nash Sands (IIa) has been identified previously
as a sand ridge associated with tidally-induced (clockwise)
eddies (Ferentinos & Collins 1980); hence, net transport is
to the west along the south, but to the east along the
northern flank. Such as a pattern is exactly the same as that
identified from the trend analysis.

On Holm Sands (Davies 1980) and Cardiff Grounds
(Harris & Collins 1985), clockwise sand circulation is indi­
cated by bedform asymmetries. The trend analysis shows, in
contrast, westerly transport to the north of the Holm Sands
and anticlockwise sand circulation around the Cardiff Gro­
unds. Such contradictions may result from differences in the
spatial scales of the investigations. For example, the lengths
of the Holm Sands and Cardiff Grounds are only 1/5 of
those of Lines 10, 11 and 12 (Fig. 5). Hence, localized
patterns of sediment movement were not identified within
samples from the lines representing the spatial scale adopted
for this study.

Two models have been proposed to account for Holoc­
ene bedload transport patterns: the 'Bedload Parting'
(Stride & Belderson 1990, 1991) model and the 'Mutually
Evasive Transport' (Harris & Collins 1988, 1991) model.

A bedload parting zone shown by the dotted line on Fig.
10 is believed to extend from Barry towards Bridgewater
Bay, along a curved line across the Channel. Associated
with this 'feature', net transport of bedload is towards the
west in the Bristol Channel and towards the east in the
Severn Estuary. Where comparison is possible between this
conceptional model and Fig. 6 (Environments V and VI are
not comparable, because of the presence of muddy sedi­
ments), agreement exists for the upper Severn Estuary and
most of the southern part of the area. Contradictions are
present in the north, from Hutchwns Point to River Usk.
The grain size trends are indicative of up-channel transport
along the shoreline, extending from Hutchwns Point to
Barry; down-channel transport occurs between Barry and
River Usk.

The mutually evasive transport model (Fig. 10) defines
Table 4. Sediment transport investigations relating to the Bristol Channel and Severn Estuary

<table>
<thead>
<tr>
<th>Type of evidence</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current measuremements</td>
<td>Kirby & Parker (1975); Collins et al. (1980); Parker & Kirby (1982); Pattiaratchi & Collins (1984); Parker (1987), Harris & Collins (1988)</td>
</tr>
<tr>
<td>General water movement</td>
<td>Hamilton (1973); Pingree & Griffiths (1979); Ocd (1982); Collins & Ferentinos (1984); Stride (1963); Belderson & Stride (1966); Kenyon & Stride (1970); Davies (1980); Ferentinos & Collins (1980); Harris & Collins (1985); Pattiaratchi & Collins (1987); Stride & Belderson (1982); Collins et al. (1980); Davies (1980); Evans (1982); Barrie (1990); Murray & Hawkins (1976); Culver & Banner (1979); Culver (1980)</td>
</tr>
<tr>
<td>Sashed drifter recoveries</td>
<td>Hansen (1979); Pingree & Griffiths (1979); Ocd (1982); Collins & Ferentinos (1984); Stride (1963); Belderson & Stride (1966); Kenyon & Stride (1970); Davies (1980); Ferentinos & Collins (1980); Harris & Collins (1985); Pattiaratchi & Collins (1987); Stride & Belderson (1982); Collins et al. (1980); Davies (1980); Evans (1982); Barrie (1990); Murray & Hawkins (1976); Culver & Banner (1979); Culver (1980)</td>
</tr>
<tr>
<td>Bedform orientations</td>
<td>Chester & Stoner (1975); Muntz & Wakeling (1982); Collins (1983); Kenyon (1983); Imienwanrin (1988); Parker & Kirby (1982); Collins (1983, 1987, 1989); Dy er (1984); McLaren & Collins (1985); Stride & Belderson (1990; 1991); Harris & Collins (1991)</td>
</tr>
<tr>
<td>Sediment distributions</td>
<td>Hansen (1979); Pingree & Griffiths (1979); Ocd (1982); Collins & Ferentinos (1984); Stride (1963); Belderson & Stride (1966); Kenyon & Stride (1970); Davies (1980); Ferentinos & Collins (1980); Harris & Collins (1985); Pattiaratchi & Collins (1987); Stride & Belderson (1982); Collins et al. (1980); Davies (1980); Evans (1982); Barrie (1990); Murray & Hawkins (1976); Culver & Banner (1979); Culver (1980)</td>
</tr>
<tr>
<td>Heavy mineral distributions</td>
<td>Chester & Stoner (1975); Muntz & Wakeling (1982); Collins (1983); Kenyon (1983); Imienwanrin (1988); Parker & Kirby (1982); Collins (1983, 1987, 1989); Dy er (1984); McLaren & Collins (1985); Stride & Belderson (1990; 1991); Harris & Collins (1991)</td>
</tr>
<tr>
<td>Movement of foraminiferal tests</td>
<td>Chester & Stoner (1975); Muntz & Wakeling (1982); Collins (1983); Kenyon (1983); Imienwanrin (1988); Parker & Kirby (1982); Collins (1983, 1987, 1989); Dy er (1984); McLaren & Collins (1985); Stride & Belderson (1990; 1991); Harris & Collins (1991)</td>
</tr>
<tr>
<td>Trace element fluxes</td>
<td>Chester & Stoner (1975); Muntz & Wakeling (1982); Collins (1983); Kenyon (1983); Imienwanrin (1988); Parker & Kirby (1982); Collins (1983, 1987, 1989); Dy er (1984); McLaren & Collins (1985); Stride & Belderson (1990; 1991); Harris & Collins (1991)</td>
</tr>
<tr>
<td>Geomorphological changes</td>
<td>Chester & Stoner (1975); Muntz & Wakeling (1982); Collins (1983); Kenyon (1983); Imienwanrin (1988); Parker & Kirby (1982); Collins (1983, 1987, 1989); Dy er (1984); McLaren & Collins (1985); Stride & Belderson (1990; 1991); Harris & Collins (1991)</td>
</tr>
<tr>
<td>Remote sensing data</td>
<td>Chester & Stoner (1975); Muntz & Wakeling (1982); Collins (1983); Kenyon (1983); Imienwanrin (1988); Parker & Kirby (1982); Collins (1983, 1987, 1989); Dy er (1984); McLaren & Collins (1985); Stride & Belderson (1990; 1991); Harris & Collins (1991)</td>
</tr>
<tr>
<td>Literature reviews</td>
<td>Chester & Stoner (1975); Muntz & Wakeling (1982); Collins (1983); Kenyon (1983); Imienwanrin (1988); Parker & Kirby (1982); Collins (1983, 1987, 1989); Dy er (1984); McLaren & Collins (1985); Stride & Belderson (1990; 1991); Harris & Collins (1991)</td>
</tr>
</tbody>
</table>

The model of Collins (Fig. 11b) represents suspended sediment transport in the surface waters. This interpretation agrees with the trend analysis for Va, Vla and Vlc, but ambiguities exist in eastern Bridgwater Bay.

Interestingly, in both models, the influence of tributary river inputs is not as marked as indicated by the grain size trends. The latter analysis demonstrates that these rivers (Parret and Usk, in particular) control the net transport paths of fine-grained sediments (Fig. 6). It is worth noticing that such radial transport was not observed at the mouths of Rivers Avon and Wye. This limitation is probably because these rivers are located in the bay-head area, where the relative importance of tidal currents is enhanced and the influence of the freshwater plumes weakened.

In another approach to the problem, magnetic anisotropy data from eight short cores from outer Bridgwater Bay and off Newport and Avonmouth have been used to represent principal and subsidiary grain orientations (Imienwanrin 1988). Long grain axis orientations appear to be influenced not only by the dominant flood-ebb tidal currents in the main channel, but also by the outflows from the Rivers Parret, Usk and Avon.

(iii) Transport implications. The contradictions identified above do not necessarily invalidate any particular approach, because of the wide range of time-scales applied. For example, tidal current and wave measurements provide data on a time-scale of 10^{-2} to 10^{-6} a, whilst geomorphological investigations relate to time-scales of the order of 10^2 a. Likewise, the two models ('bedload parting' and 'mutually evasive transport') are hypotheses to account for long-term material balance within the system. Both approaches incorporate a wide variety of evidence, representing different time-scales.

Interpretation of grain size trends can, in itself, represent various time-scales, this depends upon sampling depth and technique and accumulation rates. Hence, the time-scale is shorter for an area with high accumulation rates, than for one experiencing minimal accretion or undergoing erosion.
Erosional/accretionary patterns

Major regional depositional areas have been recognized as:
(i) inner Bridgwater Bay (Kirby & Parker 1983); (ii) a sub-tidal area within Swansea Bay (Collins et al. 1980); and
(iii) off the River Usk and inner Severn Estuary (Harris & Collins 1985). These areas are identified also in the grain size trend analysis.

Present deposition rates (over a period of 10³ a) in Swansea Bay (near IIIa), Bridgwater Bay (VIa) and in the Newport Deep (VIc) have been measured, using the ²¹⁰Pb dating technique (Clifton & Hamilton, 1979). In Swansea Bay, the measured rate was 0.14–0.19 cm a⁻¹. There was poor correlation in Bridgwater Bay and Newport Deep between the ²¹⁰Pb specific activity and depth within the deposits. Deposits in these areas appear either to be accumulating rapidly or constitute part of an 'unstable' sedimentary system. Other surveys have suggested that areas of Bridgwater Bay are eroding under the present hydrodynamic conditions (Mantz & Wakeling 1982; Kirby 1986). Such localized variations have not been identified in the trend analysis. In summary, there is a consistent pattern between the radionuclide and trend analysis data in two of the sub-environments.

Conclusions

(1) Net sediment transport pathways for the Severn Estuary and inner Bristol Channel have been defined on the
basis of grain size trend analyses. Ambiguities in the significance test used in the analyses disappear when $p = 1/6$ is used, as a background probability for Case B or C conditions. Hence, the following patterns have been identified: clockwise movement around the Nash Sands; radial transport from the River Parrett, to sea wards, in Bridgewater Bay; down-estuary transport characterizing the coastal zone, from Bar ry to Newport, with up-estuary transport dominant over other parts of the Severn Estuary.

(2) Based upon the relationship between the grain size distributions and the transfer function, the dynamic status (i.e. erosional, equilibrium or accretional environments) of areas have been analysed. Combined with facies and transport observations (i.e. Case B or C), this has led to 6 environments being identified: (i) the Nash Passage, Bridgewater Bay and lower Severn Estuary as the main accretional areas (in agreement with previous investigations); (ii) erosion around the Bristol Deep, between the Culver Sands and the English coastline; and (iii) sandbanks mostly in a state of (dynamic) equilibrium.

(3) Areas of poor correlation between the results of previous investigations and the trend analyses are associated mainly with the tributary rivers. Such discrepancies can be caused by non-linear effects between water and sediment movements. Some of the differences can be ascribed to variations in time-scales, but further investigations should address this particular issue.

The authors are grateful to the Severn Tidal Power Group (STPG) for initiating the investigations described within this project. The project benefited greatly from discussions with R. Kirby (Ravenswood Consultants), I. S. Robinson (University of Southampton) and J. R. West (University of Birmingham). Particular appreciation is expressed to T. L. Shaw (STPG), who did much to coordinate and facilitate all phases of the programme. Finally, one of the authors (S. Gao) was supported by a grant from the TC (UK-China Technical Cooperation) scheme sponsored by the British Council. The authors wish to thank K. Saull for her careful preparation of most of the figures.

The authors wish to thank K. Saull for her careful preparation of most of the figures.

References

SEVERN ESTUARY/BRISTOL CHANNEL SEDIMENTS

Progress in Oceanography, 19, 117-176.

Continental Shelf Research, 7, 1285-1293.