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Abstract. The concept of age in fluid dynamics is analyzed in the case of a tracer advection-
diffusion equation. From the general solution in a uniform velocity field, it is shown that unexpected
symmetry properties arise for the age field. In particular, for a point release, the age fleld is isotropic,
regardless of the direction of the flow and the value of the diffusion coefficient. The analysis is then
extended to situations with time-varying currents, where the symmetry can be broken under some
circumstances. Finally, we show a method by which a time-dependent problem can be used to assess
a stationary concentration distribution function, providing details about the propagation of younger
and older material at a given location.
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1. Introduction. In natural physical systems, both experimental measurements
and complex mathematical models usually yield such huge amounts of data that
the underlying processes may become extremely difficult to understand. By using
appropriate diagnostic tools, tractable information about the system may be easily
extracted. In the case of natural flows, age provides such a diagnostic toal,

The age of a water parcel is usually defined as “the time elapsed since the parcel
under consideration left the region in which its age is defined to be zero” (e.g., [30,
26, 10]). Such a region can be defined in various ways so that the actual definition of
age can be made to suit any specific focus on the flow’s intrinsic time scales.

The concept of age is widely used in ocean sciences to assess time scales associated
with the ventilation of the deep ocean controlled by vertical advection and diffusion
processes (e.g., [27, 5, 25, 13, 17, 19, 6]). In this case, the age is taken to be zero at
the surface. The age of a water parcel located in the core of the ocean thus indicates
the time elapsed since that parcel was last exposed to the surface. It is therefore a
summary of the complex history of such a water parcel and helps to understand the
ventilation of the deep ocean.

In shelf seas, age can be used to follow the spreading of coastal water, river plumes,
or pollutant patches using both natural and artificial tracers released from both point
sources and distributed sources (e.g., [20, 23, 2, 2, 28, 11)).

For instance, radioactive tracers released at the nuclear fuel reprocessing plants
of La Hague (English Channel) and Sellaficld (Irish Sea) have been used to quantify
the transit time from these locations to any point in the North Sea (e.g., [22, 23)). In
this case. the age is taken to be zero at the source point so that the age of a parcel of
the studied tracer at any other location is representative of the time scales associated
with the transport from the source to this location.
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Fic. 1. Concentration (normalized) and age ficld (in days) for passive tracer release experiment
in the North Sea.

Insofar as the age can be both computed with numerical models and assessed
experimentally using radioactive dating techniques and oxygen or CFC data analysis,
it can also be used to compare, calibrate, and validate ocean circulation models (e.g.,
[4, 13, 23, 15, 8, 9]).

The previous examples introduce only a limited number of successful applications
of the age theorv. If this theory is to provide a better insight into complex flows, one
must have a thorough understanding of the dynumnics of age itself. It is therefore the
aiin of this paper to explore some of the chavacteristics of age dynamices.

In particular, part of this work is motivated by one of the surprising results
obtained in the scope of the NOMADS project. In the framework of this concerted
action, five numerical models of the North Sca were compared with respect to, among
other aspects, the age field associated with the release of a passive tracer in the center
of the North Sea [1].

Figure 1 shows the resulting concentration and age fields computed by the GHER
model [9]. All the models (with various spatial resclutions and numerical character-
istics) considered in this model intercomparison experiment exhibited similar results.
The concentration field shows an elongated patch reflecting the particular circulation
pattern at the time of the simulation (winter 1988 to spring 1989). While preferential
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direction of spreading of the patch can be clearly identified in the concentration field,
no such direction appears in the age field, suggesting a quasi-isotropic propagation of
age! This counterintuitive result is one of the points studied in the following sections.

2. Elements of the theory of age. A general theory of the age concept has
been recently proposed by {10, 7]. This theory takes into account advection, diffusion,
production, and destruction processes of scalar tracers. It can be shown that most
of the forms previously suggested in the literature may be deduced from this general
theory after certain simplifications and hypotheses [7]. This theory thus provides a
theoretical framework in which the different aspects of the dynamics of age can be
studied in detail.

This approach also overcomes (see (10]) the problem associated with the poor
account of the diffusion process in previous age studies (e.g., [18, 21, 27, 29, 19]).

Following [10, 7], we introduce the concept of a concentration distribution function
c(t, x, 7) depending on time ¢, space x, and age 7. c is the concentration of material
whose age equals 7. As shown in [10], the concentration distribution function ¢(t, x, 7)
satisfies a generalized advection-diffusion equation (w is the velocity field, K the
diffusion tensor, V =3, eia%, the Nabla operator, and p — d source and sink terms
of material of age 7)

_ de de
(2.1} a—p——d—v-(uc‘—K-Vc)—a.

The standard tracer concentration C'(¢, ) can be calculated as

(2.2) Clt,z) = /ODC eft,z, 7)dr

and leads te the classical advection-diffusion equation for a tracer:

(2.3) %—f:PﬁD—VWuC—K-Vc)

with

(24 P=c(m,7=0)—c(m,r:oc>+f pdr, D:[ ddr
0 0

being the total source and sink terms of the tracer.
In addition, the average age, i.e., the mean age of the tracer, is defined as the
mass weighted age [10, 7]:

—
(]
U
e

a(t,z) = é-/olx et , 7)dr.

From here on, when no confusion is possible, a (the mean age) will be referred to
as .:agelﬂ
If one is not interested in calculating the age distribution function ¢, based on
(2.1) one may calculate the age a by solving an advection-diffusion equation for the
so-called age-concentration field o = aC' satisfying
(5 1e]

(2.6) ~é~£=?r46+C'“V-(ua—K‘Va),
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(2.7) z'rz/ pdrT, 53/ Tddr.
Jo 0

Once the age-concentration « is known, the mean age can be retrieved from
a = &. Another approach is to write down explicitly the partial differential equation
governing the field a by using the differential equations for € and «, which leads to
the following equation (for a symmetric diffusion tensor K):

da m—aP §—aD cC.- K-

This equation is useful for theoretical understanding. From a practical point of
view, in numerical models, (2.3) and {2.6) are solved more easily than (2.8). This is
due to the fact that the latter is of a different type compared to the other two, which
are easily treated by standard numerical solvers of advection-diffusion equations (see
[10, 7] for a discussion).

In this formulation of the age theory, the distinction can be made among the age
of a single tracer, the age of an aggregate of tracers, and that of the water itself. This
makes it possible to study the fate of tracers, like CFC or oxygen (e.g., [29, 3, 19]), of
the radicactive tracers, like tritium, carbon-14 (e.g., [12, 17, 6]), or of the water. The
age of the water itself is in fact merely the age of a tracer with a unit concentration.
In this case, the previous equations are reduced (see [10]) to an expression equivalent
to the one used by [15] and [13]. It is further possible to define an artificial tracer
marking a given water mass and to follow its transport and spreading through the
system (e.g., [16]).

3. Some properties and general solutions. It is worth noting that the equa-
tions allow the superposition of solutions for the concentration C and the age concen-
tration « but not the age a.

If, for example, one has a tracer with a linear external source term P — D =
with a prescribed age of zero, giving rise to the solution C; and o and another tracer
with a source term P — D = @, with solution Cs and asy, it is easy to verify that the
solution to the problem for adequate boundary conditions with a source @) + @2 is
C =C,+Cy, o = oy +as. For age, however, the solution is not a simple superposition
but reads (C) + Ca)a = Ciay + Caan.

In the following section, we will focus on a still relatively general case of the
preceding concepts by analyzing the case of a tracer with radioactive-like decay in a
constant current field w! with isotropic diffusion K = s and a source term which
is a combination of an external supply @ and linear decay with a decay rate of 1/T
The results will thus be applicable to natural radioactive or conservative (setting
1/T — 0) tracers, or to artificial (numerical) tracers used to flag specific water masses.
Classically, for radioactive tracers, one looks at their evolution from the moment
they have been injected into the system, sc that for the external source the age-
concentration is prescribed to be zero.

In this case, the equations can be rendered nondimensional by defining

(3.1)
i t 5 z u o 4k P a
= y = — T v = ey = el "Y — . = =
Apluf| 4kflul ] Ageflul| =2 Tlu|? Al =2

I'The analysis will be extended later to a case where u = wu(t), requiring scaling by means of a
typical velocity scale so that v(t) = O(1).
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so that for a source term g (omitting the ™) the nondimensional equations read

ac 1
3.2 Ll R . T v 12
(3.2) 5 =¢-1C~v Vit V0
: aa_ 1 s
(3.3) T%—C*fa-’U'VOHrIV o,
, fa . ¢ ve -
(3.4) (_9%‘—1_‘(;7@ (’UT)'VQ‘FEV a.

We introduced a nondimensional form of the equations for the sake of clearer
mathematical presentation, but we do not have to assume that the nondimensional
equations are balanced, since our scaling is arbitrary. The diffusion term can be
completely negligible or dominant depending on the value of the diffusion coefficient
and the velocity scale. Our analysis will thus be valid for advection-dominated flows,
diffusion-dominated flows, or mixed situations. Furthermore, the decay rate can also
take any value, so that the analysis is valid for tracers which decay very rapidly within
the flow or, on the contrary, are conserved for a long time. Strictly conservative tracers
are of course obtained for v = 0. When presenting the results, we generally maintain
the nondimensional forms, but one has to bear in mind that the dimensional form
will show the dependence on velocity and on the diffusion scale.

So far, uniformity of current was not a necessary assumption, since the nondi-
mensional velocity vector v could be variable in space and time. When examining a
flow field locally (in time and space), the flow can, however, be considered locally to
be uniform. In this case, we can establish certain properties which are likely to exist
in real situations in regions where the flow is relatively uniform—a not uncommon
situation.

A simple solution for such uniform-flow equations can be found for a Dirac point
release g(z,t) = Q&(x)6(t) in ¢t = 0 into a system with zero concentration at the
initial moment:

39 Ofet) = < exp | “E exp ()
o _ 2
(3.) ) =t exp | 20 Jexo (=01,

where n = 1 for a one-dimensional (1D) problem, n = 2 for a two-dimensional (2D)
problem. and n = 3 for a point release in three-dimensional (3D) problems.

Of course, for such a release, the age a/C' is simply a = t everywhere, since the
tracer was injected only at the beginning with zero age. For 1D, 2D, and 3D cases,
it is easily verified that total tracer mass is gexp[—vt] reflecting the decay and the
initial mass injected into the system.

From the basic sclution of an instantaneous point release, one can derive the
solution in an infinite domain for any type of release (regardless of the sclution) by
using the classical convolution theorem which is merely the superposition of individual
contributions from the Dirac solutions. In other words, we can use the Green function
to calculate the general solution:

L ,\tf [ (X —V(t—t) 2_, o
(3 '-r) C(:L't) - f / (I(’.I: ) ) ‘#—ﬁ—“ y(t—t )]dt/dmf‘
RrJO

. —_—al 4

O B L

vt —1t)
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te / +opt ’ 112
. t—t N (LT U} n)]

(38) Cl(:];‘.lf) 2/ %_}e{ Tt y(t t)fdt!d$!,

' reJo A/ (t—t')

from which the age can then be retrieved as ¢ = o/C.

One can verify that if the source is independent of a coordinate in a direction per-
pendicular to the velocity vector, the solution may be integrated along this direction,
thus reducing the terms of the problem from R™ to R™~!.

3.1. Point release. For a point release (g(z,t) = 6(x)Q(t)) the integrals (3.7)
and (3.8) simplify to

t / "2
Qt —t') {(azvt)]
3.9 Clz,t) = / ex exp [—~t']dt’,
(3.9) (@.t) = Ay t, p [—t']
toys ! N2
Qi —¢ = T
(3.10) ale,d) = / Q(,_n ) exp [ i !v ) } exp [—yt'ldt’.
o vVt t
By chserving that (x — vt)?/t = =2z v+ ||z||®/t +||v||*¢, we can force the term with

the directional information =+ v out of the integrals so that, when calculating the age,
it is left out and the age field is provided by

(3.11) a(z,t) = W

Jo (||, )de
with
, Q(t—1¢ z||? ;
3.12) sl ) = Lo ep LB oy | exp ).

Not, surprisingly, since ® > 0, it is readily demonstrated that a < {. On the other
hand, we see that for a point release, the age field is isotropic around the release point,
regardless of the flow’s direction and the particular form of the release Q(t).

Another way of establishing that the age fleld is symmetric for a point release
without making use of the age concentration field a is to observe that

(3.13) C = exp[2z- v|F(r,t)

with » = ||z|. But then the “effective” advection in the age equation (2.8) is purely
radial:

574 vCe 10F

(314) 5 T Farom

where e, is the radial unit vector. This means that for a zero initial age, since the
effective advection is always radial and the diffusion isotropic, the point source will
always lead to a symmetric and isotropic age fleld. This holds even if instead of
imposing a zero age-concentration of the source, one imposes a given age on ||z| =
R, for example. Though the age field will be different in this case, it will still be
symmetric.

One may wonder whether the particular symmetry effect in the age fleld arises
from the definition of the age via the concentration distribution function and if other
definitions could lead to asymmetric age fields. Traditionally, rather than calculating
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the age by the previous method, diagnoses may be carried out on radioactive tracers
and the ratios of two different tracers. This is the way radiocarbon dating is performed
in the ocean. To see whether such an approach modifies the symmetric nature of the
radio-age field, we assume that we have two radioactive tracers C; and Cs with the
same input function but with different decay rates y; and 5. The ratio of the two
concentrations is thus

fRn fO g(T’,t') exp [*{m_m;:z—f(t—ﬁ’)}z _ VI(t _ tf)] dt'dz’

3.15 C]_(Gl’},f) w(t—t')
(8.18) Ca(z,t) (T 8 E—wvi-er o T
fRn f mn exp ey —olt =1 )]dt dx

Here the directional information cancels out for a point release, exactly as for a.
Therefore, any age calculation based on radioactive decay rates like

- e 1— _—— (%)

will have the same symmetry properties as the age defined by a/C. In particular, the
age defined by (3.16) around a local source is also isotropic.

3.1.1. Asymptotic behaviors. Though formally the solutions for the peint
release are given by integrals (3.9) and (3.10), their behavior is not straightforward to
analyze. If we assume a constant source Q(t) = g, both integrals are of the following
type (up to a multiplicative factor):

(3.17) I(p,t) = /Ot 8” exp {“ (%2 —(1+ ﬂ@ﬂ dg.

This integral has no closed analytical form, but we can obtain information re-
garding the behavior of this integral (and thus the concentration and age) by using
asympotic expansions for large ¢ or small t.

For t2 < p?(1 4+ +)~! the integral can be approximated by

t 2
CUN A [—‘;} 46 = () FT[=1 - v, 27,
0

where the incomplete Gamma function I' can also be replaced by its asymptotic
behavior for very large p?/t, in which case

t3+u 2
e {-&} .
ol t

Using this development in (3.9) and (3.10), it appears that, be it in one, two, or three
dimensions, the age fleld for the initial moments near the origin behaves, as one might
expect, like a ~ ¢,

For large t one can rewrite the integral [ as

(3.19) I(p, t) ~

o0 2 o0 2
(3.20) I= f 8" exp [—% - (1+ “/)6} dé —f 8" exp [% —(1+ "f)@:‘ de.
0 t

The first integral is tabulated in [14] in terms of modified Bessel functions K., while
in the second integral we assume p?(1 ++)~! « 2, so that one has

(3.21) Ho.)~ o) = [ 6% expl=(1 4 70] a0,
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Fic. 2. Age field for the 1D case in function of x and t; isolines start with small va
t =0 and increase toward higher values of t with intervals of 0.2.

2 [0+ K QTR

(3.22) Li(p) = ar

We can again develop the incomplete Gamma function, so that for large ¢
(3.23) I(p,t) ~ Ii(p) — (1 + )7 't" exp[—(1 +7)t).
In particular, for the 1D case, for small ¢ we obtain

3/2)

oz q,‘;( ;[;2 . qt(5,f?) I2
(3.24) Cr~e T P {—T] s B e {—T] :

(3.25) a~t.

For very large t age behaves then like

(3.26) a~ 1+ 2|z[v1++ {1 _ 1 e /eeE (1 21+ )

2(1+7) VTt 1420z T+~

From Figure 2, it appears that the steady state is rapidly reached once ¢

1533

lues for

)

> |zl

This can be explained by the fact that the dominant contribution to the integrals is
found near ¢t ~ x so that for ¢ > |||, the major contributions to the integrals are

taken into account and the transient phase has occurred.

3.2. Nonpoint sources. In two dimensions, the symmetry in upwind and

down-

wind directions remains if the sources are on a line perpendicular to the flow direction,
and in three dimensions if the sources are on a plane perpendicular to the flow di-
rection with central symmetries: In this case, ¢ is independent of the coordinate z,
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-3 2 1 ! 1 2 X

FiG. 3. Age field for the 1D case in function of z. Symmetric source (upper curve) and
downwind source g = ¢~ exp[dl] (lower curve).

along v, so that z = X + z,e,, €y-v = 1, X- e, = 0 and the integrals involved
again simplify out the terms in exp[2z,]

On the other hand, if the source term varies along the ceordinate of the veloc-
ity direction, the symmetry of the age field can be destroyed. Indeed, consider the
combination of two point sources along the current disposed symmetrically at z = 4]
with intensity ¢* and ¢~. The stationary solution (for v = 0) reads

(3.27)
_ gz = U+ 1/2expl2z—l— |z~ )] +q (Jz+ ! + 1/2)exp[2(z + 1 — |z + 1))
- gt exp[2(z — 1 — |z~ )] + ¢~ exp[2(z + | — [& + )] '

This solution is depicted in Figure 3 for identical sources and an asymmetric source
q* = q~ exp[4l].

For a symmetric source (g% = ¢7), the age is greater in the downstream direction
(x > 0), since older tracers (originating from the source ¢~ ) have been advected from
the upwind direction and add to the age of the tracer mix. When ¢+ = ¢~ exp[4l],
inspection of (3.27) shows that a(z) = a(—x). A symmetric age field is obtained
because the downwind source g% now adds a sufficient number of new tracers.

It is readily shown from the general solutions for ¢’ and o that, in general, the
age is symmetric if the source distribution satisfies

(3.28) g(z,t) = q(—x, t)e**,

4. Stationary solutions. The asymptotic developments of the preceding sec-
tion can be used to write down explicitly the stationary solutions (Table 1) of a
constant point release in one, two, and three dimensions by calculating the integrals
(3.9) and (3.10) for t — oo,

It is possible to verify that integration of 3D to 2D to 1D is compatible for sources
regardless of the corresponding direction.

Here, we show the solutions in the case of a 2D situation. As expected, the
tracer field is advected downstream with a lateral and upstream diffusion (Figure 4).
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TaBLE 1
Stationary values for the point release in one, two, and three dimensions.

C o a
1D q e[2w—'2v'1_+_‘y|rc|l q 1+2V1+7‘Iw‘u[2m—2-,m\x}] 142|z|vTFY
WAREN T+~ 2 _2(14_,‘,)

q (2@ v) g .2z V] _2 T x| K (2vTHrIz])
2D | 268 VKo (2T lel) | 26 ¥ Aol (yTFlel) | L K/

2w 1 j=dein ] 2z v} __1 —3UT el
3D %el z v]me[ VIFrizl] Ll ]_me[ +vllel]

-2 =1 0 1 2 3 x

Fic. 4. Tracer concentration fleld C' in two dimensions around the release point (0,0), with
advection to the right. Low values are black and high values white.

Similarly, the age-concentration field is influenced by advection (Figure 5), whereas
the age field exhibits isotropic behavior (Figure 6), ignoring all directional information
of the flow.

The same behavior can be observed in one and three dimensions, albeit with
differences in the behavior of the fields close to the origin: the tracer concentration
has a finite value at the origin in one dimension, a logarithmic singularity in two
dimensions, and a simple pole singularity in three dimensions. The age field also
behaves differently near the origin (Figure 7), with the greatest age in one dimension.
It can be noticed that in all cases the asvmptotic behavior for distant points is a ~
lzll/~/T+~. In the absence of decay (y = 0), in dimensional variables, age behaves
like ||z||/||w||, which is the advective age. Surprisingly, this age is also found in the
upwind direction.

5. Time-varying current field. So far, we assumed v to be a constant velocity
field, but some results can be extended to a time-varying velocity field. The general
solution of the problem can be calculated as before by defining

(5.1) v(t) = i
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R

Fi1G. 6. Age field around the release point.

where U is the typical intensity of the current. By defining in addition

—
[$1
8]

~

w(t, tg) = ; : /tv(t’)dt’

—to Js,
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Fi1G. 7. Stationary age a depending on the nondimensional distance to the release point for the
1D (upper curve), 2D (maddle), and 3D (lower curve) cases. v = 0.

the fundamental solutions for a Dirac release in space and time ¢t = t3 read

(5.3) Clat to) = ﬂ@%WMHEXp{—&U_uﬁiiyt"td)]EXp@““t_t@%
(5.4) |
al@,t,to) = (t - to)ﬁ exp [_(m - witfii(t —fo) ] exp (=7(t — to)),

and the general selution for arbitrary releases can again be obtained by convolution
integrals.

Now the term in exp[z- w] cannot be forced out of the integral because of the
dependence of w on time. This leads to the possibility of having an asymmetric age
field in a time-varying current field. To see the possible strength of this asymmetry,
we will look at the function § = a{x)a(—x)"

(5.5)
 fovo(lzl, ) exp[2ee wt,t — £)]de fi S|z, ¢") exp[—2z- w(t, ¢t — ¢")]dt”
B fot t®(|| ), ) exp[—2x- w(t, t — t)]dt [, O(|z|,t") exp[2z+ w(t, ¢ — t)]dt”
with
N QU |z |2 "
50 oiele) = L exp |- I2E e exp e

It is clear that

expmin(dz {w(t,t —t') —w(t.t—t")})] < S
5.7
57 < exp[max(dz: {w(t ¢t —t') —w(t,t —t")})],

where the min and max values are computed for all couples of ¢ and . This means
that for a given maximum, there is always a minimum which is the maximum with
changed sign (and vice versa), so that if b denotes the positive maximum, we obtain

(5.8) exp[—b] < 5§ < explb],
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(5.9) b= max(|dz- {w(t,t—¢') - w(t, t —t")}).

For very small b, the age is thus symmetric, since S ~ 1, which is the case if
|+ dw| < 1, with dw being a typical variation of the vector w.

The symmetry may, however, extend beyond this distance. Indeed, the major
contributions to the integrals are all found near the points ¢’ ~ ||z||/||w]||, but near
these points, the asymmetric contribution w(t, ¢ — ¢) — w(t,t — ¢”) is much smaller
than the estimated upper bounds, since ¢’ ~ t” if ||§w| < [Jw]|| ~ 1.

We can also mention that there is no reason for asymmetry in a specific direction
since it depends on the way w varies.

For large t', w(t, ¢ — ') — 1 (if scaling was performed appropriately). This means
that if the contribution to the integral is predominantly found in the higher values of
t', the solution will be symmetric: due to w being almost constant in this scenario,
its contribution cancels out. Since the integrand is maximum near the points where
t' ~ |jz||, for large ¢ and points far away, the solution will also tend to be symmetric,

To further analyze the problem, we focus now on a system illustrative of a tidal
current u; superimposed on a residual current up. Such a situation is typical for
coastal systems. In such cases one might ask whether a local release of radicactive
tracers at the coast (near a nuclear waste treatment plant, for example) also leads to
a symmetric age field or if the tidal motion induces asymmetry. In nondimensional
form (vy = ui/up), v = 1 4 vy cos(wt), so that

. , 2sin (%-t—) wi!
(5.10) w(t,t—-t)=1+v———~ cos wzf—? .

wt’

In view of the function sinz/z, we can estimate b ~ 4.8vz, so that for |z| < %;
the solution will be symmetric.

For the tidal system with a residual current, w will tend to a stationary value for
t' > t! several times the period of the tide, multiplied by the magnitude of the tidal
current:
(5.11) a2l

w

But for ¢,# 3 ! and for distant points, the main contribution to the integrals is near
|z ~ . so that for [|z|| 3> % and for large ¢, the main contributions to the integrals
are found around w ~ 1 and the age will be symmetric. In terms of physical variables
this implies that for points several tidal excursions away, the stationary solution will
be symmetric. But since the solution is also symmetric if ||z|| < v, a necessary
condition for the existence of asymmetry is that

(5.12) vl & @,

To analyze this problem in more detail, we have to look more exactly where an
integrand of the form

(5.13) £ exp[—|lz]|*/t - |l2o]|¢]

provides the maximum contribution to the integral: This happens around

v+ /7 1 42w

5.14 =
(5:14) 2w
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if we assume that w is dominated by its locally constant part.

The asymmetry can only be present because the value of v is different for the
integrals involved. By looking at the definition of S, we see that we are in the
presence of integrals in v = —n/2 and v = —n/2 + 1. If the contribution to the
integral in —n/2 is near ¢;, then the maximum contribution to the second integral is
near ty = t; + |[w|~2/2. The more w has changed between these two moments, the
stronger we expect the asymmetry to be. In other words, for an oscillating current
whose period is 2(t2 — t1)

(5.15) w* = 2||w|*r

an asymmetry will probably occur. Moreover, the asymmetry will be stronger if the
contribution to the integrals is near the first oscillations of w in function of ', because
for ¢t > t!, the variations are too small. The strongest variations are found for

T

2w*

(5.16) t o~

since significant changes still have to oceur for w.

For w >» w*, w rapidly tends to 1 and for ¢ > v, /w, the system tends to be
symmetric for points ||z > ¢

For w < w* the maximum contributions to the integrals take place for ¢’ near t;
and ty for which |t; — 3w <« | so that the function w is almost constant between
these two moments and the asymmetry very weak. This case may also be interpreted
by observing that for small w and t « w™t w ~ 14wy, so that we are in a situation
of a uniform current, simply because the current varies very slowly.

So we basically expect symmetry near the origin on a scale of 1/uy, far away
for scales larger than the tidal excursion and t;, while the strongest asymmetry is
expected for w' ~ 27 near the tidal excursion point.

This behavior is depicted in Figure 8 for different values of v; and w.

Finally, we can analyze the case for which ¢ = viw™! <« 1. In this case,

F(t,¢)
A

(5.17) wt,t—t)=1+¢

o . fwt wt
(5.18) F(t,t") = 2sin — ) cos wt — 5 | = 0(1),
and we can develop exponential functions for small €:

— — ETATIAY t e HIYE 4l 2
exp{ & t)t)}NeXP[M]exp{Qex tF-—e?‘F—}

t’ t Al A
(5.1 , | 2
—(x—t)? z—t o % LT @t g
mexp[——t/—— 1+2€ ﬁ" F*E 7+§ QE t’ F—E—tT 3

TFrom here on it is clear that if we integrate the solution over a tidal cycle T' = %77 by
defining an average solution

1 t+T
(5.20) ARG = T/ Clz,t,t)de,
t
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- R E o SR A IS H R e
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Fic. 8. § for the 1D case in function of (x,t). Upper left: w = 2m,v = 1 + 10 cos(wit),y = 0.
Upper right: w = 2m,v = 1 4 0.1cos(wt),y = 0. Lower left: w = 10m,v = 1 + 10 cos(wt),y = 0.
Lower right: w = 2m,v = 1 4 cos{wt),y = 0 Black indicates values below 0.99 and white above fo
1.01. Gray corresponds thus to a symmetric situation at o 1% level.

the contributions from odd power in ¢ disappear, because for odd powers of ¢, F also
appears as odd powers and the integrals

1 t+T 1 t+T
(5.21) = f cos® D (ut — wit! /2)dt = 0, = / cos?(wt — wt'/2)dt = 1/2.

T L T/
So compared to the solution for ¢ = 0, for the tidally averaged solution a multiplication
factor appears of

wt'\ 2(z - ¢')? -t/
(5.22) 1+ 2sin? (7> (mtfhg)e?

which shows that the asymmetry for the tidal average is highest in €2 rather than in e.

6. Stationary solution for the concentration distribution function c.
A particularly interesting case arises when one assumes a stationary solution in the

temporal domain, i.e., % =0.
The stationary concentration distribution equation thus reads

de
(6.1) é-‘;_p-d—‘v- (uc - K -Ve).
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Formally, this is identical to the nonstationary advection-diffusion equation for a
classical tracer. Since for numerical models, stationary solutions of time-dependent
equations are often calculated by a time-marching procedure, we might wonder whether
the formal equivalence of (2.1} could be used with a time-dependent problem. This
would allow forward integration in the 7-space, providing the concentration distri-
bution function and the stationary tracer concentration fields. This would indeed
provide an insight into the age compaosition of the tracer field.

Since the stationary tracer concentration is simply

(6.2) Gle) = /(; cla, T)dr

the knowledge of the concentration distribution function is sufficient to calculate the
tracer fleld which also obeys the classical equation

(6.3) 0=P-D-V-(uC-K -VC).

Once the concentration distribution ¢ is known, the tracer field can be calculated
by (6.2), while the tracer age a can be determined by

(6.4) a(z) = é/ﬂ Te(x, T)dr.

We would like to investigate the possibility of calculating the stationary concen-
tration distribution function by using a standard “nonstationary” advection-diffusion
solver. The question remains of how to define an “age”-dependent problem which
allows us to calculate the original stationary tracer problem. Since the nonstation-
ary tracer problem obeys the same kind of advection-diffusion equation as the same
stationary concentration distribution functions we are looking for, we simply have to
find appropriate source terms p and d, as well as initial and boundary conditions for
the concentration distribution fields, which when applied give a solution allowing us
to retrieve the stationary tracer distribution in accordance with the original problem.

If the stationary tracer C' is subjected to time-independent external source and
sink terms, as well as boundary conditions, these terms may be used to define the
“age” at the boundaries and the inputs into the system.

Examples of boundary conditions follow:

For a point release in @, with constant input Q for C, one imposes the age of the
input to be p. In this case,

(6.) P =Qb(x—x,), p=Qb(x —z,)5(r — ),

where 4 is the classical Dirac function.
For a Dirichlet boundary condition on the boundary © = x;

(6.6) Clzy) = C*(xy).
One can impose the age at that boundary to be pb(x):
(6.7) c(xp, ) = C8(ay)6 (1 () — 7).

For general flux conditions in the tracer field (n being the normal direction to the
boundary and a a time-independent coefficient)
ac

(6.8) 5 aC + F(xs).
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The choice of a boundary condition on the concentration distribution allows us to
impose the “age” ub(xs) of the external Alux F at this boundary:
(6.9) 28 _ ac + F(x)6(ub(@p) — 7).

dn

One could even decide not to impose a Dirac-like concentration distribution at
the boundaries, using any normalized distribution instead. However, for practical
purposes, one generally will look at systems where the age is prescribed as shown
here.

The initial condition on the concentration distribution function defines the origin
of the “age.”

Practically, we can thus calculate the stationary concentration distribution func-
tion by solving a time-dependent problem (where “time” is in fact “age”) with modi-
fied boundary conditions and source terms, during which the first-order moment can
be diagnosed at each “moment” (“age”), which allows us to calculate the stationary
tracer distribution as well as its age.

The concentration distribution function of the stationary problem is thus the
Green function of a classical nonstationary problem for tracer dispersions.

From a practical point of view, the use of this method applied to a 3D numerical
model allows us, by means of a single “time-” (“age-") dependent equation, to calcu-
late the stationary tracer field, its concentration distribution function, its age, and the
Green function of the stationary problem. The only modifications to the normal way
the stationary solution is calculated are the adaptations of the boundary conditions
and the necessity to integrate numerically the zeroth (6.2) and first-order moments
(6.4) with respect to “time” during numerical integration.

This is, however, easily achieved, and from the same effort, we obtain additional
insight into the physics of the problem and the way the diffusion-dispersion acts on
the concentration distribution.

6.1. Example of stationary concentration distribution functions. Here
we can use the solutions of the point release problem. Indeed, for the standard
stationary tracer with a permanent release, we have just seen that we can first solve
the nonstationary problem with a Dirac source instead of the permanent release. But
the solution of this problem is simply the Green function (3.5).

In other words, the concentration distribution function for a permanent point
release with zero age is

—(x — vr)?
(6.10) dlwyr)=C, = @ = eXP [ (2 = ) J exp (—y7).

T

Interestingly enough, this function can continue to be written as

2
(6.11)  e(z,7) = 2F U;,ci—n exp {_—“{L - T} exp (—v7) = ¥ Vo( |||, T),

VT T
so that the concentration distribution in function of 7 has the same shape given
by ®(||lz||, 7) around the release point. Only the amplitude of the distribution has
changed nonisotropically (due to the factor exp(2z- v)), so that all points with the
same distance from the source have the same shape as the concentration distribution
function regardless of the direction of the flow. For a given distance from the source,
we thus always find the same proportions of clder and newer components of the tracer
mix (though the total amounts are of course higher in downwind directions).
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To retrieve the stationary solution of the permanent release, one can use (6.2)
or use the nonstationary solution of the classical constant release problem by using
the convolution theorem with the Green function (thus adding up the individual
contributions of a series of Dirac functions):

t
(6.12) c(m):[ C, (2, Q(t — t))dt'.
40

For a time-independent source term and for ¢ — oo we retrieve indeed (6.2), which
was explicitly calculated in one, two, and three dimensions.
For the age field, one can calculate

(6.13) a(z) = i] rCydr,;
¢ Jo

and we retrieve the age fields already calculated.

7. Conclusions. The assessment of the age of a tracer or of a water mass is a
powerful and highly flexible tool to diagnose complex flow fields. In numerical studies,
tracers can be defined so as to match any specific need to assess specific time scales of
the Aow. We demonstrated, however, that counterintuitive results can emerge, such
as the isotropy of the age fleld for a point release in a uniform flow fleld, regardless
of the values of the diffusion and velocity or the discharge function.

Though asymmetric age flelds can be generated by a time-varying current (as in
a tidal system), the asymmetry is not systematic and no simple way of interpreting
them was found.

Such results suggest therefore that a proper interpretation of age fields must
always be carried out in parallel with the interpretation of the tracer field itself:
the spatial distribution of the tracer concentration helps to identify the preferential
directions of the flow while the age field allows to quantify the associated time scales.

We also presented a simple method by which a standard stationary tracer calcu-
lation can be extended so that its concentration distribution function and its age are
assessed without having to solve additional differential equations. Simple modified
boundary conditions and diagnostics allow us to solve both the initial problem of the
stationary tracer field and its associated concentration distribution function and age.
In the case of oceanographic applications, this could shed new light on simulations of
deep water tracers, for example.
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