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Abstract

Stability problems of algebraic non-equilibrium second-moment closure models have given rise to the so-
called quasi-equilibrium versions in which turbulence equilibrium is used as an additional constraint. In this
paper, we investigate reasons for the failure of the G.L. Mellor, T. Yamada [Reviews of Geophysics 20
(1982) 851] level 2.5 closure model and suggest a remedy for this. We further discuss a new non-equilibrium
closure model by V.M. Canuto, A. Howard, Y. Cheng, M.S. Dubovikov (Journal of Physical Oceano-
graphy, 2000, accepted for publication) which has proven to allow for stable calculations. All models are
then numerically tested with a simple wind entrainment experiment motivated by the H. Kato, Q.M.
Phillips [Journal of Fluid Mechanics 37 (1969) 643] laboratory experiment, with the aid of which the in-
stability of the Mellor and Yamada (1982) and the stability of the Canuto et al. (2000) model are confirmed.
The Canuto et al. (2000) model has three advantages compared to the Mellor and Yamada (1982) which are
(1) the symmetry of stability functions, (ii) a higher critical Richardson number, and (iii) that the normalised
shear stress increases with normalised shear for turbulence equilibrium. The latter advantage of the new
model causes its high physical and numerical stability. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Turbulence models; Boundary layer models; Ocean circulation models; Second-moment closure; Numerical
methods; Stratified shear flow

1. Introduction

In their historical paper, Mellor and Yamada (1974) presented a hierarchy of turbulence closure
models consisting of four levels, ranging from a rather complex Reynolds stress and heat flux
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transport model to a fully algebraic turbulence closure model. In a following publication (Mellor
and Yamada, 1982), they reviewed their models and added two important features: (i) a level 2.5
model which is fully algebraic in terms of the second moments and (ii) a length scale transport
equation, which calculates the product of turbulent kinetic energy and the macro length scale.
Since then, this specific model has been extensively applied, in large scale applications (see, Rosati
and Miyakoda, 1988) as well as in coastal applications (Blumberg and Mellor, 1987).

However, several authors have reported serious stability problems with this approach (see
Deleersnijder and Luyten, 1994 and Burchard et al., 1999). It could be shown that the specific
algebraic closure for the second moments was responsible for these instabilities, since they oc-
curred as well, when using other length scale parameterisations such as the dissipation rate
equation. A solution to the problem had already been suggested by Galperin et al. (1988) without
discussing the stability problem: to use the so-called quasi-equilibrium version of the closure for
the second moments which can be derived from the Mellor and Yamada (1982) model by ad-
ditionally assuming turbulence equilibrium only for the second-moment closure. Such quasi-
equilibrium versions have since then substituted the full versions (see e.g., Kantha and Clayson,
1994; Mellor, 2001). Galperin et al. (1988) could actually show that the use of such quasi-equi-
librium versions are not in contradiction to the use of a fully prognostic equation for the tur-
bulent kinetic energy with the source terms not being in equilibrium. Therefore, the notation
quasi-equilibrium is used. It should be noted that the term non-equilibrium, which we use here,
does only imply that the quasi-equilibrium assumption is not made. However, in order to obtain
an algebraic solution for the second moments, equilibrium assumptions have to be made for the
second-moment transport equations, see Mellor and Yamada (1982). Not applying an equilib-
rium assumption on that level would lead to the rather complex level 4 model of Mellor and
Yamada (1974). For this, see also Canuto (1994), where an equilibrium assumption is made on
the level of third-order fluxes. Such models are usually computationally too expensive for geo-
physical applications.

Recently, Canuto et al. (2000) presented a new algebraic second-moment closure model which
is not necessarily based on the turbulence equilibrium assumption. In this model, improvements
are made for the parameterisation of pressure—strain correlations as they occur in the second-
moment transport equations. In contrast to the original model of Mellor and Yamada (1982), in
which two terms are used for the Reynolds stresses and one term for the heat flux, Canuto et al.
(2000) use five and four terms, respectively. Burchard and Bolding (2000) showed that this new
model 1s numerically stable and physically sound even for the non-equilibrium version.

The aim of this paper is to investigate by means of a simple wind entrainment experiment why
the Mellor and Yamada (1982) algebraic second-moment closure is unstable, and to find remedies
for these instabilities without assuming local equilibrium of turbulence. It will furthermore be
discussed why the new Canuto et al. (2000) closure model allows for stable simulations although it
is structurally similar to the former.

2. Model equations

For the idealistic simulations carried out in this paper, mean flow transport equations only for
one momentum component u and buoyancy b are considered
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Ot — 0, (KyQu) =0, (1)
0,0 — 0.(Ky0,b) =0 (2)
with buoyancy
£ =P
Y ) 3
& (3)

where ¢ is time and z the vertical coordinate, pointing upwards. Furthermore, p is actual and p,
mean density.
Eddy viscosity K, and eddy diffusivity K; are modelled by the relations

Ky =qlSy; Ky = qlSy, 4)

where Sy, and Sy are dimensionless stability functions, ¢ the turbulent velocity scale and / the
macro length scale of turbulence.

The quantities ¢ and / are modelled here by means of the two-equation turbulence model
suggested by Mellor and Yamada (1982). The transport equations used are one for the turbulent
kinetic energy (TKE) ¢*/2 and one for the product ¢*!

af(%zﬁ) az(qzsqaz(%z)) =P +P—¢ (5)
E\P, + E3P, — (1+E2(£>2)e] (6)

with shear and buoyancy production
P. = KyS?, P,=—KuN? (7)

where N = (2,0)"? is the Brunt-Viisild frequency and S = [0.u| is the shear frequency and with
the diagnostic length scale L = xz', where k = 0.4 is the von Karman constant, and ' the distance
from the surface.

Following Galperin et al. (1988), the macro length scale is limited by the following constraint:

ar(qgl) - az(gl‘sqaz(qzl)) =1

T B = 0.53%. (8)

The relation between the macro length scale / and the dissipation rate ¢ is given by means of the
following equation:

_q
!_ﬁls' 9)

Alternatively, a transport equation for the turbulent dissipation rate ¢ could be calculated as

S
0 — 0, (ql%@zb‘) = 2; (caPs + caPy — c28). (10)

For the ¢>¢*1 model, S, = 0.2 and for the k—& model, S, = S), is used. The empirical parameters
q q p p

for the two models are given in Table 1. It should be noted that 8, and ¢,; depend on the choice
for the stability functions S, and Sy (see Burchard and Bolding, 2000).
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Table 1

Constants for the ¢°—¢*{ and the k—& models®
El EZ E} ﬁl Cel Ce3 Ce3 0
1.8 1.33 1.8 16.6/19.3 1.44 1.92 -0.4/-0.63 1.08

#The empirical parameter c.s is chosen as ¢,3 = —0.4 for the Kantha and Clayson (1994) stability functions and
c.3 = —0.63 for the Canuto et al. (2000) stability functions. The parameter 8, is §; = 16.6 for the former and 8, = 19.3
for the latter.

The surface boundary conditions which will be used here are

. i3
Kyou=uw: Kydob=0; qz = [)’? 31,,:%; | =Kkzp; 8=— (11)
KZy
with the friction velocity », and the roughness length z,. At the bottom, no-flux conditions for all

prognostic quantities will be applied.

3. Stability functions

The stability functions Sy, and Sy result from algebraic closures of the second moments, which
differ from each other by the parameterisation of the pressure—strain correlations. These corre-
lators contain the complex interaction between pressure fluctuations and velocity and density
fluctuations. In the original version of Mellor and Yamada (1982), only the return-to-isotropy
term for Reynolds stresses and turbulent heat fluxes and additionally the non-isotropic contri-
bution due to shear for the Reynolds stresses are considered. The Kantha and Clayson (1994)
model additionally considers production of turbulent heat flux by mean gradients and by buoy-
ancy. The Canuto et al. (2000) finally is the most complete by additionally parameterising shear
production, buoyancy production and vorticity for the Reynolds stresses and vorticity for the
turbulent heat uxes. Each of these extensions increases the critical Richardson number, which is
0.19 for the Mellor and Yamada (1982) model, 0.24 for the Kantha and Clayson (1994) and 0.85
for the Canuto et al. (2000) model. A too low critical Richardson number has been made re-
sponsible by Martin (1985) for too little mixing at the base of the oceanic mixed layer. It should be
noted that the eddy viscosity principle has not been used a priori for the derivation of the stability
functions. Here we present in detail two sets of the stability functions, the model by Mellor and
Yamada (1982) with the modifications by Kantha and Clayson (1994) (Section 3.1), and the new
set of stability functions derived by Canuto et al. (2000) (Section 3.2).

3.1. Model of Mellor and Yamada (1952)

The following closure for the stability functions is derived according to Mellor and Yamada
(1982) with some additions as suggested by Kantha and Clayson (1994):

ag +a1GH
1+ 51Gy + b2Gag + b3Go + bsGuy Gy

Sy = (12)
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as + aSéM + ag GH

S e e e (13)
1 +b,Gy + b,Gy + b3Gyy + bsGy Gy

with ‘

- GH for GH < Ggm,

G = { Gim,  else (14)
and

- GM for GM \<\ G}‘idmﬂ

G = {GL“‘, else (15)
with the non-dimensional buoyancy and shear numbers

lZ [2

Gy = —?Nz, Gip= ESQ. (16)
The coefficients g; and b; are defined as follows:

agy = A](] = 3C1),

a = 3A1A2(4A1 + 3A2(1 — Cz) — (1 — 3C1)(Bg(1 — Cg) —|— 4A|)),

s = Ag.

as = 18434,Cy,

ag = —94,42, (17)

b = *3A2{3A1 +Bz(1 = C3) +4A1),

by = 647,

by = 274,145(Ba(1 — C3) + 44,),

by = 184745(342(1 — C3) — By(1 — G3))
with

1 1/3 .

C =5 (1 (4:Bl®) —641/B: ) ~ 0.8 (18)

The empirical parameters may be found in Tables 2 and 3.
For C; = C; = 0, the original Mellor and Yamada (1982) stability functions are retained.
The limiting constraints suggested by Mellor and Yamada (1982) are as follows:
Gim = 0.033, Gi" =0.825 —25Gy. (19)

Table 2

Empirical parameters for the Kantha and Clayson (1994) stability functions®

Ay A B B ) Gy
0.92 0.74 16.6 10.1 0.7 0.2

“The Mellor and Yamada (1982) stability functions are retained by setting C; = C; = 0.
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Table 3
Empirical parameters for the Canuto et al. (2000) stability functions compared to the equivalent parameters derived for

the Kantha and Clayson (1994) model

adp a) - dg as 413 b| 1'72 1733 b4 —

0.6979 -9.345 - 0.74 0.9070 -4,534  -32.23 5.08 159.96 -83.59 -

So 51 87 S84 85 56 I 2 I3 Iy s

0.5168 —7.848 -0.0545 0.5412 -2.04 0.3964 -23.84  2.68 75.574 -45.48 —0.2937
Swt Sy

=093

Fig. 1. The stability functions Sy and Sy as derived by Mellor and Yamada (1982). The bold lines shows the local
equilibrium state (20), the dotted lines shows the constraint on Gy (19).

Kantha and Clayson (1994) use a somewhat stricter constraint for Gy, G'™ = 0.029.

The Mellor and Yamada (1982) stability functions Sy, and Sy are displayed in Fig. 1.

The so-called quasi-equilibrium stability functions have been introduced by Galperin et al.
(1988) and are based on the assumption of local equilibrium only in the stability functions

1 S,
1

Insertion of the right-hand side of (20) into (12) and (13) leads to the quasi-equilibrium function
of Galperin et al. (1988) (C, = C; = 0) or Kantha and Clayson (1994) (C; = 0.7, C; = 0.2).

3.2. Model of Canuto et al. (2000)

Although this model considers more terms for the pressure—strain correlations than the model
of Mellor and Yamada (1982), they are structurally quite similar. For an intensive analysis of
these new functions in comparison to others, see Burchard and Bolding (2000).
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_ So +Sléﬁ +SQGM
1+ [1GH + IzGM o= I3G,2L; B f4éHC~;M o rﬁéﬁzf :

S, M

(21)

_ sa + 55Gx + 536Gy
1+ 46Gy + Gy + Gy + GGy + 1:Gry

(22)

Sy

The empirical parameters are listed in Table 3. These stability functions should be used together
with the following realisability constraint (personal communication Vittorio Canuto)

Gi™ = 0.0673. (23)

For a limitation of Gy, see Section 4.
In contrast to the stability functions of Mellor and Yamada (1982) and Kantha and Clayson

(1994), the new stability functions are symmetric in two ways:

e Eddy viscosity and eddy diffusivity are calculated as functions of structurally the same combi-
nation of mean flow parameters, with only different empirical parameters.

e For both stability functions, normalised shear G, and normalised stratification Gy occur sym-
metrically.
This is an interesting feature of the Canuto et al. (2000) stability functions. However, the need
for such a symmetry is matter of controversial scientific discussion, since momentum is in
contrast to tracers additionally transferred by pressure fluctuations (personal communication
Lakshmi H. Kantha).

4. Investigating normalised stresses

In a boundary laver, the shear stress 7 = K,S, may be normalised as follows:

T .

_q_z 'y G,:,’[ 2 (24)
The normalised stress is fixed at the surface to t/¢* = [J’fz- 3 2 0.15 and vanishes at the stress-free
bed. Due to the continuity of the flow, t/¢* has to adopt all values in between at certain depths.

This normalised stress may be readily plotted from the right-hand side of (24) for the Mellor
and Yamada (1982) stability functions, see Fig. 2. It can be seen that the derivative of the nor-
malised stress with respect to Gy, is not monotone. This means that for fixed Gy more than one
value of G, leads to the same value for the normalised stress. It can further be seen that the line of
bifurcation points is below the equilibrium line P, + P, = ¢ such that the normalised stress t/g°
decreases there with normalised shear G),.

In order to avoid this, Gi" has to be modified such that

B, S G 2.0, (25)
Condition (25) is equivalent to

14+ b6,:Gy + b3G,2Lf

Glim —
. by + bsGy

(26)
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-0.2 -0.1 0.0 Q.1

. (26), see dotted line.

5,G2 5,Gu

Fig. 3. The normalised shear stress as functions of G and G, computed by using the Mellor and Yamada (1982)
stability functions. Left: with constraint (19), right: with constraint (26), see dotted lines.

In Fig. 3, the normalised stress with the new constraint for Gy, is shown. It can be seen that the
curve for local equilibrium, P + P, = ¢ indeed lies fully outside this new constraint for G,,. It
should be expected that using (26) instead of (19) would lead to a more stable performance of the
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Su Su

Gy

Fig. 4. The stability functions Sy, and Sy as derived by Canuto et al. (2000). The bold lines show the local equilibrium
state (20), the dotted lines show the constraint (27) on Gy with o = L.

complete model. This will be investigated in the next section by means of an idealised wind en-
trainment experiment.

For the model of Canuto et al. (2000), a similar constraint for G,, can be derived, if the terms
with the small empirical parameters s, and 5 are neglected (personal communication Vittorio
Canuto)

1+ 4Gy + Gy
tHh+ Gy

For o = 1, the Canuto et al. (2000) stability functions S), and Sy are displayed in Fig. 4. In this
case, (27) roughly ensures that the normalised stress is an increasing function of Gy, see Fig. 6. In
contrast to the Mellor and Yamada (1982) model, the equilibrium state now lies fully below the
monotonicity constraint (27). Since also larger values of o allow for stable simulations for the
surface mixed layer, see Section 5, the Canuto et al. (2000) stability functions are also shown for
o = 10, see Fig. 5. In that case, of course, monotonicity of the normalised stresses is not any more
given, sec Fig. 6.

lim __
G, =«

(27)

5. Wind entrainment experiment

An idealised wind entrainment experiment is used here in order to investigate the performance
of the stability functions discussed in the previous section. The experiment carried out here is
inspired by the laboratory experiment of Kato and Phillips (1969). In this experiment, a mixed
layer induced by a constant surface stress penetrates into a stably stratified fluid with density
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-0.4 -0.3 -0.2 0.1 0.0 0.1

Fig. 5. The stability functions S, and Sy as derived by Canuto et al. (2000). The bold lines show the local equilibrium
state (20), the dotted lines show the constraint (27) on Gy, with o = 10.

12

SuGi

-0.4 -0.3 -0.2 -0.1 0.0 0.1

Fig. 6. The normalised shear stress as functions of Gy and Gy computed by using the Canuto et al. (2000) stability
functions. The bold lines shows the local equilibrium state (20). The dotted lines show the constraint (27) on G left:
o = 1; right: « = 10.
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increasing linearly down from the surface. The water depth is assumed to be infinite. Price (1979)
suggested an empirical solution for the evolution of the mixed-layer depth D,

u
D(f) = 1.05—=1"2, 28
(2) NI (28)
where N, is the constant initial Brunt-Vaisald frequency. Following Deleersnijder and Luyten
(1994), we transform this laboratory experiment to ocean dimensions with u. = 1072 m s~! and
Ny = 1072 s~!. The simulation will be run for 30 h, such that the empirical solution for the mixed-
layer depth results in approximately 34.5 m.
The following numerical simulations of this wind entrainment experiment are carried out here:
1. Mellor and Yamada (1982) stability functions with the old constraint (19) on G, and the ¢*—¢*/
model.
2. Mellor and Yamada (1982) stability functions with the old constraint (19) on Gy and the k—¢
model.
3. Mellor and Yamada (1982) stability functions with the new constraint (26) on Gy and the
g*—q*! model.
4. Mellor and Yamada (1982) stability functions with the new constraint (26) on Gy and the k—¢
model.

0
5 f J
210 b J
15 + ]
E E g a0
~N ~N ~N
4 _25 L
4 730 L
35 Eddy viscosity 4 .35
Eddy diffusivity —— Normalised stress urb. equilibrium
-40 : . -40 ; -40 A i L
0 0.02 0.04 0.06 0 0.1 0.2 10 1 2 3 4 5
Viscosity / (m”2/s) Dimensionless number Dimensionless number
Mixed layer depth
40 Bddy viscosity Normalised stress
Bt E 0.05 v . B
b L N80 ] o
r it =] B v -
= = 004} ﬁzg(f e 0.12
g 25 S 0.035 f 2 01
-~ = L % w
A 20! £ 003 ARARARD B oos |
=2 S, 0025 o VY 1
= o 3
Z 15 Z 002} g 006
I g 0015 | € o4l
10 5 001} £ e
5 Simulated —— 0.005 - 0.02 + N=90 —— 4
Empirical - Lo ; [} —
D L L L 0 - - L L L O L n L 1 L
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time / h Time /h Time / h

Fig. 7. Simulation results of run # 1 for the wind entrainment experiment by using the Mellor and Yamada (1982)
stability functions with constraint (19) on G,,. The turbulent length scale is here calculated with the g*/-equation (6).
Shown are vertical profiles of eddy viscosity and diffusivity, normalised stress, and turbulence equilibrium (7, + B,)/ .
Furthermore, times series of eddy viscosity and normalised stress for three discrete points near the surface are shown.
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5. Canuto et al. (2000) stability functions with the constraint (27) on Gy, with & = 10 and the k—¢
model.

The time step is A7 = 100 s, and the vertical spacing is 0.5 m for all model runs. The discret-
isation is semi-implicit in time for the diffusion operator, the sink terms are discretised with the
quasi-implicit method of Patankar (1980) in order to guarantee positivity of ¢*, ¢*/ and &. For
further numerical details, see Burchard et al. (1999). For all model runs, profiles after 30 h for
eddy viscosity and diffusivity, normalised stresses and turbulence equilibrium (P, + BA,)/e, and
time series of mixed layer depth, eddy viscosity and normalised stress are shown in Figs. 7-11.

For both, the g°—¢*/ and the k& model, the stability functions by Mellor and Yamada (1982)
with the original constraint on Gy, see Eq. (19), show significant spikes in the eddy viscosity and
diffusivity profiles. This has already been shown by Deleersnijder and Luyten (1994) for the ¢*>—¢*/
model. Similar spikes are visible for the turbulence equilibrium profiles. It is striking that except
for the boundaries of the mixed layer, the expected value of (P, + F,)/¢ = 1 is never close to unity.
In contrast to that, the profiles of normalised stresses are rather smooth, with small spikes only.
The same can be observed for the turbulent kinetic energy ¢*/2 and the shear stress z. This means
that two solutions for the viscosity (and the shear) lead to the same shear stress, both of which are
physically irrelevant, since they are far from the turbulence equilibrium. The time series of vis-
cosity at three adjacent grid points about 5 m below the surface show that there are some os-
cillations in time with a period of the order of hours, much longer than the time step. The solution
seems to be smooth in the beginning, but at a certain point, a bifurcation for the viscosities sets on

0 T T T 6] 0
~
o =" : ol
10 F -10 -10
15 — -15 -15 |
E — 1t | H L E 3
5 20 1 o -20 = 20
25 14 25 -25
30 F 30 =30
35 ¢ Eddy viscosity 35 . 35 b
Eddy diffusivity —— Normalised stress Turb. equilibrium
40 ' : : 40 : -4y e SRR
0 0.02 004 006 0.08 0 0.1 0.2 ;1012345678 9101112
Viscosity / (m*2/s) Dimensionless number Dimensionless number
Mixed layer depth
40 s > 2 . ; Bddy viscosity Normalised stress
351 0.05 0.14 |
0.045 o]
30 r 2 L i
> 004 2 B2 .
g 2571 S 0.035 | 2 01t aw 8
a 20 £ 003y £ 008 ||
2 | 0025 T ;
15 Z 002} g 006 1y
10 + 2 0.015 S 004 |
/ . > 001 f a N=89 ——
5 Hf Simulated 1 I 0.02 t N=90 —— |
‘ Empirical —— Bigeo I
0 ! : : P ; A 0 f \ . . . 0 . 3 ; : ;
0 ) 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time / h Time / h Time /h

Fig. 8. Simulation results of run # 2 for the wind entrainment experiment by using the Mellor and Yamada (1982)
stability functions with constraint (19) on Gj. The turbulent length scale is here calculated with the e-equation (10).
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Fig. 9. Simulation results of run # 3 for the wind entrainment experiment by using the Mellor and Yamada (1982)
stability functions with constraint (26) on G,;. The turbulent length scale is here calculated with the ¢*/-equation (6).

(after about 3 h). The k—¢ model performs numerically more stable, in contrast to the g*>—¢*/ model
which exhibits strong oscillations during the first 6 h after the sudden onset of surface stress. For
both models, the empirical mixed layer depth is underestimated by a few meters.

When using the new constraint (26) instead of the original constraint (19), the bifurcation
problem does not arise any more, and consequently, all profiles are rather smooth, for both the
¢°—¢*! and the k—& model. Only a small spike remains for the viscosity/diffusivity profiles which
can be removed by further decreasing Gi™. At about z = —20 m, an edge is visible for the eddy
viscosity/diffusivity profiles, below which the ¢°I equation is replaced by the length limitation (8).
For further discussion of this feature, see Burchard (2001). Since for both models, turbulence 1s
close to equilibrium over the whole mixed layer, it is not the original stability functions which are
used here, but only the constraint (26). Both models show now a good agreement with the em-
pirical mixed layer depth, although the results for the ¢°—¢*1 model still heavily oscillate during the
first hours of simulation. These instabilities can be damped out by using smaller time steps.

So far, the results are consistent with the expectation that monotonic behaviour of normalised
stresses with respect to Gy would avoid the bifurcation problem.

However, an inspection of the results obtained with the Canuto et al. (2000) stability functions
contradicts this. As Fig. 11 demonstrates, results are stable even if the monotonicity constraint is
strongly violated by setting « = 10 in (27).

The differences of the results for « =1 and « = 10 are small and only visible near the
boundaries of the mixed layer. Values much larger than o = 10 are not possible since then
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Fig. 10. Simulation results of run # 4 for the wind entrainment experiment by using the Mellor and Yamada (1982)
stability functions with constraint (26) on Gy,. The turbulent length scale is here calculated with the e-equation (10).

negative values for the stability functions would be computed. The reason for the only small

differences between the cases for « = 1 and o = 10 is, that for both cases, the equilibrium state

(P + P,)/e = 11s below the constraint on Gy,. Since (P, + 5, )/e < 1 over the whole water column,

this has the consequence that the normalised stresses everywhere increase with increasing shear.
Finally, the implications of five different sets of stability functions on mixing are demonstrated

in Fig. 12, both, for the k—& and the ¢°>~¢*/ model. The following observations can be made:

e The quasi-equilibrium functions by Galperin et al. (1988) and by Kantha and Clayson (1994)
compute only slightly different results due to the fact that only a few model parameters are
changed, see Section 3.1.

e The stability functions by Mellor and Yamada (1982), modified by the constraint (26) are in
some regions close to their quasi-equilibrium version, the Kantha and Clayson (1994) model,
because the same empirical constants are used. However, in the region of strongest mixing sig-
nificant differences occur due to the limitation Eq. (25) on Gy,.

e The non-equilibrium and the quasi-equilibrium versions of the Canuto et al. (2000) stability
functions are basically identical which is due to the TKE balance in the mixed layer. Only
for the g*~¢°I model, strong oscillations occur at the base of the mixed layer. A careful analysis
proves that these are caused by the length scale limitation (8) which has to be used in the ¢>-¢*/
model. Burchard (2001) has recently shown that this length scale limitation can be avoided if
much larger values for the empirical parameter £5 are chosen for stable stratification. This in-
crease of £3 to a value of about 5 results in a macro length scale / which is equivalent to the
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Fig. 11. Simulation results of run # 5 for the wind entrainment experiment by using the Canuto et al, (2000) stability
functions with constraint (27) on Gy, with o = 10. The turbulent length scale is here calculated with the e-equation (10).
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Fig. 12. Profiles of eddy diffusivity after 30 h of wind entrainment simulated with the k—& model (left panel) and with the
g*—g*{ model (right panel) using different sets of stability functions, which are the Galperin et al. (1988) and the Kantha
and Clayson (1994) quasi-equilibrium stability functions, the Mellor and Yamada (1982) stability function with
modified constraint (26), and the full and the quasi-equilibrium versions of the Canuto et al. (2000) stability functions.
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length scale from (8), if turbulence is in equilibrium, see Burchard (2001). After these physically
motivated modifications, all oscillations vanish.

6. Discussion and conclusions

The persistent bifurcation problem of the Mellor and Yamada (1982) stability functions (with
the Kantha and Clayson (1994) modification of the empirical parameters) could be demonstrated
by means of using two different two-equation models, the ¢°~¢*! and the k— model. This confirms
the findings of Deleersnijder and Luyten (1994), who used the original Mellor and Yamada (1982)
version for their investigation. This clearly shows that these stability functions are not at all useful
neither in their original nor in the modified form. In some numerical models, these instabilities
have been damped out by applying a Laplacian filter on the normalised shear Gy, see Pacanowsky
et al. (1991). However, this manipulation proves not to work for high-resolution one-dimensional
models. As shown in the present paper, it seems to be a solution of the problem to constrain the
stability functions such that for increasing shear, the normalised shear stress does not decrease.
This however has the consequence that the turbulence equilibrium state, which is closely ap-
proximated inside the mixed layer here, lies fully outside this new constraint, i.e., the constraint is
always applied. This, of course, is a strong argument for using the quasi-equilibrium versions
suggested by Galperin et al. (1988) and Kantha and Clayson (1994), in which the shear depen-
dence of the stability functions is eliminated by inserting the turbulence equilibrium condition
(20). Deleersnijder and Luyten (1994) could demonstrate the physically sound behaviour for the
Galperin et al. (1988) stability functions. On the other hand, the quasi-equilibrium approximation
is an assumption which disregards the additional physical information contained in a non-equi-
librium algebraic second-moment turbulence closure. These advantages will be the more impor-
tant, the more the flow is out of equilibrium, for example in situations of strong acceleration or in
the entrainment region below a convective boundary layer. Thus, there are good arguments for
constructing non-equilibrium algebraic second-moment turbulence closures which allow for stable
numerical calculations. However, there are relevant processes in the ocean such as deep con-
vection which cannot be reproduced in detail by the non-equilibrium models discussed here.

In contrast to the Mellor and Yamada (1982) stability functions, the Canuto et al. (2000)
stability functions provide stable numerical calculations. This is obviously connected to the fact
that the equilibrium state of turbulence, (P, + P,)/¢ =1 lies in a region where normalised shear
stress increases with normalised shear, see Fig. 6. For the Mellor and Yamada (1982) stability
functions, just the opposite happens: For turbulence equilibrium, normalised shear stress
decreases with normalised shear, see Fig. 3. This physically more sound behaviour of the Canuto
et al. (2000) stability functions is due to the higher number of terms considered for the param-
eterisation of the pressure-strain correlations (see also Canuto, 1994) with the additional con-
sequence of symmetric stability functions and a significantly higher critical Richardson number.

It is obvious from Fig. 12 that the ¢>~¢?/ model computes less stable results than the k—& model.
This could be caused by the way how this model is numerically discretised here. However, the fact
that all oscillations vanish after replacing the length scale limitation (8) by a physically motivated
increase of the empirical parameter £5 for stable stratification, see Burchard (2001), suggests that
this limitation is responsible for the instabilities. It should be noted that this modification has
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already been suggested by in 1988 by Lakshmi H. Kantha in an unpublished manuscript (On some
aspects and applications of second-moment closure, Atmospheric and Oceanic Sciences Program,
Princeton University, 167 pp., 1988). This approach has however not been further followed by
Lakshmi H. Kantha and co-workers, perhaps because of the acceptable performance of the
original, unmodified version with length scale limitation instead of a higher value for E;.
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