OCEANOGRAPHIC PROCESSES OF CORAL REEFS

Physical and Biological Links in the Great Barrier Reef

Edited by
Eric Wolanski, Ph.D., FTSE
Australian Institute of Marine Science
Townsville, Queensland, Australia

CRC Press
Boca Raton London New York Washington, D.C.
Foreword

I have maintained a lifelong interest in the Great Barrier Reef for more than 25 years. I have seen many of the aspects of the function of the reef in action and have been a witness to its ability to recover from damage.

While progress in understanding the ecosystem continues, we must protect the Great Barrier Reef and the impact of various forms of runoff from clearing land.

The current gene pool is imperatives if there is to be some form of biological persistence and future discussion and action.

© 2001 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0833-X
Library of Congress Card Number 00-048569
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper
Contents

Note: A CD-ROM containing figures and animations accompanies this book. Readers can access the contents on this CD-ROM by opening the file default.htm. If any problem occurs, instructions on accessing this CD-ROM can be found in the file help.htm.

Foreword
The Right Honourable Malcolm Fraser, A.C., C.H.

Introduction
Oceanographic Processes of Coral Reefs
David Suzuki

Chapter 1
The Place of Science and Technology in the Wise Management of the Great Barrier Reef. 1
Joe Baker

Chapter 2
Physics–Biology Links in the Great Barrier Reef. 7
Eric Wolanski

Chapter 3
Landcover and Water Quality in River Catchments of the Great Barrier Reef Marine Park 19
Andrew K.L. Johnson, Robert G.V. Bramley, and Christian H. Roth

Chapter 4
Runoff of Terrestrial Sediment and Nutrients into the Great Barrier Reef World Heritage Area 37
Miles Furnas and Alan Mitchell

Chapter 5
Water Circulation in Mangroves, and Its Implications for Biodiversity 53
Eric Wolanski, Yoshihiro Mazda, Keita Furukawa, Peter Ridd, Johnson Kitheka, Simon Spagnol, and Thomas Stiegitz

Chapter 6
Muddy Coastal Waters and Depleted Mangrove Coastlines—Depleted Seagrass and Coral Reefs. 77
Norman C. Duke and Eric Wolanski
Chapter 7
The Effects of Siltation on Tropical Coastal Ecosystems .. 93
Miguel Fortes

Chapter 8
Modelling and Visualising Interactions between Natural Disturbances and
Eutrophication as Causes of Coral Reef Degradation .. 113
Laurence J. McCook, Eric Wolanski, and Simon Spagnol

Chapter 9
Biodiversity on the Great Barrier Reef: Large-Scale Patterns
and Turbidity-Related Local Loss of Soft Coral Taxa .. 127
Katharina Fabricius and Glenn De'ath

Chapter 10
River Plume Dynamics in the Central Great Barrier Reef 145
Brian King, Felicity McAllister, Eric Wolanski, Terry Done,
and Simon Spagnol

Chapter 11
Connectivity in the Great Barrier Reef World Heritage Area—
An Overview of Pathways and Processes ... 161
Mike Cappo and Russell Kelley

Chapter 12
A Model of the Ecosystem, and Associated Penaeid Prawn
Community, in the Far Northern Great Barrier Reef 189
Neil A. Gribble

Chapter 13
The Effects of Water Flow around Coral Reefs on the Distribution
of Pre-Settlement fish (Great Barrier Reef, Australia) 209
John H. Carleton, Richard Brinkman, and Peter J. Doherty

Chapter 14
Topographic Steering by Coral Reef Assemblages .. 231
Simon Spagnol, Eric Wolanski, and Eric Deleersnijder

Chapter 15
Environmental Factors Influencing the Activity of Black Marlin 237
Peter Speare and Craig R. Steinberg

Chapter 16
Ocean Nutrients to Sediment Banks via Tidal Jets and Halimeda Meadows 255
Edward A. Drew

Chapter 17
Climate Variability at
Janice M. Lough

Chapter 18
The Sea Surface Temp
Reef during the Cora
William Skirving and

Chapter 19
The Challenges of Cu
Ian M. Dutton, Dietri

Chapter 20
Will the Great Barrie
Frank H. Talbot

Index ..
Chapter 17
Climate Variability and Change on the Great Barrier Reef 269
Janice M. Lough

Chapter 18
The Sea Surface Temperature Story on the Great Barrier Reef during the Coral Bleaching Event of 1998 301
William Skirving and John Guinotte

Chapter 19
The Challenges of Coral Reef Management in Indonesia 315
Ian M. Dutton, Dietrich G. Bengen, and J. Johnnes Tulungen

Chapter 20
Will the Great Barrier Reef Survive Human Impact? 331
Frank H. Talbot

Index 349
14 Steering by Coral Reef Assemblages

Simon Spagnol, Eric Wolanski, and Eric Deleersnijder

CONTENTS

Introduction .. 231
Methods ... 232
Results .. 233
Conclusion ... 233
Acknowledgments ... 234
References ... 234

INTRODUCTION

The Great Barrier Reef (GBR) (Figure 1) is characterised by a juxtaposition of regions of low reef density (where the reefs block only 10% of the length along the shelf) and high reef density (where the reefs block about 90% of the length; Pickard et al., 1977). Each of these regions is a few hundred kilometres in length. A large spring-neap tide cycle exists on the GBR. Wolanski (1994) coined the term “sticky water” to explain why regions of high reef density may be less permeable to low-frequency currents at spring tides than at neap tides due to purely physical reasons. Wolanski and Spagnol (2000) further investigated this effect numerically. They used the two-dimensional model of King and Wolanski (1996) for a model barrier reef. In this idealised bathymetry the reefs were assumed to be rectangular. Also, the prevailing tidal and mean currents were parallel to each other. The prevailing currents were oriented perpendicular to the longest sides of the rectangles. To illustrate the blocking effect, passive tracers were seeded upstream of the matrix of reefs. Only half as much tracers filter through an ideal model reef matrix at spring tides than at neap tides; the rest was deflected sideways. This deflection was due to energy dissipation by bottom friction and island wakes. Further investigation into this effect for a realistic bathymetry and realistic currents could not be carried out due to lack of high-resolution bathymetry data for the study region.

In this study, the work of Wolanski and Spagnol (2000) is extended to investigate the currents flowing through and around a high reef density area in the central GBR. In this area the spring and neap tide variability is pronounced, with the prevailing tidal currents oriented perpendicular to the mean current (the East Australian Current).
METHODS

The field data were described by Wolanski and Spagnol (2000). In summary, the field study was carried out along a cross-shelf transect on the outer shelf of the central GBR (see Figure 1). The transect passes between Bowden Reef and Darnley Reef. North of Bowden Reef, the reef density is low, i.e., the reefs block about 10% of the distance along the shelf. South of Bowden Reef the reef density is high, i.e., the reefs block about 90% of the length along the shelf. Offshore, in the adjoining Coral Sea, the net flow is southward with the East Australian current (Wolanski, 1994). In this area the tidal currents at the shelf break are mainly oriented cross-shelf.

Vector-averaging Aanderaa and InterOcean S4 current meters were deployed along a cross-shelf transect at sites A to D (Figure 1) from January to March 1994. Table 1 summarizes the water depth and immersion depths of the meters. All current meters and the tide gage recorded 30-min averaged currents. The water depth on the shelf varies between 40 and 100 m. In this region only the crest of the reefs come out of water at low spring tides.

CTD data were obtained at each mooring site at moorings' deployment and recovery.

Tidally predicted currents were calculated from field data using tidal harmonic analysis. The tidally predicted currents include the mean current over the whole period of observations. The residual currents were calculated as the difference between the observed and tidally predicted currents. The wind-driven currents were calculated as the linear fit between wind and residual currents.

The results from the field and the model were visualised using OpenDX, formerly known as Data Explorer (Galloway et al., 1995).

The depth-averaged two-dimensional model of King and Wolanski (1996) was used to calculate the currents in this region including the tidal currents. The model domain is shown in Figure 2; it was 169 km long and 119 km wide. The grid size was 500 m, the resolution at which bathymetric data were available. The forcing includes the tides, the wind, and the East Australian Current, the latter being forced by prescribing mean long-shelf and cross-shelf mean water slopes. These slopes were calculated from a large-scale model of the circulation in the GBR (R. Brinkman, unpublished data). The trajectories of water-borne tracers were predicted from these

<table>
<thead>
<tr>
<th>Site</th>
<th>Water Depth (m)</th>
<th>Elevation (m) of Current Meters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>37</td>
<td>10 and 18</td>
</tr>
<tr>
<td>B</td>
<td>55</td>
<td>10 and 30</td>
</tr>
<tr>
<td>C</td>
<td>65</td>
<td>20</td>
</tr>
<tr>
<td>D</td>
<td>114</td>
<td>38</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

RESULTS

The CTD data suggests two days of and spring tide: southward current region of high n and the wind-driven happens when i neap tides (Anu passage between the reef matrix offshore or inshore).

The model 4 m (Animato) spring-neap tides

What is striking both the tidal amplitudes at spring tides, layer effect develops from a tidal bore 2 km wide. Oe matrix thus becoming toward the east at spring tides.

This block of water is released up the plume spreads sideways around reefs for water different at spring tides.

CONCLUSIONS

The variability of spatial and temporal studies has connectivity by recruitment of Carleton et al.
data using the Lagrangian advection-diffusion model described by Oliver et al. (1992) for which the eddy-diffusion coefficient was set to 3 m3 s$^{-1}$.

RESULTS

The CTD data show vertically well-mixed conditions in salinity and temperature.

Two days of current data are shown in Animations 1 and 2 for, respectively, neap and spring tides. As noted also by Wolanski and Spagnol (2000), there was a net southward current of about 0.15 to 0.2 m s$^{-1}$ at both inshore and offshore ends of the region of high reef density (sites A and D). During that time calm weather prevailed and the wind-driven currents were negligible. These two animations illustrate what happens when in calm weather a net current meets a region of high reef density. At neap tides (Animation 1) the currents at site B pointed for several hours toward the passage between Old and Darnley Reef. Hence, the current was able to filter through the reef matrix. However, at spring tides (Animation 2) the currents were deflected offshore or inshore and largely flowed around, instead of through, the reef matrix.

The model was run for two tidal regimes, a neap tide of 2 m and a spring tide of 4 m (Animations 3 and 4, respectively). Clearly the model reproduced well the spring-neap tide variability.

What is striking in these animations is the evidence of topographic steering of both the tidal and mean currents. At neap tides, tidal and mean currents are of similar magnitude and the currents are able to filter through the reef passages. However, at spring tides, the tidal currents are stronger than the mean currents and a boundary layer effect develops. By this process the water entering the reef passage originates from a tidal boundary layer along the upstream side of the reef. This layer is about 2 km wide. Outside of this layer the water is deflected around the reef. The reef matrix thus becomes impermeable to the bulk of the water upstream; this water moving toward the reef assemblage with the East Australian Current is deflected sideways at spring tides.

This blocking effect is made obvious by the evolution of a plume of passive tracers released upstream from the area of high reef density. As shown in Animation 5 the plume spreads and diffuses through the reef at neap tides. However, it is deflected sideways around the reef at spring tides (Animation 6). Thus the connectivity of reefs for water-borne larvae (crown-of-thorns starfish, coral, and fish) is quite different at spring tide and at neap tides.

CONCLUSION

The variability of reef density and marked spring neap tidal cycle serves to introduce spatial and temporal variability in the water circulation through the GBR that previous studies have neglected. This has profound implications for understanding the connectivity between reefs and the degree of self-seeding of reefs. Studies of reef recruitment of larvae have focused on individual reefs (see a literature review in Carleton et al., Chapter 13, this book) and assumed either that larvae are available...
from upstream or that the currents around a reef can be studied independently from other reefs. Previous reef connectivity studies (see a review in Wolanski & Spagnol, 2000) have not considered the blocking effect detailed in this chapter. All these respective assumptions thus may be invalid in an area of high reef density at spring tides; therefore the conclusions from these studies may also be invalid for high reef density areas.

It is suggested that studies of reef recruitment and connectivity be initiated for high reef density areas. This is important because these high reef density areas occupy about half of the GBR.

ACKNOWLEDGMENTS

This research was supported by the Australian Institute of Marine Science. The bathymetric data were supplied by TESAG, James Cook University. Eric Deleersnijder is a Research Associate with the National Fund for Scientific Research of Belgium.

REFERENCES

Steering by Coral Reef Assemblages

independently from Olanski & Spagnol, chapter. All these density at spring fields are valid for high reefs.
scinity be initiated for reef density areas

FIGURE 1 Three-dimensional view of the area around Old Reef in the central region of the GBR. This view also shows the mooring sites. The view is from the north looking south. Australia is to the right and the Coral Sea to the left. The view is vertically distorted, mean depth around the reefs is 40 to 60 m, and the width of the outer shelf where reefs are scattered is about 50 km.

FIGURE 2 Bathymetry of the model domain of the central region of the GBR. The area shown in Figure 1 is a subset of this figure.

ANIMATION 1 Three-dimensional visualisation of the measured currents at the mooring sites during neap tides and calm weather. The red arrows indicate the tidally predicted currents and the blue arrows the wind-driven currents (the latter are negligible). Local time is indicated at the bottom. Australia is to the right and the Coral Sea to the left. The view is vertically distorted, mean depth around the reefs is 40 to 60 m, and the width of the outer shelf where reefs are scattered is about 50 km.

ANIMATION 2 Visualization of the measured currents during spring tides and calm weather. The red arrows indicate the tidally predicted currents and the blue arrows the wind-driven currents (the latter are negligible). Local time is indicated on the bottom. Australia is to the right and the Coral Sea to the left. The view is vertically distorted, mean depth around the reefs is 40 to 60 m, and the width of the outer shelf where reefs are scattered is about 50 km.
ANIMATION 3 Visualization of the predicted currents near Old Reef at neap tides in calm weather, during one tidal cycle.

ANIMATION 4 Visualisation of the plume of waterborne tracers released upstream of Old Reef at neap tides, no wind.

ANIMATION 5 Visualisation of the plume of waterborne tracers released upstream of Old Reef at neap tides, no wind.

ANIMATION 6 Visualisation of the plume of waterborne tracers released upstream of Old Reef at spring tides, no wind.

Peter Speare

CONTENTS

Introduction
Methods
Catch and Eff
Tidal Data
Wind and SS
Current Data
Coral Sea Data
Results
Interannual Variation
Coral Sea Circulation
Seasonal Correlation
Daily Activity
Tides
Moon
Winds
Water Temperature
Currents
Discussion
Acknowledgment
References

INTRODUCTION

Information on the utilization of resources can help fishers to target regional and seasonal factors influencing the distribution of pelagic fishes.