THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN

The “Biogeographic Atlas” is a contribution to the SCAR programmes Ant-ECO (State of the Antarctic Ecosystem) and AnT-ERA (Antarctic Thresholds- Ecosystem Resilience and Adaptation) (www.scar.org/science-themes/ecosystems).

Edited by:
Claude De Broyer (Royal Belgian Institute of Natural Sciences, Brussels)
Philippe Koubbi (Université Pierre et Marie Curie, Paris)
Huw Griffiths (British Antarctic Survey, Cambridge)
Ben Raymond (Australian Antarctic Division, Hobart)
Cédric d’Udekem d’Acoz (Royal Belgian Institute of Natural Sciences, Brussels)
Anton Van de Putte (Royal Belgian Institute of Natural Sciences, Brussels)
Bruno Danis (Université Libre de Bruxelles, Brussels)
Bruno David (Université de Bourgogne, Dijon)
Susie Grant (British Antarctic Survey, Cambridge)
Julian Gutt (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven)
Christoph Held (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven)
Graham Hosie (Australian Antarctic Division, Hobart)
Falk Huettmann (University of Alaska, Fairbanks)
Alix Post (Geoscience Australia, Canberra)
Yan Ropert-Coudert (Institut Pluridisciplinaire Hubert Curien, Strasbourg)

Published by:
The Scientific Committee on Antarctic Research, Scott Polar Research Institute, Lensfield Road, Cambridge, CB2 1ER, United Kingdom (www.scar.org).

Publication funded by:
- The Census of Marine Life (Albert P. Sloan Foundation, New York)
- The TOTAL Foundation, Paris.

The “Biogeographic Atlas of the Southern Ocean” shared the Cosmos Prize awarded to the Census of Marine Life by the International Osaka Expo’90 Commemorative Foundation, Tokyo, Japan.

Publication supported by:
- The Belgian Science Policy (Belspo), through the Belgian Scientific Research Programme on the Antarctic and the “biodiversity.aq” network (SCAR-MarBIN/ANTABIF)
- The Royal Belgian Institute of Natural Sciences (RBINS), Brussels, Belgium
- The British Antarctic Survey (BAS), Cambridge, United Kingdom
- The Université Pierre et Marie Curie (UPMC), Paris, France
- The Australian Antarctic Division, Hobart, Australia
- The Scientific Steering Committee of CAML, Michael Stoddart (CAML Administrator) and Victoria Wadley (CAML Project Manager)

Mapping coordination and design: Huw Griffiths (BAS, Cambridge) & Anton Van de Putte (RBINS, Brussels)

Editorial assistance: Henri Robert, Xavier Loréa, Charlotte Havermans, Nicole Moortgat (RBINS, Brussels)

Printed by: Altitude Design, Rue Saint Josse, 15, B-1210 Brussels, Belgium (www.altitude-design.be)

Lay out: Sigrid Camus & Amélie Blaton (Altitude Design, Brussels).

Cover design: Amélie Blaton (Altitude Design, Brussels) and the Editorial Team.

Cover pictures: amphipod crustacean (Epimeria rubrieques De Broyer & Klages, 1991), image © T. Riehl, University of Hamburg; krill (Euphausia superba Dana, 1852), image © V. Siegel, Institute of Sea Fisheries, Hamburg; fish (Chaenocephalus sp.), image © C. d’Udekem d’Acoz, RBINS; emperor penguin (Aptenodytes forsteri) G.R. Gray, 1844), image © C. d’Udekem d’Acoz, RBINS; Humpback whale (Megaptera novaeangliae (Borowski, 1781)), image © L. Kindermann, AWI.

Online dynamic version:
A dynamic online version of the Biogeographic Atlas is available on the SCAR-MarBIN / AntaBIF portal: atlas.biodiversity.aq.

Recommended citation:
For the volume:

For individual chapter:

This publication is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
6.9. Southern Ocean Euphausiids

Janine Cuzin-Roudy1, 2, Jean-Olivier Irisson1, 2, Florian Penot1, 2, So Kawaguchi3 & Carole Vallet4

1 Sorbonne Universités, UPMC Univ Paris 06, UMR 7093, LOV, Observatoire océanologique, F-06230, Villefranche-sur-Mer, France
2 CNRS, UMR 7093, LOV, Observatoire océanologique, F-06230, Villefranche-sur-Mer, France
3 Australian Antarctic Division, Channel Highway, Kingston Tasmania, 7050, Australia
4 Université d’Artois, Laboratoire d’Océanologie et de Géosciences, UMR 8187, Wimereux, France

1. Introduction

1.1. The family Euphausiidae

With 85 species, known since ancient times to be present with baleen whales in Atlantic ocean and Mediterranean Sea (Pliny’s Naturalis Historiae, circa AD 77-79), they were named “kill” (whale food) by Nordic whalers. Euphausiidae belong to Crustacea, Malacostraca, Eucarida, Euphausiacea (Martin & Davis 2001) and are morphologically close to Mysida and decapod Natantia, both in number and morphology (Thiriot-Quiévreux et al. 1998).

With the aim to relate the speciation of Antarctic and sub-Antarctic euphausiid species to the formation of the actual complex structure of the Southern Ocean (SO) through geological times, Zane & Patarnello (2000), suggested that the formation of the convergence at the northern limit of the Polar Front (PF) may have played a role in the separation of Euphausia superba and E. crystallorophias from the ancestor of E. frigida and E. vallentini, during a similar period (27.2 to 24.8 Mya). Jarman et al. (2000) proposed a similar period (27.2 to 24.8 Mya). These results about euphausiid phylogeny have been revised by Tarling et al. (2010).

1.2. Southern Ocean species of Euphausiidae: diversity and biology

Mauchline & Fisher (1969), Mauchline (1980) have given the list and the global distribution of the 86 Euphausiacea species, among which 85 belonging to Euphausiidae. Baker et al. (1990) have produced a detailed key for their determination. Kirkwood (1982) proposed keys and maps of latitudinal distribution for 23 sub-Antarctic and Antarctic euphausiid species, including larval stages (nauplius I and II, calyptopis I to III, metanauplius and furcula I to VI) for the principal species (Euphausia crystallorophias, E. frigida, E. superba, E. tricantha and Thysanoessa macrura).

The biological principal characteristics of the 13 species represented in the data base are summarised in Table 1, with the corresponding references. The Euphausia species show similar traits concerning morphology, life cycle, behaviour (swarming, migrating), diet, reproduction and predators, but vary widely for adult size, life span, and various adaptations to the range of temperature of the SO.

Genus Euphausia Dana, 1852

E. crystallorophias Holt & Tattersall, 1906

This coastal species lives in cold water (below 0°C) and under ice-cover. Behaviour is gregarious in the neritic zone and swimming in the top 500 m of the water column on the shelf. Other biological characteristics are given in Table 1 with references.

E. frigida Hansen, 1911

Aggregating and performing diel vertical migrations (from 250–500 m depth by day to 50 m by night), the species resides in waters warmer than 0°C and has not been found under pack ice.

E. longirostris Hansen, 1908

It is the largest euphausiid species. Adults reach 60 mm and over at the end of their long (5 to 7 years) life cycle. E. superba is the most studied euphausiid species in the SO because its abundance and of an evident major role in the SO food web. Its biology and distribution are well documented since Bargmann (1945) and Marr (1962).

E. tricantha Holt & Tattersall, 1906

This species performs diel vertical migrations, from 750 m depth at day to 250 m at night, but does not form large swarms and is not recorded as prey for whales.

E. vallentini Stebbing, 1900

Swarming behaviour and diel vertical migrations from 100 m to 250 m depth by day, to near surface waters at night. Potential preys for small predators (Table 1).

Genus Nematoscelis G.O. Sars, 1883

N. megalops G.O. Sars, 1883

This species performs diel vertical migrations down to 300 m at night and is carnivorous, feeding preferentially on copepods, Oithona sp. Its distribution extends north in the Pacific and Indian Ocean and is found in north Atlantic.

Genus Thysanoessa Brandt, 1851

The scarcity of Thysanoessa records in the SO appears linked to the difficulty to observe the specific characteristics of this small, fragile, species (antennules and elongated predatory legs), which are generally damaged in the net catches. The species determination has to be done by checking the proximal and terminal processes of the petasma in males (Kirkwood 1982) and the small body size of T. vicina reproducing females compared to larger mature females of T. macrura (J. Cuzin-Roudy unpubl. obs.). When recognised, their abundance in the samples raises a doubt about the apparent rarity of the species on the distribution maps, minimising its importance in the diet of top predators and for fisheries.

T. gregaria G.O. Sars, 1883

Most of its distribution is also situated north of the Sub-Antarctic Front (SAF). T. macrura G.O. Sars, 1883

Aggregating and migrating, the species has an early reproduction in spring, is a prey for whales and is the most common, abundant and widespread circumpolar Southern Ocean species.

T. vicina Hansen, 1911

A small species (max. length: 17 mm), with an aggregating behaviour. Abundant in catches with T. macrura, it is also a prey for whales. In former records, the species was found occasionally from 50° to 65°S, in the Polar Front (PF) and SAF, and more abundantly east of Falkland Islands, South of New Zealand and off Kerguelen Islands (Mauchline & Fisher 1969, Mauchline 1980), but often not distinguished from T. macrura and T. gregaria.

1.3. General pattern of euphausiid distribution

The present study concerns 13 species of krill living in the Southern Ocean, from which a large amount of data was collected during the last decades by 11 institutions from 7 nations (Table 2). Put together in an international data base, the whole data set cumulates information about the distribution of 13 species living in various sectors of the SO.

The overall distribution of the different species has been related to the circumpolar structure of the Southern Ocean water masses and currents (Bé et al. 1969, Kirkwood 1982) and to the sea-ice presence in the Antarctic Ocean.

Photo 1. Euphausia superba Dana, 1850. Pelagic female krill feeding on summer phytoplankton. Image © V. Siegel, Thünen Institut für Seefischerei, Hamburg.
The aim of the present study is to better understand which environmental conditions are favourable and to characterise which environmental variables define suitable habitats, at least for the most abundant and most studied species.

2. Materials and methods

2.1. Data sources

The list of the Institutions contributing to the data base is presented in Table 2.

2.2. Sampling krill

The euphausiid species were sampled with different nets, depending on their body-size at different stages of their development: 1) Mid-water trawls: IKMT (progressive mesh size, up to 4.5 mm), now replaced by RMT 8 (mesh size: 4.5 mm) for catching adults of large species, 2) ORI nets (mesh size: 500 μm) for euphausiids of smaller size: 3 mm) RMT 1 (mesh size: 315 μm), often combined with the RMT 8 for larvae and zooplankton living in the same habitat; 3) WP2, Bongo nets (200 µm) and plankton recorder (CPR) for larvae. The euphausiid species were sampled with different nets, depending on their body-size at different stages of their development: 1) Mid-water trawls: IKMT (progressive mesh size, up to 4.5 mm), now replaced by RMT 8 (mesh size: 4.5 mm) for catching adults of large species, 2) ORI nets (mesh size: 500 μm) for euphausiids of smaller size: 3 mm) RMT 1 (mesh size: 315 μm), often combined with the RMT 8 for larvae and zooplankton living in the same habitat; 3) WP2, Bongo nets (200 µm) and plankton recorder (CPR) for larvae and zooplankton.

2.3. Modelling spatial distribution of euphausiids

For each species, a multivariate modelling technique, namely “Boosted Regression Trees” (BRTs) was used to predict the “suitable habitat” of a species by regressing the observed presences-absences against biologically sensible local environmental variables (see Chapter 2.3. Distribution modelling).

Such models can capture complex, non-linear relationships between the environment and presences or absences. These relationships will be depicted by plots with a variable on the x-axis and the “marginal effect” of that variable on the logit of the probability of presence on the y-axis. A “marginal effect” means that all other variables are held constant, at their mean, and only the effect of the change in the focal variable is represented. The model output is a map showing the probability of occurrence for each species, with the probability of occurrence being estimated for each location in the study area.

Once the relationships are established from observations, they can be used to predict “maps of habitat suitability” over the whole Southern Ocean, provided that the environmental conditions are known. These maps represent the probability of presence of the species based on the environment (i.e. whether the habitat is suitable or not).

References

Table 1

<table>
<thead>
<tr>
<th>Species living south of Antarctic Polar Front</th>
<th>Vertical range</th>
<th>Temperature range</th>
<th>Swarming</th>
<th>Vertical migration</th>
<th>Adult size (mm)</th>
<th>Life span (years)</th>
<th>Spawning period (cycles)</th>
<th>Diet (adults)</th>
<th>Predators</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euphausia crystallorophias</td>
<td>Surface to 350 m</td>
<td>-1.8 to 0°C.</td>
<td>+</td>
<td>neritic</td>
<td>34.5(M)</td>
<td>41.5(F)</td>
<td>Nov.–Dec. (1 to 2) cycles</td>
<td>Phytoplankton, detritus</td>
<td>Whales, seals, birds, fish, squids</td>
<td>1, 2, 3, 4, 5, 6, 7, 10</td>
</tr>
<tr>
<td>Hoff & Tattersall, 1960</td>
<td></td>
</tr>
<tr>
<td>Euphausia superba Dana, 1850</td>
<td>Surface to 3000 m</td>
<td>-1.8 to 5°C.</td>
<td>+</td>
<td></td>
<td>65</td>
<td></td>
<td>Dec.–April (1 to 3) Phytopl (diatoms, flagellates), zoopl (copepods)</td>
<td>Whales, seals, birds, fish</td>
<td>1, 2, 3, 4, 5, 7, 8, 10, 11, 13</td>
<td></td>
</tr>
<tr>
<td>Thysanalessa viola Hansen, 1911</td>
<td>Surface to >250 m</td>
<td>0 to 8°C.</td>
<td>+</td>
<td></td>
<td>17</td>
<td>5 to 7</td>
<td>Oct.– ? (1 ?) Microzooplankton, detritus</td>
<td>Whales, birds, fish, squids</td>
<td>1, 2, 7, 11</td>
<td></td>
</tr>
<tr>
<td>Thysanalessa frigida Hansen, 1911</td>
<td>30 to 500 m</td>
<td>0.7 to 5°C.</td>
<td>+</td>
<td></td>
<td>24</td>
<td></td>
<td>Aug.–March Microzooplankton, detritus</td>
<td>Whales, birds, fish, squids</td>
<td>1, 3, 4, 8, 10, 11, 13</td>
<td></td>
</tr>
<tr>
<td>Thysanalessa maccrura G.O. Sars, 1883</td>
<td>Mesopelagic</td>
<td>-1.8 to 8°C.</td>
<td>+</td>
<td></td>
<td>28.5</td>
<td>2</td>
<td>Sept.–Nov. (2) Microzooplankton, detritus</td>
<td>Whales, seals, birds, fish</td>
<td>1, 2, 3, 8, 10, 11, 13</td>
<td></td>
</tr>
<tr>
<td>Euphausia triacantha Hoff & Tattersall, 1906</td>
<td>250 to 750 m</td>
<td>1.8 to 11.8°C.</td>
<td>+</td>
<td></td>
<td>28–34</td>
<td>2+</td>
<td>Oct.– Nov. (1 to 2) Microzooplankton, detritus</td>
<td>Birds, fish, squids</td>
<td>1, 3, 7, 8, 10, 11, 13</td>
<td></td>
</tr>
<tr>
<td>Species living north of Antarctic Polar Front</td>
<td></td>
</tr>
<tr>
<td>Euphausia vallentini/ Skegging, 1906</td>
<td>100 to 200 m</td>
<td>2 to 10°C.</td>
<td>+</td>
<td></td>
<td>28</td>
<td>1+</td>
<td>Oct.–Nov. Phytoplankton, some mesozooplankton</td>
<td>Penguins, birds, fish</td>
<td>1, 2, 3, 9, 11, 12, 14, 15, 17, 21</td>
<td></td>
</tr>
<tr>
<td>Euphausia longirostris Hansen, 1908</td>
<td>Eipelagic</td>
<td>3 to 16°C.</td>
<td>+</td>
<td></td>
<td>21–34</td>
<td>1+</td>
<td>Aug.–Nov. (multikl) Phytoplankton, flagellates, copepods</td>
<td>Penguins, birds, fish</td>
<td>1, 2, 4, 14, 15, 16, 17</td>
<td></td>
</tr>
<tr>
<td>Euphausia lucens Hansen, 1905</td>
<td>Eipelagic</td>
<td>5 to 18°C.</td>
<td>+</td>
<td></td>
<td>18</td>
<td>1+</td>
<td>Aug.–Nov. (multikl) Phytoplankton, flagellates, copepods</td>
<td>Penguins, birds, fish</td>
<td>1, 2, 3, 8, 11, 12, 13, 18</td>
<td></td>
</tr>
<tr>
<td>Nematocetes megalops G.O. Sars, 1883</td>
<td>Eipelagic</td>
<td>Temperate</td>
<td>+</td>
<td></td>
<td>20–26</td>
<td>2</td>
<td>Feb.–July Detritus, microplankton, microzooplankton (larvae)</td>
<td>Whales, penguins, birds, fish</td>
<td>1, 2, 3, 17, 12, 11, 12, 18, 23</td>
<td></td>
</tr>
<tr>
<td>Euphausia similis G.O. Sars, 1883</td>
<td>Surface to 400 m</td>
<td>Temperate to Subtropical</td>
<td>+</td>
<td></td>
<td>22–26</td>
<td>Dec.–April Flagellates, coccolithophorids zoopl (copepods)</td>
<td>Penguins, birds, fish</td>
<td>1, 2, 14, 17, 19, 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphausia spinifera G.O. Sars, 1883</td>
<td>Mesopelagic</td>
<td>6 to 19°C.</td>
<td>+</td>
<td></td>
<td>21–29</td>
<td>1+</td>
<td>Microzooplankton, detritus</td>
<td>Birds, fish, squids</td>
<td>1, 2, 9, 14, 16, 19, 20</td>
<td></td>
</tr>
<tr>
<td>Thysanalessa gregoriae G.O. Sars, 1883</td>
<td>Eipelagic</td>
<td>3 to 24°C.</td>
<td>+</td>
<td></td>
<td>11–16</td>
<td>Aug.–Nov. Phytoplankton, microzooplankton</td>
<td>Penguins</td>
<td>1, 2, 5, 17, 18, 20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1 Biological characteristics of Euphausiidae living in the Southern Ocean.

Crustacea : Euphausiacea
The datasets used to relate presence-absence to oceanic environmental conditions were summer climatologies (see Chapter 2.3). The variables as potentially influencing the presence of euphausiid species in a given environment, were: 1) proportion of the year during which the region is covered by sea ice; 2) mixed-layer depth; 3) concentration of surface chlorophyll a; 4) spatial gradient of sea surface height, which marks limits of front; 5) silicates concentrations at 0, 50 and 200 m depth; 6) nitrates concentrations at 0, 50 and 200 m; 7) oxygen saturation at 0.5, 50 and 200 m; 8) salinity at 0.5, 50 and 200 m. For each species, the relevant variables were selected based on whether they make biological sense and, within those, whether they provide good explanatory power in the model. In marginal effects plots, variables were ranked according to the proportion of variance they explain in the model (they sum to 100%).

Some of these variables were only available for the open ocean and not for coastal regions, which explains the white areas on the maps of predicted suitability of habitat. In particular, variables at 200 m depth were not available near the coast. When such a variable was found to be of influence in the model, we could not infer what the prediction would be in the costal regions. This explains some of the white areas on the maps of predicted habitat suitability along the coasts.

The ability of the model to capture the patterns in the observations was quantified by the percentage of variance explained. The performance of the model in accurately predicting presence and absence was quantified by the Area Under the receiver operating characteristic Curve (AUC). An ideal model would predict 100% of presences and would never predict a presences when the species is absent, giving an AUC=1. A model with no discriminatory power would be right 50% of the time on average, just by chance, which would give an AUC of 0.5. A model with an AUC value greater than 0.7 is considered as “useful”.

The 150 bootstrap predictions of the data were used to draw 95% confidence intervals around the marginal effects plots. Bootstraps were also used to quantify the uncertainty in the prediction of habitat suitability. The chosen measure of uncertainty was the coefficient of variation (the ratio between the standard deviation and the mean of the 150 predicted values).

The map of this uncertainty is represented next to the map of habitat suitability. The chosen measure of uncertainty was the coefficient of variation (the ratio between the standard deviation and the mean of the 150 predicted values). The map of this uncertainty is represented next to the map of habitat suitability. A total of 16,478 unique records of the presence of at least one species of euphausiids were available, at 14,397 unique locations, and all were used to fit the models. Modelling was based on presences and absences only, not abundance, because abundance data is very scarce. Even then, BRT modelling could only be performed for species with enough presence-absence data. Finally, even on these data-rich species, some models were not able to detect significant relationships between presence-absence and the available environmental variables. BRT modelling could be conducted successfully for 5 species.

As most of the data were collected in the pelagic habitat in summer, the habitat suitability model concerned mostly juvenile and adult euphausiids of the pelagic realm and environmental and trophic summer conditions, which generally correspond to the season of reproduction and larval recruitment.

3. Results
3.1. Overall distribution of euphausiids

Considering the whole set of presence data, the observed distributions for the 13 species were summarised as violin plots in Figure 1.

Two groups of euphausiids species were distinguished:
- the species living mostly in the cold waters of the Antarctic Ocean, distributed from the coast of the continent to the Antarctic Polar Front (PF): numbered from 1 to 6: Euphausia crystallorophias, E. superba, Thysanoessa macrura, Euphausia frigida, Euphausia vallentini and Euphausia triacantha (Table 1, Maps 2–7).
- the species living north of the PF limit, in the Sub-Antarctic Front and beyond: E. Euphausia vallisneri, E. longirostris, E. lucens, Nematocetes megalops, Euphausia simulis, E. spinifera, and Thysanoessa gregaria, numbered from 7 to 13 (Table 1, Maps 8–14).

When mapping together all the stations with euphausiids present in the catches (Map 1), a continuity of presence was observed from the coast of Antarctica to the Polar Front (PF), the Sub-Antarctic Front (SAF) and up to the Sub-Tropical Front (STF). Sampled stations were less numerous in the Weddell Sea and in the sector from 90°W to 150°E, including the Ross Sea. These regions were less surveyed due to a difficult accessibility for oceanographic vessels when ice-cover is present, and/or an excessive distance from the research bases.

<table>
<thead>
<tr>
<th>Code</th>
<th>Institution</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD</td>
<td>Australian Antarctic Division</td>
<td>Australia</td>
</tr>
<tr>
<td>AWI</td>
<td>Alfred Wegener Institute for Polar and Marine Research</td>
<td>Germany</td>
</tr>
<tr>
<td>TLISF</td>
<td>Thünen Institut fur Seefischerei</td>
<td>Germany</td>
</tr>
<tr>
<td>BAS</td>
<td>British Antarctic Survey</td>
<td>UK</td>
</tr>
<tr>
<td>CCAMLR</td>
<td>Commission for the Conservation of Antarctic Marine Living Resources</td>
<td>International Commission</td>
</tr>
<tr>
<td>LOV</td>
<td>Laboratoire d’Océanographie de Villefranche</td>
<td>France</td>
</tr>
<tr>
<td>LGG</td>
<td>Université de Liège</td>
<td>Belgium</td>
</tr>
<tr>
<td>US AMRL</td>
<td>U.S. Antarctic Marine Living Resources</td>
<td>USA</td>
</tr>
<tr>
<td>YUG / YUGNRO</td>
<td>Research Institute for Marine Fisheries and Oceanography</td>
<td>Ukraine</td>
</tr>
<tr>
<td>Japan Expedition</td>
<td>Not communicated</td>
<td>Japan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>List of Institutions contributing to the database.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeolus</td>
<td>Australian Antarctic Division</td>
</tr>
<tr>
<td>ALF</td>
<td>Alfred Wegener Institute for Polar and Marine Research</td>
</tr>
<tr>
<td>Thünen Institut fur Seefischerei</td>
<td>Germany</td>
</tr>
<tr>
<td>BAS</td>
<td>British Antarctic Survey</td>
</tr>
<tr>
<td>CCAMLR</td>
<td>Commission for the Conservation of Antarctic Marine Living Resources</td>
</tr>
<tr>
<td>LOV</td>
<td>Laboratoire d’Océanographie de Villefranche</td>
</tr>
<tr>
<td>LGG</td>
<td>Université de Liège</td>
</tr>
<tr>
<td>US AMRL</td>
<td>U.S. Antarctic Marine Living Resources</td>
</tr>
<tr>
<td>YUG / YUGNRO</td>
<td>Research Institute for Marine Fisheries and Oceanography</td>
</tr>
<tr>
<td>Japan Expedition</td>
<td>Not communicated</td>
</tr>
</tbody>
</table>
3.2. Species living south of the Antarctic Polar Front

Euphausia crystallorophias (Map 2: a, b, c) was recorded along Antarctica coasts west of the Peninsula, eastern Weddell Sea and from 60° to 180°E, mostly in Pritz Bay region and Ross Sea (a).

The model fitted the data well (52% of variance explained) and had good predictive power (AUC=0.84). It confirmed only partially the localisation of the species near the coasts (b), but could not represent the large distribution observed west of the Peninsula and in the SAAC. The model suggested also a presence of _E. crystallorophias_ along the east coast of the Peninsula and Weddell Sea, and west of the Ross Sea. The uncertainty of the prediction (c) was near zero away from the coast _E. crystallorophias_ is actually not present there), and higher in the western coastal region of the continent, but still acceptable considering that the environmental data did not concern the coast itself.

The environmental variables (Fig. 2) which drove most of the distribution of _E. crystallorophias_ were temperature at 0 and 200 m depth (the species is limited to waters below 0°C). _E. crystallorophias_ also seemed to prefer richer and fresher waters, with high nitrates, low salinity, and was associated with the sea-ice zone, as expected.

Euphausia superba behaviour is gregarious, with juveniles and adults forming large swarms (Table 1). Fast swimmers, they perform large circumpolar and vertical migrations (from surface down to >3000 m depth).

Euphausia superba (Map 3: a, b, c) observed presence (a) from net hauls data was circumpolar, extending from the continent to the northern limit of the Polar Front (PF), with an occurrence in the SACC Front (SACCF) in the Atlantic sector.

The model of habitat suitability fitted the data well (63% of variance explained) and therefore agreed with those observations, but also allowed inferring the presence of _E. superba_ in regions where sampling was scarce. The map (b) shows a high probability of presence almost everywhere in the Polar Front, and a low probability beyond it, with a good confidence overall (AUC=0.94). In particular, it predicts that the region between 90°W and 150°E, in the Polar Front, is favourable to _E. superba_. The species is therefore likely to be possibly present there and the low number of observed presences in that region (a) would be due to the scarcity of the sampling.

In this model _E. superba_ was predicted to preferentially inhabit regions with high concentrations of silicates and oxygen near the surface, temperature at depth (200 m) between -1.5 and +1.5°C and shallow to intermediate mixed layer depths (between 30 and 50 m) (Fig. 3). All this points at cold, productive regions where diatoms are abundant.

The only region where _E. superba_ was observed (a) and predicted (b) to be absent in the entire Polar Front zone is between 60°E and 150°E. In that region, the ice retreats almost completely to the coast in summer and the
hydrologic conditions are also different. The silicates and mixed layer depth are the driving factors to explain the absence of *E. superba* there as the best conditions of habitat are met near the continent.

Chlorophyll is important as an indicator of the presence of phytoplankton blooms, depending on spring light regime and on nitrates presence. Silicates favour diatoms blooms. *E. superba* presence in ice zones is associated with the other species adapted to cold habitats that favour rich mixed layers, but also limit their distributions to cold water masses.

Thysanoessa vicina (Table 1) was occasionally present in former records, in the PF and SAF, from 50 to 60°S, more abundant east of Falkland Islands, between 90°W to 180°E, south of New Zealand and off Kerguelen Islands (Mauchline & Fisher 1969, Mauchline 1980), but often not distinguished from *T. macrura* and *T. gregaria* (Kirkwood 1982). These limited records are due to the difficulty to observe the specific characteristics of this small, fragile species (antennules and elongated predatory legs), which are generally damaged by the net capture. The species determination had to be done by checking the proximal and terminal processes of the *petasma* in males and the small body size of *T. vicina* reproducing females, conspicuously different from larger *T. macrura* mature females (J. Cuzin-Roudy unpubl. obs.). When recognised, their abundance in the samples raises a doubt about the apparent rarity of the species on the distribution maps, minimising its importance in the diet of top predators and for fisheries.

Euphausia frigida (Table 1) was present from the continent to the Polar Front (PF) and in the Sub-Antarctic Front (SAF) and abundant in the samples together with *T. macrura* in its northern habitat. However the species represents only a small proportion of the diet of top predators, due to its small size.

The BRTs model showed a poor fit between the available environmental variables and the presence of that species (only 24% of variance explained). *E. frigida* was associated with low salinities, very high concentrations of nitrates, low surface oxygen and shallow mixed layers. Those relationships tended to predict a circumpolar distribution, mostly between 75°S and 50°S, in the Polar Front, an acceptable result given the presence data. But the model (not presented) also exhibited strong artefacts further north in some regions, which confirmed that the presence of *E. frigida* was mostly determined by variables not considered here.

Thysanoessa macrura (Map 6: a, b, c) is the most common, abundant and widespread circumpolar Southern Ocean species, but has a smaller adult size (Table 1). The species was present in net hauls from the continent shelves to the SAF and beyond, except between 120°W to 160°E. It was recorded from the continent to latitude 45°S and up into the Sub-Tropical Front (a). The

Figure 3 *Euphausia superba* Dana, 1850. Modelled effects of environmental variables on the probability of presence. Black line: mean effect curve, shaded region: 95% confidence interval computed from 150 bootstraps.
3.3. Species living north of the Antarctic Polar Front

Euphausia vallentini (Map 8: a, b, c) is known to have a circumpolar distribution across the northern limit of the PF and further north, in the Southern Ocean, along the northern limit of the PF and in the SAF, from 60°E to 180°E (a). The model predicted a circumpolar distribution at similar latitudes and longitudes in the Southern Ocean (b), as usual considered for this species in former studies. Habits of particular suitability seem to be south and west of Kerguelen Islands and for 40 to 50° east and west of the South American continent (c). The explanatory power of the model was not high (30% of variance explained), but the accuracy in the prediction was good (AUC=0.87).

The most important factors driving the distribution of **E. vallentini** seemed to be low silicates at 200 m (<35 µM), a characteristic of PF waters, and intermediate concentrations of silicates (Fig. 4). Oxygen and salinity have influences of similar magnitude. **T. macrura** was more present in regions with low to intermediate oxygen concentrations (with a favourable window between 6.5 and 7.7 mL L⁻¹ at 50 m depth). It seemed to avoid low salinities at the surface, but preferred low salinities at depth.

Euphausia triacantha (Map 7) showed a circumpolar presence mostly south of the Sub-Antarctic Front, from the Peninsula to the islands of the Atlantic sector and from the continent to latitudes north of the Polar Front (PF) and in the Sub-Antarctic Front (SAF) between latitude 50 to 65°S. The BRTs model was ineffective, with only 22% of variance explained. The most influential variable in the model was salinity at 200 m depth; **T. triacantha** was strongly associated with the lowest salinities (<34.1 PSU).

4. Discussion

4.1. Distribution and habitat suitability of Southern Ocean euphausiids

The present study confirms that the distributions of the sub-Antarctic species (Maps 8–14), observed and modelled, are distinct from those of the Antarctic Ocean species (Maps 2–7). Two species appeared limited to the Antarctic Ocean by their adaptation to cold waters and their association with sea ice:

Euphausia crystallorophias (Map 2: a, b, c) showed a distribution limited to inshore waters of the Antarctic continent by an adaptation to cold waters (0°C or less) and an association with sea-ice year round (Table 1) and was absent from the PF and the SAF (a). As our data set for habitat parameters did not cover the coastal area, the model predicting the presence of this species in rich waters, with high nitrates rates and low salinity, concerns only the population of the shelf in summer, but confirms location in chlorophyll rich neritic sites, where the species dominates the mesozooplankton (Swadling et al. 2010).

Euphausia superba (Map 3: a, b, c) exhibits an extensive distribution in the Antarctic Ocean. The BRT analysis confirmed that the species presence is limited to the Antarctic Ocean and unequally distributed around Antarctica, with the largest density of presence (observed and predicted) in the PF and SACCf of the Atlantic sector, in Scotia-Weddell Sea and from the continental coast to the northern limit of the PF in the whole eastern sector.
Figure 4 Thysanosa macrura G.O. Sars, 1883. Modelled effects of environmental variables on the probability of presence. Black line: mean effect curve, shaded region: 95% confidence interval computed from 150 bootstraps.

Euphausiacea Map 6 Thysanosa macrura G.O. Sars, 1883. (a): presence-absence; (b): modelled habitat suitability; (c): uncertainty in prediction.

In these zones, chlorophyll is important as an indicator of the presence of phytoplankton blooms, depending on spring light regime and on nitrates presence. *E. superba* presence in ice zones is associated with the other species adapted to cold habitats that favour rich mixed layers. The continuity of a circumpolar distribution of *E. superba* population around Antarctica in the open ocean, up to the northern limit of the Polar Front and the Southern Antarctic Circumpolar Current Front, was confirmed by the BRT model (b), as well as an interpolated presence in zones with poor data (90°W to 150°E), suggesting a possible presence in habitats that could be suitable, given the parameters chosen. The suitable conditions defined by the model for *E. superba* (cold, oxygenated, productive waters, with high silicates, nitrates and chlorophyll) are met in the marginal ice zone of the retreating sea-ice in spring and near the coast in summer. High silicates rate favours diatoms blooms, an essential food for the lipid metabolism of *E. superba* (Mayzaud et al. 1998), which needs the spring blooms for sexual differentiation of the gonad in late *furcilia* (Cuzin-Roudy 1987a), sexual maturity of adults and the onset of successive reproductive cycles in summer (Cuzin-Roudy 2000). Phytoplankton is also necessary in summer (Photo 1) to maintain a high fecundity (Cuzin-Roudy & Labat 1992, Ross & Quetin 2000). The concentration of *E. superba* around the continent shown in Map 3a, and predicted by the model (B), concerns mostly pelagic juvenile and adult krill and is in agreement with recent results about distribution and abundance of the species. Atkinson et al. (2008) suggested two populations for *E. superba*, one aligned with the SACC stream (the main population of the Atlantic sector), and the other, in the Antarctic Coastal Current for the remaining 30% of the total stock. Their suggestion of a connexion between the Atlantic sector population and the remaining 30% of the total stock is confirmed by our results (Map 3: a, b, c).

The association of the life cycle of *E. superba* with sea-ice for over-wintering, and with the marginal ice zone in spring, could not be taken into account by the BRT model, mostly based on pelagic data and summer conditions. A strong link between *E. superba* and deep benthos, was asserted by recent results (Clarke & Tyler 2008, Schmidt et al. 2011, Kawaguchi et al. 2011a). In the last decade, technical progress for the study of Antarctic...
Ocean deep basins brought a new insight on E. superba ecology, as large aggregations of active Antarctic krill were found at great depth on the bottom season and juvenile krill were observed and photographed performing basic activities of their life cycle: feeding, mating (which means also moulting for females) and maturing eggs. This still not explored habitat could not be taken into account in the present study, due to a lack of krill samples and numerical data.

Thysanoessa macrura (Map 6: a, b, c), with a large latitudinal distribution, appeared to favour waters with strong mixing, relatively low oxygen, and low salinities at depth, which are characteristic of the upwelling of deep water in the PF. This carnivorous species does not depend on phytoplankton (Table 1), at least when young, and is tolerant to low silicates and nitrates. Tolerant to a higher temperature the species is largely distributed in the SAF.

Concerning the other species living north of the Antarctic Polar Front, E. valentini, E. longirostris and E. similis var. armata are known to be associated with the Antarctic cold and nutrient rich water masses, while E. lucens and E. spinifera showed affinity for sub-tropical waters (Robertson & Roberts 1978).

Euphausia valentini distribution in the SAF, where the species meets low surface silicates concentrations, higher temperature, low nitrates and oxygen, but also in the PF, with a characteristic low salinity at 200 m and a favourable deeper mixed layer depth, is in agreement with former studies.

With the exception of Euphausia valentini, the catches concerning most of the sub-Antarctic species (Maps 9 to 14) were generally too limited in our data set for a meaningful use of the BRTs model to extrapolate habitat suitability maps and to gain new appreciation of their importance in the SO ecosystem.

4.2. Ice habitat and the life cycles of Antarctic euphausiids

Only three species are associated with the ice habitat of the high latitudes, at least for part of their life cycle, but the relationship of E. superba with the ice habitat has been the most studied.

Euphausia crystallorophias is associated with ice year round. All stages of development and adults were found from 30 to 150 m depth under the ice in the Gerlache Strait (Nordhausen 1994) and at depth (90–250 m) along Dumont d’Urville Sea coast (Vallet et al. 2011).

Euphausia superba, the Antarctic krill, is present in abundance under the ice in winter, from 15 to 130 m depth in Gerlache Strait (Nordhausen 1994) and at depth (90–250 m) along Dumont d’Urville Sea coast (Vallet et al. 2011).

Thysanoessa macrura, the most uniformly distributed species in the Southern Ocean, is found also under solid ice in winter (Nordhausen 1994) and at depth (90–250 m) along Dumont d’Urville Sea coast (Vallet et al. 2011).

Euphausia superba, the Antarctic krill, is present in abundance under the ice in winter, from 15 to 130 m depth in Gerlache Strait (Nordhausen 1994) and at depth (90–250 m) along Dumont d’Urville Sea coast (Vallet et al. 2011).

In spring, E. superba larvae, juveniles and adults are found at the ice-edge rich in phytoplankton. They need the ice-edge spring blooms of phytoplankton (Mayzaud et al. 2012), to recover a positive growth rate, sexual differentiation and the gonads in late furciliae stage (Siegel 1987, 2012), and acquisition of sexual maturity and mating for adult (Cuzin-Roudy 1987b, 1993). Adult females start there the early phase of egg development for the first reproductive cycle of the season (Cuzin-Roudy & Amsler 1991, Cuzin-Roudy & Labat 1992). Immaturity of reproduction in summer is the highest under “average” conditions of sea-ice retreat, while late retreat is associated with faster oocyte development (Quetin & Ross 2001).

The juveniles and mature adults migrate next into the pelagic zone (Siegel 2012), with suitable trophic conditions for performing simultaneously swimming and foraging, moult development and growth, egg production (Cuzin-Roudy 2000) and recruitment (Tarling et al. 2007).

The distribution of euphausiids is not only directed by environmental factors but correspond also to specific strategies developed for their adaptation to the complexity of habitats and the seasonal variability of the Southern Ocean.

There was during the past decades an effort to better understand the adaptive and survival strategies of the dominant species E. superba, and the limits of their flexibility concerning the nutritional needs for completing the crucial steps of their life cycle. The species have developed a large panel of adaptations to complete their long life cycle in the pelagic environment, at sea-ice edge, under solid ice and on deep benthos.

Euphausia superba sexual maturity and reproductive period adapted to the seasonal change in day light and photoperiod (Teschke et al. 2008), but need optimal trophic conditions to maintain through the summer their reproductive function (Schmidt et al. 2012). Spring phytoplankton blooms (diatoms) of the ice edge permit adult sexual maturity, mating and early development of oocytes (previtellogenesis), but the concentrations of phytoplankton found in the open ocean in summer (Photo 1), and other food sources, are necessary for lipid accumulation in eggs (Cuzin-Roudy et al. 1995) and full major egg batches for successive spawning cycles. During their pelagic life in the Southern Antarctic Ocean, Antarctic krill rely on any food items, including protists (Schmidt et al. 2006), but the diet may shift preferentially to copepods (Granelli et al. 1993, Mayzaud et al. 1998), and even to the micro-fauna of the sea-bed sediment (Schmidt et al. 2011).

Antarctic krill egg maturation and spawning only occurs in summer in ice-free waters (Cuzin-Roudy 1993, Cuzin-Roudy & Labat 1992), when the various food sources, necessary for the accumulation of lipo-glyco-proteins in large egg-batches reaching up to 46% of the total weight of the female Antarctic krill, are abundant. In this Southern Georgia region, not affected by winter sea-ice and benefiting from an early spring, each female can produce during the summer an average of 12,343 eggs yr-1 per female, in one to three successive reproductive cycles (Tarling et al. 2007).

In summer, when trophic conditions are insufficient, female E. superba rely on oosporosis (Cuzin-Roudy & Amsler 1991), a common strategy for crustaceans to retain yolk components from developed oocytes to fuel the obligatory energetic expenses of their behaviour (Hammer & Hamner 2000). This is consistent with Quetin & Ross (2003) observation of summers with poor, or null, krill reproduction. Summer oosporosis in oligotrophic waters appears as a strategy similar to winter “shrinking”, when krill rely on reversible metabolic shifts that allow them to re-metabolise their own cell components to maintain their swimming and moult capacity (Cuzin-Roudy et al. 2002). Both strategies are reversible and compatible with the long life of the species, which compensate years of poor reproduction resulting from the effects of seasonal sea-ice dynamics linked to ENSO (Quetin & Ross 2003).

In summer, E. superba lipid storage is used essentially for reproduction (Cuzin-Roudy et al. 1999). The “fat body”, well developed in summer, is completely regressed in winter and lipid storage is then limited to the digestive gland for survival (Cuzin-Roudy 1993, Mayzaud et al. 1998). When this storage is exhausted, survival and maintenance of swimming activity in insufficient trophic conditions rely on oosporosis of residual eggs kept in the ovary (Cuzin-Roudy & Amsler, 1991), sexual regression and body “shrinking” at mating (Cuzin-Roudy et al. 1999).

New data sources, e.g. nuclear coding genes, are bringing new insight on the link between genes expression and physiology. Seear et al. (2012) compared gene expression in two populations of E. superba in different seasonal (summer/winter) and environmental conditions (winter/ice-free for E. superba, permanent free waters). E. superba physiology changed with location in both environments: 1) there was no differential expression for genes involved in respiration, motor activity or absence of vitellogenesis in the two overwintering populations, and 2) vitellogenesis was up-regulated with an insulin-related peptide in summer for both populations.

The different euphausiids species have developed various specific lipid metabolisms (Phieger et al. 2002). The most abundant species (E. crystallorophias, E. superba and T. macrura) are adapted to different water masses and currents (Atkinson & Atkinson 2008, Fach et al. 2009, Thorpe et al. 2007), coastal zones (Tarling et al. 2007), sea ice (Brierley et al. 2005, Brierley 2006), but have developed specific strategies for reproduction.

E. crystallorophias and T. macrura have different requirement concerning habitat suitability, but both start to reproduce before ice breaking and retreat (Table 2).

E. crystallorophias, linked to ice of the coastal habitat, is known to start spawning in early November, before the phytoplankton bloom. In December (Pakhomov & Perissinotto 1996; Falk-Petersen et al. 2000), using extensive energy reserves of wax esters accumulated during the previous autumn for survival and reproduction (Kattner & Hagen 1998). Larvae appear in abundance in coincidence with the phytoplankton bloom. Calyptopis were abundant together with furciliae of T. macrura along the coast of Terre Adélie (Vallet et al. 2009, 2011).

The Thysanoessa species share with Euphausia sp. an adaptation to the pelagic life (larval development, swimming and migrating behaviour), but differ from them by a carnivore trophic mode and by their reproductive physiology. T. macrura is carnivorous and store lipids in summer for building eggs before the spring period of primary production. Spawning occurs in late winter (in September and October), well before the phytoplankton bloom, to end in December (Pakhomov & Perissinotto 1996; Falk-Petersen et al. 2000), relying on a storage of polar lipids (Mayzaud et al. 2003, Kattner & Hagen 1998) for spawning before the ice break, in time for the calyptoidea larvae to feed and accumulate lipids from the early phytoplankton bloom of the ice-edge (Vallet et al. 2011, Thorpe et al. 2007).

Antarctic species physiology and metabolism appears to be successfully tuned to the Southern Ocean cold environment, but it is foreseeable that such subtle adaptations, resulting from a very long evolution, may not cope with a rapidly changing climate. A better knowledge of the links between euphausiids species and their environment is still necessary. Predictive models of the response of Antarctic krill and other euphausiids to climate change, ocean acidification by CO2 (McNeil et al. 2008, Kawaguchi et al. 2013) and human exploitation (Nicoll et al. 2012) have to take into account these specific adaptive strategies and their requirements concerning environmental and trophic suitability of the various habitats.
Moreover, Murphy et al. (2012) express the necessity of analysis and predicting models for food web structure and function to understand interactions of food web components, from phyto- and zooplankton to top predators, and the possible responses of the different actors of Antarctic communities (Arntz 1997) to climate change and human impact on the SO ecosystem.

4.4. Euphausiids conservation

Euphausia superba, as a key species in the Antarctic Ocean food web, provides an efficient energy transfer to highest trophic levels (van Franeker et al. 1997). The species plays a crucial role in the trophic web as feeding on phytoplankton and zooplankton (copepods) and being the major prey of birds, penguins, seals and whales; therefore playing a major role in carbon flux and the equilibrium of the Antarctic ecosystem.

There is a special concern about the impact of Euphausia superba species exploited by fisheries, of the ongoing environmental changes concerning the Antarctic Ocean (Novacek & Ciclean 2001, Atkinson et al. 2010, Atkinson et al. 2012b), temperature increase (Hill et al. 2013), reduction of ice extent (Quetin et al. 2007), acidification (Fabry et al. 2008, Kawaguchi et al. 2011b, Kawaguchi et al. 2013) and human exploitation. Recent developments in harvesting technology and in products derived industrially from krill indicate a renewed interest in exploiting this resource. At the same time, there are changes in the Southern Ocean environment that are affecting both krill and the fishery (Kawaguchi et al. 2009).

The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) was established by international convention in 1982 with the objective of taking conservation measures for Antarctic marine life in response to increasing commercial interest in Antarctic krill during the 1970s and to prevent over-exploitation (Constable 2000). CCAMLR follows an ecosystem approach in its management because of the essential importance of Antarctic krill in the Antarctic marine ecosystem, in such a way as to minimize potential ecological risks both for krill and krill predators by setting precautionary catch limits for fisheries and therefore manages stocks (Map 15).

Precautionary catch limits on the krill fishery were first introduced by CCAMLR in 1991 and now cover much of the potential and actual fishing grounds in the CCAMLR Area (Map 15). These catch limits are decided based on the best available scientific information, they are under constant review (Miller & Agnew 2000, Nicol et al. 2012) and have been updated by CCAMLR on the basis of new information, particularly from large scale scientific surveys. The fishery is currently operating in the South West Atlantic (Areas 48.1, 48.2 and 48.3), but was operated in parts of the South Indian and Pacific Ocean sectors in the 1970s.

The scientific vigilance has to be reinforced to anticipate the adaptive responses of E. superba, and other Southern Ocean euphausiids, to a fast changing ecosystem (Flores et al. 2012a) and the limits of their capacity of resilience and survival in the fragile Southern Ocean communities.

Acknowledgements

We thank Dr Volker Siegel for the Antarctic krill picture, Dr Huw Griffiths (BAS, Cambridge) and Dr Anton Van de Putte (RBINS, Brussels) for the preparation of the maps, and Dr Cédric d‘Udekem d‘Azay for editing. This research contributes to the programmes of the Laboratoire d’Océanographie de Villefranche-sur-mer, UMR 7093, for J-C.R, J-O I. F.P, and of the Australian Government of Antarctic Division for S.K. This project is part of “Zone Atlantique de CNRS, some of the data were obtained thanks to a support from IPEV. It is a contribution to the “Ecoregionalisation project” supported by UPMC, Agence des Aires Marines Protégées and TAAF. We are grateful to Dr Volker Siegel for the anonymous referee for their comments, which were of great help for the authors. This is CAML contribution #138.

References

THE BIOGEOGRAPHIC ATLAS OF THE SOUTHERN OCEAN

Scope

Biogeographic information is of fundamental importance for discovering marine biodiversity hotspots, detecting and understanding impacts of environmental changes, predicting future distributions, monitoring biodiversity, or supporting conservation and sustainable management strategies.

The recent extensive exploration and assessment of biodiversity by the Census of Antarctic Marine Life (CAML), and the intense compilation and validation efforts of Southern Ocean biogeographic data by the SCAR Marine Biodiversity Information Network (SCAR-MarBIN) provided a unique opportunity to assess and synthesise the current knowledge on Southern Ocean biogeography.

The scope of the Biogeographic Atlas of the Southern Ocean is to present a concise synopsis of the present state of knowledge of the distributional patterns of the major benthic and pelagic taxa and of the key communities, in the light of both biotic and abiotic factors operating within an evolutionary framework. Each chapter has been written by the most pertinent experts in their field, relying on vastly improved occurrence datasets from recent decades, as well as on new insights provided by molecular and phylogeographic approaches, and new methods of analysis, visualisation, modelling and prediction of biogeographic distributions.

A dynamic online version of the Biogeographic Atlas will be hosted on www.biodiversity.aq.

The Census of Antarctic Marine Life (CAML)

CAML (www.caml.ai) was a 5-year project that aimed at assessing the nature, distribution and abundance of all living organisms of the Southern Ocean. In this time of environmental change, CAML provided a comprehensive baseline information on the Antarctic marine biodiversity as a sound benchmark against which future change can reliably be assessed. CAML was initiated in 2005 as the regional Antarctic project of the worldwide programme Census of Marine Life (2000-2010) and was the most important biology project of the International Polar Year 2007-2009.

The SCAR Marine Biodiversity Information Network (SCAR-MarBIN)

In close connection with CAML, SCAR-MarBIN (www.scarmarbin.be, integrated into www.biodiversity.aq) compiled and managed the historic, current and new information (i.e. generated by CAML) on Antarctic marine biodiversity by establishing and supporting a distributed system of interoperable databases, forming the strategic regional node in the Ocean Biogeographic Information System (OBIS, www.iobis.org), under the aegis of SCAR (Scientific Committee on Antarctic Research, www.scar.org). SCAR-MarBIN established a comprehensive register of Antarctic marine species and, with biodiversity.aq provided free access to more than 2.9 million Antarctic georeferenced biodiversity data, which allowed more than 60 million downloads.

The Editorial Team

Claude DE BROYER is a marine biologist at the Royal Belgian Institute of Natural Sciences in Brussels. His research interests cover structural and functional biodiversity and biogeography of crustaceans, and polar and deep sea benthic ecology. Active promoter of CAML and ANDEEP, he is the initiator of the SCAR Marine Biodiversity Information Network (SCAR-MarBIN). He took part to 19 polar expeditions.

Huw GRIFFITHS is a marine Biogeographer at the British Antarctic Survey. He created and manages SOMBASE, the Southern Ocean Mollusc Database. His interests include large scale biogeographic and ecological patterns in space and time. His focus has been on molluscs, bryozoans, sponges and pycnogonids as model groups to investigate trends at high southern latitudes.

Cédric d’UDEKEM d’ACCOZ is a research scientist at the Royal Belgian Institute of Natural Sciences, Brussels. His main research interests lie in the systematics of amphipod crustaceans, especially of polar species and taxonomy of decapod crustaceans. He took part to 2 scientific expeditions to Antarctica on board of the Polaris and to several sampling campaigns in Norway and Svalbard.

Bruno DANIS is an Associate Professor at the Université Libre de Bruxelles, where he teaches and manages SOMBASE, the Southern Ocean Mollusc Database. His research interests include large scale biogeographic and ecological patterns in space and time, and more specifically on sea urchins. He authored a book and edited an extensive database on Antarctic echinoderms. He is President of the scientific council of the Muséum National d’Histoire Naturelle (Paris), and Deputy Director at the CNRS Institute for Ecology and Environment.

Susie GRANT is a marine biogeographer at the British Antarctic Survey. Her work is focused on the design and implementation of marine protected areas, particularly through the use of biogeographic information to support conservation planning.

Kristin HELD is a Senior Research Scientist at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven. She is a specialist in molecular systematics and phylogeny of Antarctic crustaceans, especially isopods.

Falk HUETTMANN is a ‘digital naturalist’ he works on three poles (Arctic, Antarctic and Helsinki–Kohut–Himalaya) and elsewhere (marine, terrestrial and atmospheric). He is based with the University of Alaska-Fairbanks (UAF) and focuses primarily on effective conservation questions engaging predictions and open access data.

Philipp KOUBBI is professor at the University Pierre et Marie Curie (Paris, France) and a specialist in Antarctic fish ecology and biogeography. He is the Principal Investigator of projects supported by EGV, the French Polar Institute. As a French representative to the CCAMLR Scientific Committee, his main input is on the proposal of Marine Protected Areas. His other field of research is on the ecoregionalisation of the high seas.

Ben RAYMOND is a computational ecologist and exploratory data analyst, working across a variety of Southern Ocean, Antarctic and wider research projects. His work interests include system modelling, remote-sensing and marine protected area selection, risk assessment, animal tracking, seabird ecology, complex systems, and remote sensed data analyses.

Anton VAN DE PUTTE works at the Royal Belgian Institute for Natural Sciences (Brussels, Belgium). He is an expert in the ecology and evolution of Antarctic fauna and is currently the Science Officer for the Antarctic Biodiversity Portal www.biodiversity.aq. This portal provides free and open access to Antarctic Marine and terrestrial biodiversity of the Antarctic and the Southern Ocean.

Bruno DAVID is CNRS director of research at the laboratory BIOGEOSCIENCES, University of Lyon. He has worked on biogeography of Antarctic marine invertebrates in general and more specifically on sea urchins. He authored a book and edited an extensive database on Antarctic echinoderms. He is Permanent of the scientific council of the Muséum National d’Histoire Naturelle (Paris), and Deputy Director at the CNRS Institute for Ecology and Environment.

Julian GUTT is a marine ecologist at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, and professor at the Oldenburg University, Germany. He participated in 12 scientific expeditions to the Antarctic and was twice chief scientist on board Polarstern. He is member of the SCAR committees ACCOS and ANDEEP (as chief officer). Main focus of his work are: biodiversity, ecosystem functioning and services, response of marine systems to climate change, non-invasive technologies, and outreach.

Graham HOSIE is Principal Research Scientist in zooplankton ecology at the Antarctic and Southern Ocean Centre. He founded the SCAR Southern Ocean Continuous Plankton Recorder Survey and is the Chief Officer of the SCAR Life Sciences Standing Scientific Group. His research interests include the ecology and biogeography of plankton species and communities, notably their response to environmental changes. He has participated in 17 marine science voyages to Antarctica.

Alexandra POST is a marine geoscientist, with expertise in benthic habitat mapping, sedimentology and geophysical characterisation of the seafloor. She has worked at Geoscience Australia since 2009, with a primary focus on understanding seabed processes and habitats on the East Antarctic margin. More recently she has led work to understand the biophysical environment beneath the Amery Ice Shelf, and to characterise the habitats on the George V Shelf and shelf following the successful CANA voyages in that region.

Yan ROBERT COUDERT spent 10 years at the Japanese National Institute of Polar Research, where he graduated as a Doctor in Polar Sciences in 2001. Since then, he is a permanent researcher at the CNRS in France and the director of a polar research programme (since 2011) that examines the ecological response to climate change, non-invasive technologies, and outreach.

Antoni VANDEPUTTE works at the Royal Belgian Institute for Natural Sciences (Brussels, Belgium). He is an expert in the ecology and evolution of Antarctic fauna and is currently the Science Officer for the Antarctic Biodiversity Portal www.biodiversity.aq. This portal provides free and open access to Antarctic Marine and terrestrial biodiversity of the Antarctic and the Southern Ocean.

Ben RAYMOND is a computational ecologist and exploratory data analyst, working across a variety of Southern Ocean, Antarctic and wider research projects. His work interests include system modelling, remote-sensing and marine protected area selection, risk assessment, animal tracking, seabird ecology, complex systems, and remote sensed data analyses.

Anton VAN DE PUTTE works at the Royal Belgian Institute for Natural Sciences (Brussels, Belgium). He is an expert in the ecology and evolution of Antarctic fauna and is currently the Science Officer for the Antarctic Biodiversity Portal www.biodiversity.aq. This portal provides free and open access to Antarctic Marine and terrestrial biodiversity of the Antarctic and the Southern Ocean.

Bruno DAVID is CNRS director of research at the laboratory BIOGEOSCIENCES, University of Lyon. He has worked on biogeography of Antarctic marine invertebrates in general and more specifically on sea urchins. He authored a book and edited an extensive database on Antarctic echinoderms. He is Permanent of the scientific council of the Muséum National d’Histoire Naturelle (Paris), and Deputy Director at the CNRS Institute for Ecology and Environment.

Julian GUTT is a marine ecologist at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, and professor at the Oldenburg University, Germany. He participated in 12 scientific expeditions to the Antarctic and was twice chief scientist on board Polarstern. He is member of the SCAR committees ACCOS and ANDEEP (as chief officer). Main focus of his work are: biodiversity, ecosystem functioning and services, response of marine systems to climate change, non-invasive technologies, and outreach.

Graham HOSIE is Principal Research Scientist in zooplankton ecology at the Antarctic and Southern Ocean Centre. He founded the SCAR Southern Ocean Continuous Plankton Recorder Survey and is the Chief Officer of the SCAR Life Sciences Standing Scientific Group. His research interests include the ecology and biogeography of plankton species and communities, notably their response to environmental changes. He has participated in 17 marine science voyages to Antarctica.

Alexandra POST is a marine geoscientist, with expertise in benthic habitat mapping, sedimentology and geophysical characterisation of the seafloor. She has worked at Geoscience Australia since 2009, with a primary focus on understanding seabed processes and habitats on the East Antarctic margin. More recently she has led work to understand the biophysical environment beneath the Amery Ice Shelf, and to characterise the habitats on the George V Shelf and shelf following the successful CANA voyages in that region.

Yan ROBERT COUDERT spent 10 years at the Japanese National Institute of Polar Research, where he graduated as a Doctor in Polar Sciences in 2001. Since then, he is a permanent researcher at the CNRS in France and the director of a polar research programme (since 2011) that examines the ecological response to climate change, non-invasive technologies, and outreach.