Two new records of cheilostome Bryozoa from British waters

BRYAN WASSON¹ AND HANS DE BLAUWE²
¹Marine Ecological Surveys Ltd, 3 Palace Yard Mews, Bath, BA1 2NH, ²Scientific Collaborator, Department of Invertebrates, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium

The recently described Escharoides bishopi and the non-native Fenestrulina delicia are recorded for the first time from British waters.

Keywords: Fenestrulina delicia, Fenestrulina malusii, Escharoides bishopi, non-native, cheilostome, new record

Submitted 5 April 2014; accepted 23 September 2014

INTRODUCTION

In 2013, Marine Ecological Surveys Limited (MESL) was commissioned by Lafarge Tarmac Marine Ltd and Van Oord UK Ltd to perform the year four benthic and geophysical monitoring surveys of Area 481, Inner Dowsing, for the purposes of aggregate extraction licensing. Area 481 is located approximately 20 km offshore from Skegness on the Lincolnshire coast, and covers an area of roughly 8 km².

During the laboratory macrofaunal analysis, two species of encrusting cheilostome Bryozoa were identified that had not previously been recorded in the United Kingdom. Escharoides bishopi De Blauwe, 2006 was originally described from small colonies on the inner surface of shells of Cerastoderma edule (Linnaeus, 1758) from the Kwintebank, a highly dynamic sandbank in the western Belgian part of the North Sea (De Blauwe, 2006). Fenestrulina delicia Winston, Hayward & Craig 2000, was described from specimens collected in New England (Winston et al., 2000). Previously the life history of the species had been studied in specimens from the same area by Craig (1994). It was referred to only as genus but the photographs show that this is the first appearance of *F. delicia* in a publication. Fenestrulina delicia has recently made a dramatic appearance in European mainland waters. Specimens have previously been collected along the European coast from Brittany in France all the way to Germany (De Blauwe et al., 2014). Prior to this publication the first confirmed European record was from The Netherlands in 2005 (De Blauwe, 2008).

RESULTS

A single colony of Escharoides bishopi was discovered and Fenestrulina delicia was identified in eight samples. After identification, the sole colony of *E. bishopi* and one colony of *F. delicia* were prepared for scanning electron microscopy (SEM). Any remaining ambient moisture was removed from the colonies using a critical point drier before being coated in gold ready for imaging. Fenestrulina specimens were sent from other commercial laboratories. All had been identified as *Fenestrulina malusii* (Audouin, 1826) but many were actually Fenestrulina delicia.

DISCUSSION

Escharoides bishopi

The main identification aid for British cheilostome Bryozoa is Hayward & Ryland (1998). Identification was not possible using this so the newer book on Bryozoa of Belgium and The Netherlands by De Blauwe (2009) was consulted and resulted in a positive identification.

The sole colony discovered in the survey of Area 481 is so far the first and only record of this species in British waters. It is a small spot colony and although quite damaged during collection and subsequent processing it is possible to see that it was made up of about fifteen zooids (Figure 1). The frontal wall is perforate with large marginal areolae. The original description reports that there are six hollow spines in non-ovicellate zooids reducing to two or sometimes four in ovicellate zooids, but it also refers to French material in which most ovicellate zooids show four spines. In this UK colony only one undamaged non-ovicellate zooid remains and it seems to have four spines. All the undamaged ovicellate zooids appear to...
have only two. The flared peristome has three denticles on the inner edge with the middle one clearly bifid (Figure 2). There are no avicularia. The ovicell has a broad granular appearance and has scattered pores low on the periphery most easily seen from an oblique angle. The ancestrula has been destroyed. The colony had grown on the inside surface of a portion of a Mytilidae shell.

This specimen of *E. bishopi* was found in a benthic sample collected on 13 July 2013 at 53°19’0.12”N 0°40’21.87”E from a depth of 21.1 m. The seabed at that station was described from the accompanying seabed imagery as coarse sand, some gravelly sand and pebbles with no visible fauna apart from some *Spirobranchus* tubes. This specimen has been lodged in the Bryozoa collection of the Natural History Museum, London with the registration number: NHMUK 2013.10.28.2.

Escharoides bishopi is rare. Prior to this publication, there have been very few records: five colonies from the Kwintebank, Belgium (De Blauwe, 2006, 2009); twenty colonies on one single shell from Le Val André, Brittany, France (De Blauwe, 2006, 2009); six colonies from the Hinderbank, Belgium, on 20 June 2005 (De Blauwe, 2009) and one colony from Buiten Ratel, Belgium on 5 March 2012 (De Blauwe, 2012). All colonies were found on the inside of shells.

Fenestrulina delicia

During discussion regarding the discovery of the colony of *Escharoides bishopi* it was suggested by the second author that *Fenestrulina delicia* was likely to be present, though as yet unreported, in British waters. The macrofaunal analysis of the Area 481 project had already recorded *Fenestrulina malusii* from several samples. The next sample analysed had *F. delicia*. By the end of the macrofaunal analysis, and having rechecked all the specimens of *F. malusii* it transpired that all specimens of the genus were actually *F. delicia*. This project had eight samples containing this species.

Fenestrulina delicia is not featured in the standard work for the identification of British Bryozoa, the aforementioned Hayward & Ryland (1998). The genus is quite distinctive in appearance and the general assumption being that there is only one species from this genus in north-east Atlantic waters has meant that this non-native arrival has gone unnoticed by macrofaunal analysts in the UK until now.

The most striking difference between *F. delicia* and *F. malusii* is that in *F. delicia* there is a smooth raised rim of non-perforate calcification around most of the zooid. This rim appears to partly overlap the outermost pores of the frontal surface (Figure 3). Also the ovicell of *F. delicia* forms coarse radiating ridges in contrast to the almost smooth oivicells in *F. malusii* (Figure 4).

The specimen of *F. delicia* that was prepared for SEM has also been lodged in the Bryozoa collection of the Natural History Museum, London with the registration number: NHMUK 2013.10.28.1. The sample containing this specimen was located at 53°19’0.12”N 0°40’21.87”E. It was taken on 13 July 2013 from a depth of 21.1 m with the sediment type being described as gravelly sand.

The 2013 benthic macrofaunal survey of Area 481 was the third conducted by MESL. It had previously been surveyed in 2008 and 2011. It is standard MESL protocol to keep a reference collection from each survey so there were specimens...
retained from those previous surveys that had been recorded as *Fenestrulina malusii*. These two specimens from the previous surveys were checked and were actually *Fenestrulina delicia*. All other referenced specimens recorded as *F. malusii* in the archives of MESL were then checked. Two more specimens of *F. delicia* were found. One collected in 2009 from just offshore the mouth of the Humber a little up the coast from Area 481 and one from Sullom Voe in the Shetlands collected in 2012.

Of the specimens sent by the Dorset laboratory of APEM Ltd, two were *F. delicia*. Both of these were collected from the Clipper South gas field from the United Kingdom Continental Shelf (UKCS) Area 48/19. One was collected on 28 December 2008 and the other on 28 February 2009. Another specimen of *F. delicia* was confirmed by a photograph sent from Marine Invertebrate Ecological Services (MIES). This example, collected in 2011, was also from the UK southern North Sea gas fields at approximately 53°15′0″N 1°30′0″E.

Thomson Unicomarine Ltd sent twenty-five specimens all of which had been recorded as *F. malusii*. Of these, ten were *F. delicia*. Many of these *F. delicia* specimens were again from a similar area of the southern North Sea as many of the other commercial laboratory specimens due to a lot of monitoring of industrial activity such as that of aggregate or energy companies. However, several of the Fugro EMU Ltd specimens were from new locations such as two specimens from the English Channel (2005 and 2013) and one from the mouth of the River Thames (2010) thus further enriching the known distribution.

Figure 5 shows some of the locations of specimens of *F. delicia* discovered during this study. Several locations had many duplicate specimens due to high sampling activity over many years so if this was the case then only the earliest record is shown. It is clearly the case that *F. delicia* has a very widespread distribution and has been in the UK for some time.
CONCLUSION

Escharoides bishopi appears to be genuinely rare so it is of no surprise that it has not been recorded from the UK before. *Fenestrulina delicia* on the other hand appears to be widespread and has been seriously overlooked. It is now known that this species has been present in European waters from 2002 though if more archival material is analysed this date could easily be pushed further back. The specimens and data held by British commercial laboratories in this case have given a new insight into the spatial and temporal distribution of this recently arrived species. Commercial laboratories engaged in marine faunal identification are an arguably overlooked resource of information for the advancement of taxonomic and distributional knowledge. Commercial sensitivities may be assumed or cited but this publication demonstrates a willingness to collaborate on matters of academic interest.

ACKNOWLEDGEMENTS

Many thanks to: the commercial clients Lafarge Tarmac Marine Ltd and Van Oord UK Ltd; Emma Delduca, David Alexander, Bianka Rasch and Angela De Burgh-Thomas of MESL and Ross Griffin and Jack Pitts formerly of MESL for assistance with the MESL archives, mapping, distributional data and client communication; Andy Mackie, Anna Holmes and Katie Mortimer-Jones of The National Museum of Wales in Cardiff for use of and assistance with the SEM facilities; Steve Jarvis of Marine Invertebrate Ecological Services, Carol Milner of APEM, Alison Bessell and Grant Rowe of Fugro EMU and Ruth Barnich of Thomson Unicomarine for the loan of specimens; John Hartley of Hartley Anderson Ltd for sample information; and Mary Spencer-Jones at the Natural History Museum, London for lodging specimens in the collection there and for permission to use the image of *Fenestrulina malusii*.

REFERENCES

and

Correspondence should be addressed to:

B. Wasson
Marine Ecological Surveys Ltd
3 Palace Yard Mews, Bath, BA1 2NH
email: bryan.wasson@mesltd.co