Corticosteroids: Friends or foes of teleost fish reproduction?

S. Milla *, N. Wang, S.N.M. Mandiki, P. Kestemont

University of Namur (FUNDP), Unit of Research in Organismal Biology (URBO), Rue de Bruxelles 61, B-5000, Namur, Belgium

Abstract

Reproduction in vertebrates is controlled by the Hypothalamus–Pituitary–Gonad axis and the main hormone actions have been extensively described. Still, despite the scattered information in fish, accumulating evidence strongly indicates that corticosteroids play essential roles in reproductive mechanisms. An integrative approach is important for understanding these implications. Animal husbandry and physiological studies at molecular to organismal levels have revealed that these corticosteroids are regulators of fish reproductive processes. But their involvements appear strongly contrasted. Indeed, for both sexes, corticosteroids present either deleterious or positive effects on fish reproduction. In this review, the authors will attempt to gather and clarify the available information about these physiological involvements. The authors will also suggest future ways to prospect corticosteroid roles in fish reproduction.

Keywords:
Corticosteroids
Cortisol
Corticosteroid receptors
Fish
Physiology
Reproduction
Sex-steroids
Stress

Contents

1. Introduction ... 242
2. The main corticosteroid roles in mammal reproduction ... 242
3. The corticosteroids in fish ... 244
4. Changes in plasma corticosteroids during fish reproduction 245
5. The role of corticosteroids in the reproduction of female fish 246
6. The role of corticosteroids in the reproduction of male fish 247
7. Future directions .. 248
Acknowledgement .. 249
References .. 249

1. Introduction

In teleost fish, corticosteroids are involved in a wide range of physiological regulations in the fields of stress, immune and inflammatory responses, energetic metabolism and osmoregulation. Although these roles are well documented (Wendelaar Bonga, 1997; Mømmersen et al., 1999), corticosteroid functions in reproduction have received limited attention. Most of the studies related to reproductive endocrinology focused on the classical endocrine actors of the brain–pituitary–gonad axis such as GnRH, gonadotrophins or gonadal sex-steroids. Until now, data about corticosteroids are quite scattered. Still, increasing clues suggest the relevance to focus on them in order to refine our knowledge about the endocrine control of fish reproduction. Reports about the inhibitory and stimulatory effects of corticosteroids and stress on reproduction are sometimes controversial. The aim of this review is to clarify these equivocal effects. Based on recent studies in the area, we examined their possible physiological roles in regulating reproduction. Initially we provide a brief overview of the major involvements of corticosteroids in mammals, before outlining the available information in fish and finally discussing how to prospect new research strategies for the exploration of corticosteroid functions in the future.

2. The main corticosteroid roles in mammal reproduction

Corticosteroids are steroid hormones produced from cholesterol by the adrenal cortex mainly.
They are classically divided into two groups: the glucocorticoids and the mineralocorticoids. Many cell types contain receptors that bind glucocorticoids allowing these hormones (mainly cortisol in non-rodents and corticosterone in rodents) to control numerous biological processes such as carbohydrate, lipid and protein metabolism. They also play major anti-inflammatory roles and regulate the immune response. Mineralocorticoids, mainly represented by aldosterone, regulate hydromineral balance, mainly by promoting sodium retention in the kidney and acting via mineralocorticoid receptor. But there are evidences that mineralocorticoids are involved in other biological processes such as the regulations of cardio-vascular system (Struthers, 1995; Duprez, 2007; Fejes-Toth and Naray-Fejes-Toth, 2007) or structural proteins (Gekle et al., 2007). Furthermore, the presence of corticosteroid receptors in reproductive tissues including ovary and testis leads to the consideration that corticosteroids can exert positive or inhibitory effects on reproductive functions.

Regarding females, there is a general consensus to say that glucocorticoids can exert inhibitory effect on the whole Hypothalamus–Pituitary–Gonad axis including ovarian steroidogenesis (Michael et al., 1993). Therefore, it is hypthesized that they are detrimental to reproduction. However, in a recent review, Tilbrook et al. (2000) underscored that in vivo disruptive effects of glucocorticoids in non-rodent mammals are not systematic. Actually, according to Brann and Mahesh (1991), corticosteroids may also play a positive role in the regulation of follicle development, as acutely elevated levels may increase both FSH and LH releases, contrary to chronic corticosteroid exposure.

There is also no general agreement about the roles of corticosteroids and especially glucocorticoids in the regulation of oocyte maturation. In human and other mammals, there is a preovulatory increase of follicular cortisol content during the luteinizing hormone surge leading to ovulation, while levels are reduced during the rest of the menstrual cycle (Harlow et al., 1997; Andersen, 2002; Acosta et al., 2005). It has been suggested that cortisol exerts a positive action during ovulation in human (Fateh et al., 1989; Jimena et al., 1992; Andersen, 2002) but it had no effect on oocyte maturation in mouse (Andersen, 2003) and was suggested to be inhibitory in pig, albeit at pharmacological doses (Yang et al., 1999). In human, the increase of intrafollicular cortisol would result from an increase of cortisone uptake from the circulating fluid. There, this latter would be converted into cortisol by 11β-HSD enzyme that would switch from type-2 into type-1 near the ovulation period (Lewicka et al., 2003). Nevertheless, it is not clear yet whether the peri-ovulatory increase of follicular cortisol is a cause or a consequence of human oocyte maturation (Michael, 2003). According to Hillier (2001), it might be involved in

<table>
<thead>
<tr>
<th>Steroids</th>
<th>Species</th>
<th>Reproductive status</th>
<th>Female</th>
<th>Male</th>
<th>Reference</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-dehydrocorticosterone</td>
<td>Chalcalburnus tarichi</td>
<td>Mature</td>
<td></td>
<td></td>
<td>22–28</td>
<td>Unal et al. (2006)</td>
</tr>
<tr>
<td>11-deoxycorticisol</td>
<td>Pleuronectes americanus</td>
<td>Mature</td>
<td>0.6–1.9</td>
<td></td>
<td>Campbell et al. (1976)</td>
<td>Double isotope derivative assay</td>
</tr>
<tr>
<td>11-deoxycorticisol</td>
<td>Pleuronectes platessa</td>
<td>Immature</td>
<td>2–5</td>
<td>2–4</td>
<td>Scott and Canario (1990)</td>
<td>HPLC + RIA</td>
</tr>
<tr>
<td>11-deoxycorticosterone</td>
<td>Hoplostethus atlanticus</td>
<td>Immature</td>
<td>1–3</td>
<td></td>
<td>Pankhurst and Conroy (1988)</td>
<td>RIA</td>
</tr>
<tr>
<td>11-deoxycorticosterone</td>
<td>Perca fluviatilis</td>
<td>Immature</td>
<td>1–5</td>
<td></td>
<td>Noaksson et al. (2005)</td>
<td>HRGC/HRMS</td>
</tr>
<tr>
<td>11-deoxycorticosterone</td>
<td>Oncorhynchus mykiss</td>
<td>Mature</td>
<td>3.7</td>
<td></td>
<td>Campbell et al. (1980)</td>
<td>Double isotope derivative assay</td>
</tr>
<tr>
<td>11-deoxycorticosterone</td>
<td>Cyprinus carpio</td>
<td>Immature</td>
<td>0.3</td>
<td></td>
<td>Doyon et al. (2006)</td>
<td>RIA</td>
</tr>
<tr>
<td>11-deoxycorticosterone</td>
<td>Oncorhynchus mykiss</td>
<td>Mature</td>
<td>1</td>
<td></td>
<td>Kine and Doblen (1985)</td>
<td>RIA</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Pleuronectes americanus</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>Milla et al. (2008)</td>
<td>RIA</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Pleuronectes platessa</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>Campbell et al. (2008)</td>
<td>Double isotope derivative assay</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Dicentrarchus labrax</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>Katz and Eckrein (1974)</td>
<td>Chromatography + isotope derivative assay</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Platichthys flesus</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>Lu et al. (2007)</td>
<td>RIA</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Fundulus heteroclitus</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>Bradford and Taylor (1987)</td>
<td>RIA</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus mykiss</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>Hsu et al. (2001)</td>
<td>RIA</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus mykiss</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>Koldijker et al. (2004)</td>
<td>RIA</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus tshawytscha</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>Barry et al. (2001)</td>
<td>ELISA</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Mature</td>
<td>0.6</td>
<td></td>
<td>397</td>
<td>Barry et al. (2001)</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus nerka</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>397</td>
<td>Barry et al. (2001)</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Immature</td>
<td>0.6</td>
<td></td>
<td>397</td>
<td>Barry et al. (2001)</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus nerka</td>
<td>Mature</td>
<td>52</td>
<td></td>
<td>Woodhead (1975)</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Mature</td>
<td>52</td>
<td></td>
<td>Woodhead (1975)</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Immature</td>
<td>52</td>
<td></td>
<td>Woodhead (1975)</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Immature</td>
<td>52</td>
<td></td>
<td>Woodhead (1975)</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Immature</td>
<td>52</td>
<td></td>
<td>Woodhead (1975)</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Immature</td>
<td>52</td>
<td></td>
<td>Woodhead (1975)</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Immature</td>
<td>52</td>
<td></td>
<td>Woodhead (1975)</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Immature</td>
<td>52</td>
<td></td>
<td>Woodhead (1975)</td>
<td>Chromatography</td>
</tr>
<tr>
<td>Cortisol</td>
<td>Oncorhynchus masou</td>
<td>Immature</td>
<td>52</td>
<td></td>
<td>Woodhead (1975)</td>
<td>Chromatography</td>
</tr>
</tbody>
</table>
the anti-inflammatory response to tissue injuries caused by ovulation. To date, the role of cortisol during peri-ovulatory period has not been entirely elucidated.

Prenatal maternal stress has been found to have long-lasting effects on the behavioural and physiological development of the offspring. In the case of human, this maternal stress is often associated to an increase of cortisol in the women plasma and in the foetus (De Weerth and Buitelaar, 2005). During gestation, cortisol levels normally gradually increase in the serum and amniotic fluid of pregnant woman (Challis et al., 1983; Sarkar et al., 2007). High expression of 11β-HSD type-2, which oxidizes cortisol into cortisone, has been measured in both foetus and placenta from mid-gestation to parturition (Seckl and Chapman, 1997). Both low expression of this enzyme or high cortisol/dexamethasone levels in the pregnant female/woman were associated to decrease placental weight and lower bodyweight at birth (Seckl and Chapman, 1997; reviewed by Michael and Papageorghiou, 2008). It was hypothesized that 11β-HSD2 may protect the foetus from deleterious actions of active cortisol/corticosterone (Sun et al., 1999). These deleterious effects may happen during early, mid- or late pregnancy and impact foetus but also further child/young animal development (e.g. hypertension, post-natal learning capacities, cognitive function and response to stress) (Michael and Papageorghiou, 2008). Regarding the role of mineralocorticoids, aldosterone production increases during pregnancy in order to allow the water retention needed for volume expansion (Escher and Mohaupt, 2007).

In males, glucocorticoids and especially cortisol or corticosterone seem to have an inhibitory effect all along the spermatogenesis pathway mediated by the glucocorticoid receptor (Ge et al., 2005a). In addition, glucocorticoids may induce spermatogonia and spermatocyte apoptosis and decrease sperm yield (Gao et al., 2003; Wagner and Claus, 2004). However, according to Wagner and Claus (2004), it is not clear whether these effects are part of a normal regulatory step or detrimental to the animal. The activity of 11β-hydroxysteroid dehydrogenase (11βHSD2) within Leydig/Sertoli cells would protect the testis from the adverse effects of cortisol or corticosterone by converting these hormones into inactive cortisone or 11-dehydrocorticosterone, respectively (Nacharaju et al., 1997; Ge et al., 2005a).

Contrary to glucocorticoids, mineralocorticoids seem to exert some positive actions in male reproduction. Mineralocorticoid receptor was found to be expressed in Leydig and Sertoli cells, as well as in spermatozoa (Ge et al., 2005b; Fiore et al., 2006). The mineralocorticoid hormone aldosterone might be involved in the regulation of spermatogenic fluid osmolality and in spermatozoa motility (Fiore et al., 2006). In addition it appears that it would also stimulate testosterone production within the Leydig cells (Ge et al., 2005b).

3. The corticosteroids in fish

Corticosteroids are mainly synthesized in the interrenal tissue in teleost fish. This tissue which is embedded inside the anterior part of the kidney is homologous to mammalian adrenal cortex. Contrary to mammals, the interrenal tissue does not form a compact gland and the anatomical distinction between cortical and medullary zonations is lacking. Indeed, the postcardinal veins and their branch are surrounded by close clusters of chromaffin cells (medullary homologue) and steroidogenic cells (cortical homologue) (Wendelaar Bonga, 1997). Whereas the corticosteroid biosynthesis pathways differ between fish and mammals (Prunet et al., 2006), there are not great differences between the corticosteroid pattern. The main divergence is the absence of the mineralocorticoid aldosterone in fish (Gilmour, 2005). Otherwise, to our knowledge, 18-hydroxy cortisol and 1α-dehydrocorticoesterone have not been detected in the teleost plasma yet. In conformity with the findings in other vertebrates, the main corticosteroids isolated from fish blood are cortisol, cortisone, 11-deoxycortisol and corticosterone. But, their concentrations depend on the species, sex and reproductive status (Table 1).

Female and male gonads may have also the capacity to produce the main corticosteroids (cortisol, 11-deoxycortisol, corticosterone and 11-deoxycorticosterone). First, in the fish species investigated, they own all the enzymes responsible for their synthesis even if 11-β-hydroxylase gene expression was not abundant in the ovary (Figs. 1 and 2: Kobayashi et al., 1998; Kusakabe et al., 2002; Kazeto et al., 2003; Li et al., 2003; Socorro et al., 2007; Zhou et al., 2007). Second, 11-deoxycorticosteroids (11-deoxycortisol and 11-deoxycorticosterone) were shown to be important products of ovarian and/or testicular steroidogenesis (Colombo et al., 1973, 1978; Tesone and Charreau, 1980; Kime et al., 1992). Third, the presence of cortisol and 11-deoxycortisol in ovary, sperm and seminal fluid supports that gonadal corticosteroidogenesis (Canario and Scott, 1990; Scott et al., 1991a,b).

To manage their physiological actions, corticosteroids bind to nuclear receptors which act as ligand-dependent transcription factors. The relative ability of corticosteroids to evoke the transcriptional activities of corticosteroid receptors is of paramount importance to estimate their capacity to exert physiological actions. In rainbow trout Oncorhynchus mykiss, cortisol and, to a lesser extent, 11-deoxycortisol

Fig. 1. Schema of the probable pathways of corticosteroid biosynthesis in female teleost. Solid black arrows show that the enzyme catalysing the steroid metabolism is active in the gonad; the grey arrows indicate that the enzyme required for that step is expressed in the gonad but its activity needs to be confirmed.
and corticosterone appeared to transactivate in vitro the two glucocorticoid receptors (Bury et al., 2003). Interestingly, the two glucocorticoid receptors but also both GR2 isoforms in the cichlid *Haplochromis burtoni* are differentially sensitive to cortisol (Greenwood et al., 2003; Bury et al., 2003). The situation is far from clear for the mineralocorticoid receptor for which both cortisol and 11-deoxycorticosterone (DOC) are likely to act as physiological ligands (Sturm et al., 2005). In *H. burtoni*, the mineralocorticoid receptor sensitivity was similar to the mammalian one, in being more sensitive to both cortisol and aldosterone than the glucocorticoid receptors (Greenwood et al., 2003). Corticosteroid receptors gene expression (gluco- and mineralocorticoid receptors) has been found in the male/female gonads. In rainbow trout, the transcripts were detected in the ovary (Sturm et al., 2005; Milla et al., 2006). Both corticosteroid receptors were also identified in the testis of trout and other species (Colombe et al., 2000; Park et al., 2007; Filby and Tyler, 2007; Milla et al., 2008). In the testis, mineralocorticoid receptor is strategically located along the reproductive axis and thus is in a position to regulate reproductive function (Milla et al., 2008). Finally, the presence of factors known to interfere with the corticosteroid actions in mammals supports the implication of corticosteroids in fish reproduction. In this regard, 11β-hydroxysteroid dehydrogenase which prevents illicit activation of the mineralocorticoid receptor in mammals by catabolizing cortisol (Farman and Rafestin-Oblin, 2001), is expressed in the ovary and testis, particularly from mid-gametogenesis to the final stages of maturation, and displays some activities at least in the testis (Kusakabe et al., 2003; Ozaki et al., 2006; Milla et al., 2006). Overall, production, receptivity and metabolic capacity of corticosteroids in the gonads are thus a first argument to suppose some potential implications in teleost reproduction.

4. Changes in plasma corticosteroids during fish reproduction

Whereas the seasonal changes of the classical sex-steroi
concentrations (androgens, estrogens...) during a reproductive cycle have been extensively investigated so far, data about the variations of plasma corticosteroid concentrations are limited. Still, as a determinant indicator of corticosteroid roles in fish reproduction, their plasma levels vary greatly throughout the reproductive cycle. In both sexes, some fish species exhibit a broad increase in plasma cortisol levels during the pre-spawning or spawning period (Wingfield and Grimm, 1977; Pickering and Christie, 1981; Kusakabe et al., 2003; Noaksson et al., 2005; Westring et al., 2008) even if this result was not observed in some species like black bream *Acanthopagrus butcheri* (Haddy and Pankhurst, 1999). As plasma cortisol levels in mature fish have been measured at high concentrations in several fish species, often more elevated than in immature fish (Table 1), one can hypothesize that a plasma cortisol up-regulation at the breeding season may concern numerous species. More precisely, in rainbow trout, brown trout *Salmo trutta*, goldfish *Carassius auratus* and common carp *Cyprinus carpio* a surge in plasma cortisol was measured at the time of ovulation but such a transient increase needs to be investigated in other fish species (Cook et al., 1980; Pickering and Christie, 1981; Bry, 1985; Kime and Dolben, 1985). Few studies have compared the plasma cortisol profiles during the reproductive cycle for both sexes but it seems, at least in salmonids, that the elevation starts earlier in males than in females but that the amplitude is higher in females (Pickering and Christie, 1981; Table 1).

This difference in the plasma cortisol profile might also been species-specific as illustrated by the broad levels measured plasma of the salmon species (Table 1). This salmon example also illustrates the specificity of diadromic fish for which the preparation to mating coincides with numerous physiological changes including in the osmoregulatory and metabolic processes. In the wild, salmon experience a large and sustained rise in plasma cortisol levels during the pre-spawning and/or spawning period (Carruth et al., 2000; Westring et al., 2008). Progressive hyperplasia of the interrenal tissues coincidently with the increase of corticosteroid concentrations was described in salmonids during their anadromous spawning migrations (Robertson and Wexler, 1959; Hane and Robertson, 1959). In fish, cortisol release is involved in metabolic function and osmoregulation (Mommsen et al., 1999). In particular, several studies support that cortisol would be implicated in the salmonid adaptation to freshwater by stimulating the hyperosmoregulatory mechanisms (Mc Cormick, 2001; Kiilerich et al., 2007). Also, the gonadal maturation is accompanied with changes in metabolic parameters known to be driven by cortisol, such as enhanced liver amino acid catabolism and gluconeogenesis leading to glucose increase for coping with stress during migration (Kubokawa et al., 1999). It means that this prolonged hypersecretion of cortisol may be due to reproduction but also to face with the dramatic changes in their physiology.

Fig. 2. Schema of the probable pathways of corticosteroid biosynthesis in male teleost. Solid black arrows show that the enzyme catalysing the steroid metabolism is active in the gonad; the grey arrows indicate that the enzyme required for that step is expressed in the gonad but its activity needs to be confirmed. Unfilled arrow indicates lack of clear information.
11-deoxycorticosterone (DOC) and 11-deoxycortisol were reported to be highly up-regulated in the plasma at the time of reproduction, in both sexes. For instance, a 38-fold increase of plasma DOC levels was measured in *Tilapia aurea* during ovulation (Katz and Eckstein, 1974). However, these elevations (11-deoxycorticosterone, 11-deoxycortisol) were not observed in all species, highlighting probable species differences which remain to be established (Table 1). In any case, when this peak occurs, its synchronicity with blood MIS (Maturation-Inducing Steroid) increase is in agreement with a role of these corticosteroids in the final stages of reproduction (Noaksson et al., 2005; Milla et al., 2008).

5. The role of corticosteroids in the reproduction of female fish

In fish, stress causes adverse effects on female reproductive performances. Depending on the period and the intensity of stressor application, it may cause follicular atresia, advance or delay oocyte maturation and ovulation or affect egg size, fertilization success, spawning behaviour and progeny quality (Clearwater and Pankhurst, 1997; Coward et al., 1998; Schreck et al., 2001; Okumura et al., 2002). Deleterious effects of stress on vitellogenesis have been extensively studied in salmonids. For example, female brook trout *Salvelinus fontinalis* facing with acid stress had lower vitellogenin levels (Roy et al., 1990). In rainbow trout, females subjected to repeated acute stress during oogenesis produced smaller eggs, in accordance with vitellogenesis disruption (Campbell et al., 1992). These effects may be mediated by cortisol, which has been shown to interfere with vitellogenesis (Fig. 3). In Arctic char *Salvelinus alpinus*, cortisol affected the vitellogenin production controlled by estrogen (Berg et al., 2004) and also directly inhibited the production of estrogen in rainbow trout and tilapia *Oreochromis mossambicus* (Carragher and Sumpter, 1990; Foo and Lam, 1993; Reddy et al., 1999; Pankhurst and Van Der Kraak, 2000). These results could be explained by some types of interactions between the glucocorticoid receptor and the estrogen receptor (ER). *In vivo* cortisol treatment caused a drop of cytosolic E2-binding sites in the liver and a reduction in plasma vitellogenin quantity in trout (Carragher et al., 1989; Pottinger and Pickering, 1990). Glucocorticoid receptor activation prevents estradiol from positively regulating the ER expression (Lethimonier et al., 2000). Furthermore, the glucocorticoid and estrogen receptor distributions overlap in the trout brain and pituitary indicating further potential interferences between the glucocorticoids and estrogen pathways (Teitsma et al., 1999). The information about the effects of the other corticosteroids is very scarce. Their weak ability to transactivate in *vitro* the glucocorticoid receptors (Bury et al., 2003) does not support such effect on vitellogenesis depletion.

The reported effects of corticosteroids on GnRH and gonadotropins productions are also consistent with the interference of corticosteroids with the Hypothalamus–Pituitary–Gonad (HPG) axis. The wide-spread expression of rainbow trout glucocorticoid receptor in the brain and pituitary shows that neurons and pituitary cells, involved in the control of the reproductive axis, are probably targets for glucocorticoids (Teitsma et al., 1999). In immature fish, cortisol treatments induced elevation of pituitary LH in eel *Anguilla anguilla* and rainbow trout. These results evoke a positive function of glucocorticoids in the first sexual maturation (Crim et al., 1981; Dufour et al., 1983; Huang et al., 1999). By contrast, in maturing brown trout, the pituitary and plasma gonadotropins were depleted by cortisol treatment (Carragher et al., 1989). In female fish, androgens are suspected to be implicated in the regulations of final stages synchronization and GnRH/gonadotropins secretion (Redding and Patino, 1993; Nagahama et al., 1994). The effects of cortisol or stress on plasma androgens suppression (Carragher et al., 1989; Campbell et al., 1994; Cleary and Pankhurst, 2000) also support that corticosteroids indirectly disrupt the HPG axis. Collectively, these works suggest that corticosteroids not only affect estrogens but also probably disrupt GnRH and gonadotropin actions. Therefore, it appears that corticosteroids may exert inhibitory effects on vitellogenesis. Nevertheless, as these works mainly focused on salmonids, it would be interesting to investigate that scheme in other fish families.

Conversely, sex-steroids regulate corticosteroid productions further supporting their reciprocal interaction along the reproductive cycle. Estradiol suppressed *in vitro* cortisol production in interrenal collected at spawning time in chinook salmon *Oncorhynchus tshawytscha*, and collected from immature kokanee salmon *Oncorhynchus nerka* (McQuillan et al., 2003), which confirms the reciprocal antagonism between both steroids even if that result was not observed in immature rainbow trout (Barry et al., 1997; McQuillan et al., 2003). By contrast, *in vivo*, estrogens were reported to promote cortisol production in immature trout (Pottinger et al., 1996). It is conceivable that this

![Fig. 3. Schema of the main corticosteroid implications in female teleost reproduction. MIS: Maturation-Inducing Steroid; 11-DC: 11-deoxycorticosterone; DOC: 11-deoxycorticosterone.](image-url)
discrepancy is related to cortisol target within the Hypothalamus–
Pituitary–Interrenal (HPI) axis. Also in rainbow trout, 17α-20β-
dihydroxyprogesterone which is the MIS was effective to stimulate
cortisol production in the interrenal of immature fish (Barry et al.,
1997). Therefore, sex-steroids may act on tissue implicated in cortisol
production to modulate the whole physiological corticosteroid
response.

The transient rise of plasma corticosteroids around ovulation is in
agreement with their biological effects on peri-ovulatory mechan-
isms. In the 70s, numerous investigators attempted to identify
the major steroids involved in oocyte maturation and ovulation.
When identifying 17α-20β-dihydroxyprogesterone and 17α-20β-
trihydroxyprogesterone as the MIS, corticosteroids were also inten-
sively tested for their ability to participate in the final stages of oocyte
maturation and ovulation. Treatments with LH stimulated in vitro
follicular and interrenal synthesis of DOC and cortisol (Sundararaj and
Goswami, 1969; Colombo et al., 1973) in agreement with peri-
ovulatory role of both steroids. In vivo hCG injection in catfish
Hetero-
neutes fossilis induced oocyte maturation coincidently with plasma
cortisol and corticosterone increase (Mishra and Joy, 2006). Cortisol was
demonstrated to be quite effective in inducing oocyte meiotic matura-
tion in several fish species (see for review Goetz, 1983). In vitro tests
also showed that DOC but also 11-deoxycortisol and corticosterone were
able to trigger oocyte maturation in numerous freshwater species even
if high doses were sometimes necessary to observe these effects (Goetz,
1983 for review; Rahman et al., 2001). In a recent work, the corticosteroid
11-deoxycortisol was even more potent than MIS to
induce oocyte maturation (Unal et al., 2008). Moreover, when testing
some steroid combinations, a synergy in the maturational response was
demonstrated between corticosteroids and MIS. For example, in vitro
treatments with cortisol increased the sensitivity of oocytes to the MIS in
rainbow trout (Jalabert and Fostier, 1984). In the view of these
interactions, it has been hypothesized that the binding of corticosteroids
to plasma proteins during oocyte maturation would free unbound
MIS and facilitates its action (Goetz, 1983). Thus, although the MIS are
today identified, these in vitro results support that corticosteroids
might be directly and/or indirectly involved in final oocyte maturation
control. But, the plasma concentrations of corticosteroids, not markedly
higher than MIS levels during this period, raise the question about
the extent of this physiological significance. Associated with oocyte
maturation, oocyte hydration is a biological process shown to be induced
in vitro by cortisol in rainbow trout (Milla et al., 2006). Injections of high
doses of cortisol promoted ovarian tissue hydration associated with an
increase of sodium content in the ayu (Plecoglossus altivelis) (Hirose
et al., 1974). But, except DOC, no other corticosteroids have ever been
tested. Finally, ovulation was induced by treatments with corticosteroids
(cortisol, 11-deoxycortisol and DOC) in diverse fish species (Hirose et al.,
1974; Goetz and Theofan, 1979; Haider and Rao, 1994; Small, 2004).
So, corticosteroids may be actors of the endocrine control of the final
stages of reproduction, in several fish species.

Until now, the majority of the studies were dedicated to understand
the oviparous model. Still, in the ovoviviparous model guppy Poecilia
reticulata, the cortisol level dropped during fertilization followed by a
rise during gestation and then a strong decline at the periparturition
period (Venkatesh et al., 1990). Associated with the cortisol effect on
gestation prolongation, it is also hypothesized that cortisol is also
important in maintaining gestation (Venkatesh et al., 1991).

To sum-up (Fig. 3), the current state of knowledge is in favour of
harmful effects of cortisol during vitellogenesis by interference with
ovarian sex-steroids signaling. However, cortisol might participate in
the fish puberty stimulation by enhancing pituitary gonadotropins at the
onset of oogenesis. Moreover, the main corticosteroids, including cortisol,
seem to be involved in the regulation of peri-ovulatory mechanisms
despite a disruption of the HPG axis in the case of high cortisol levels.

6. The role of corticosteroids in the reproduction of male fish

Similarly to females, corticosteroids influence male reproduction
(Fig. 4). But, the available investigations mainly focused on cortisol
involvement. Low plasma cortisol levels were observed during sperma-
This could be a physiological adaptation to protect the testes against the
adverse effects of cortisol (Pottinger et al., 1995). Indeed, this steroid has
numerous deleterious effects on male reproduction. When facing
stressful situations or cortisol treatment, a delay in the testicular
development was observed, marked by smaller gonads, retardation in
spermatogenesis and lower sperm quality (Campbell et al., 1992;
Consten et al., 2001). In common carp, the administration of RU486, a
potent glucocorticoid receptor antagonist, prevented the decrease of
gonad growth and the delay of the spermatogenesis time-course,

\textbf{Fig. 4.} Schema of the main corticosteroid implications in male teleost reproduction. MIS: Maturation-Inducing Steroid; DOC: 11-deoxycorticosterone.
showing that these cortisol impacts are managed via the glucocorticoid receptor pathway (Goos and Consten, 2002). Nevertheless, using a testis incubation test in the Japanese eel (Anguilla japonica), Ozaki et al. (2006) pointed out that cortisol directly enhances DNA replication and mitosis in spermatogonia when added at moderate doses (0.1–100 ng/mL). However, excess of cortisol (100 ng/mL) inhibited the 11-ketotestosterone effect on spermatogonia proliferation. In accordance with a positive regulatory effect of cortisol on spermatogenesis, administration of that steroid in immature knifefish Notopterus notopterus increased their gonado-somatic index (GSI) and activated spermatogenesis (Shankar and Kulkarni, 2000). These discrepancies between studies could be related to dose and/or species differences and underline the complexity to draw strong conclusions about the adverse cortisol effects on fish spermatogenesis.

Cortisol also inhibits the sex-steroid secretion at least during the spermatogenesis process. After stressor applications or cortisol administration during spermatogenesis, the plasma androgen levels were lower in treated fish than in controls (Pickering et al., 1987; Carragher et al., 1989; Pottinger, 1999; Goos and Consten, 2002; Consten et al., 2002; Lister et al., 2008). These observations suggest that cortisol effect on spermatogenesis retardation is partly caused by inhibition of androgen productions (Consten et al., 2002; Pickering et al., 1987; Scott and Baynes, 1982). But, we cannot exclude any inhibitory effects on the brain–pituitary–gonad axis by depressing brain GnRH content, pituitary FSH and LH and plasma gonadotropin levels as shown in common carp (Consten et al., 2001).

During the spermatogenesis period, cortisol has also negative effects on some reproductive parameters such as testis growth for example (Carragher et al., 1989). Domesticated male striped bass Morone saxatilis selected as high cortisol stress responders tended to begin their spermatogenesis earlier and exhibited a longer spermatogenesis period (Castranova et al., 2005). In rainbow trout, a direct negative cortisol effect on the MIS testicular production was reported (Milla et al., 2008). As this latter is probably implicated in spermiation induction (Terova et al., 2007; Stolte et al., 2008). Mating period is accompanied with huge modifications in the behaviour, leading to a higher sensitivity to stress. Focusing on cortisol during reproduction must be thus undertaken with higher caution regarding the potential interaction between plasma cortisol levels and mating activities. In consequence, blood sampling should be rapidly carried out to avoid any cortisol contamination due to a stressful physiological state. Regarding the other corticosteroids, if the effects of stress on their blood plasma release remain undetermined, one should pay the same attention to them. On the other hand, reproduction often corresponds to a fasting period, or is at least accompanied with a decrease of feeding. As the plasma glucocorticoid levels are linked to the fish nutritional status, it may therefore be difficult to distinguish between the glucocorticoid fluctuations linked to reproductive physiological state and those linked to the alteration of the energetic metabolism. More generally, as suggested earlier in the salmon example, all the potential interactions between the corticotropic axis and reproduction in fish should be appropriately considered.

Second, potential relationships between corticosteroids and sex-steroids should be taken into consideration. In the classically described corticosteroid transduction pathway, corticosteroids activate corticosteroid receptors to exert their physiological actions. However, some corticosteroids are able to bind to gonadal progestogen receptors. In Arctic char, 11-deoxycorticosterone (DOC), the putative teleost mineralocorticoid, was shown to bind to an ovarian progestogen membrane receptor. But, in that study, no other corticosteroids were tested (Berg et al., 2005). Moreover, DOC and/or to a lesser extent 11-deoxycortisol bound substantially a nuclear and membrane progestogen receptor in spotted sea trout Cynoscion nebulosus. But, cortisol does not seem to be an agonist of these receptors (Pinter and Thomas, 1995; Zhu et al., 2003). In male Japanese eel, DOC also displayed a high affinity for a nuclear 17α-20β-dihydroxyprogesterone (MIS) receptor in the testis and once more, cortisol did not bind or activate it (Todo et al., 2000). That steroid binding profile was also observed in sperm membrane progestogen receptor in Atlantic croaker Micropogonias undulatus (Thomas et al., 2005). These results lead us to hypothesize that some corticosteroids including DOC interfere with MIS in its transduction pathway, in accordance with the reported physiological interactions between these steroids and MIS. Consequently, future studies on corticosteroid involvements should take into account potential corticosteroid effects via the progestogen receptor signaling. Besides, the reported effect of DOC on sperm fluidity also suggests that this steroid would play some roles in fish reproduction, either acting on the mineralocorticoid receptor or via progestogen receptors (Milla et al., 2008).

More generally, in the view of the described corticosteroid effects (oocyte maturation, ovulation, spermatogonia proliferation, sperm hydration), it is observed that corticosteroids either act in combination with sex-steroids or exert effects previously demonstrated to be managed by other hormones. By analogy with their roles in maintaining energetic, immune and ionic homeostasis in fish biology, we can speculate that, contrary to sex-steroids which trigger reproductive process, corticosteroids are involved in their adjustment. Their potential link with the sex-steroids should be integrated in the future experimental designs.

Third, as shown by Ozaki et al. (2006), the effects of cortisol on spermatogenesis proliferation may be dose-dependent, either
stimulatory at low physiological concentrations or inhibitory at high concentrations. Thus, studies on corticosteroids effects on reproduction should be undertaken with a broad range of steroid concentrations to make sure to grasp all possibilities. In that way, more attention should be paid to 11β-hydroxysteroid dehydrogenase action, which converts cortisol into cortisone in the case of elevated levels in the plasma, as shown in mammals. The study of its activity could inform us about the need for the fish to reestablish the cortisol levels at stimulatory concentrations in the case of too high plasma concentrations. Besides, the other conditions of cortisol application (doses, timing and duration of application...) should also be accurately appreciated to better clarify the potential cortisol actions.

Finally, if the use of the mammalian model to explain the teleost physiology is often unsuitable, such comparison may allow exploring new area in fish. For several decades, the apparent absence of aldosterone and mineralocorticoid receptor in fish conferred them a corticosteroid scheme very different from mammals. Still, the discovery of mineralocorticoid receptor and its putative ligand DOC reopened the debate about the similarities between fish and mammals. If we attempt to highlight some similarities between those models, we note that the implications of corticosteroids in female reproduction (oogenesis inhibition, peri-ovulatory process stimulation, gonadotropins regulation) are similar. In male fish, whereas the adverse effects of glucocorticoids on reproduction are close to mammals, their controversial effects on spermatogonia proliferation between the fish and mammalian models may be related to dose effects. Regarding mineralocorticoids, the effects of aldosterone on sperm quality including spermatoozoa concentration or androgen production may be sufficient arguments to hypothesize such roles of mineralocorticoids in teleost reproduction. More generally, the recent findings about the roles of cortisol and aldosterone during reproduction in mammals may open new perspectives regarding the endocrine control of reproduction in other vertebrates like fish.

In summary, teleost gonads are able to produce and respond to corticosteroids stimulation. Cortisol, the main corticosteroid, mainly displays direct deleterious effects on female and male gametogenesis (Figs. 3 and 4). But, the observations of these negative impacts might be related to elevated plasma concentrations. The relationship between corticosteroids and sex-steroids shows that corticosteroids also indirectly interfere with the HPG axis in both sexes (Figs. 3 and 4). By contrast, they exhibit a spectrum of direct positive activities during the final stages, particularly in females (oocyte maturation, ovulation). The changes in corticosteroid levels noted at this moment may be related to these multiple functions. Taken together, the available information strongly indicates that corticosteroid hormones may highly participate to the modulation of the reproductive endocrine control.

Acknowledgement

S.M. was supported by the Belgian National Funds for Scientific Research (FNRS), contract 2.4570.06.

References

