Journal of Applied Microbiology ISSN 1364-5072

ORIGINAL ARTICLE

Rapid enumeration of *Escherichia coli* in marine bathing waters: potential interference of nontarget bacteria

J. Baudart¹, P. Servais², H. De Paoli¹, A. Henry³ and P. Lebaron¹

- 1 UPMC Univ Paris 06, UMR7621, Laboratoire d'Océanographie Biologique de Banyuls, Observatoire Océanologique, Banyuls-sur-Mer, France
- 2 Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Bruxelles, Belgium
- 3 Veolia Environnement, Centre d'Analyses Environnementales, Saint Maurice, France

Keywords

bathing waters, *Escherichia coli*, glucuronidase activity, real-time monitoring, *Vibrio*.

Correspondence

Julia Baudart, UPMC Univ Paris 06, UMR7621, Laboratoire d'Océanographie Biologique de Banyuls, Observatoire Océanologique, BP44, F-66651 Banyuls-sur-Mer, France. E-mail: baudart@obs-banyuls.fr

2009/0586: received 31 March 2009, revised 17 April 2009 and accepted 5 May 2009

doi:10.1111/j.1365-2672.2009.04392.x

Abstract

Aims: To compare the *Escherichia coli* quantification given by the 'Coliplage[®]' assay, based on the direct measurement of the β -D-glucuronidase (GLUase) activity and the reference Most Probable Number (MPN) method from seawater sites and investigate the possible interference of non-*E. coli* strains in the GLUase activity measurement.

Methods and Results: Comparison performed from 69 French coastal bathing sites (1401 samples) showed nonconcordance between both methods, only for 8% of samples. Non-E. coli 4-methylumbelliferyl- β -D-glucuronide (MUG+) were isolated from nonconcordant samples. Phylogenetic analysis showed that Gammaproteobacteria were dominants and mainly represented by Vibrio species, which displayed GLUase activities on the same order of magnitude and sometimes much higher as E. coli reference strains.

Conclusions: The 'Coliplage[®]' assay is a rapid method for the quantification of *E. coli* showed few discordances with the standard MPN method. Some *Vibrio* species could interfere on the direct GLUase activity measurement of *E. coli*.

Significance and Impact of the Study: Data present the first qualitative investigation on disagreement between Coliplage[®] and the MPN results. If the interference of *Vibrio* species is confirmed *in situ*, appropriate treatments should be developed to remove the interfering signal.

Introduction

Monitoring programmes for the microbiological quality of bathing waters are based on counts of bacterial indicators of faecal pollution (coliforms, *Escherichia coli*, enterococci). Current methods of enumerating these indicators are all culture based; with such methods, the minimum delay between sampling and result is 24 h. Because of this processing time lag, it is impossible for authorities to decide rapidly a beach closure for protecting public health in case of sudden microbiological contamination, and conversely, it can also delay reopening a beach. The delay can also negatively affect tracking the origins of the contamination. The development of faster methods for evaluating water microbiological quality is a priority for both scientists (Noble and

Weisberg 2005) and end-users today. In addition to be rapid, the ideal method to estimate microbiological quality of bathing sites should also be sensitive, simple, quantitative, specific and well correlated with the current methods.

Total coliforms, faecal (also called thermotolerant) coliforms and faecal enterococci have been used for more than a century as bacterial indicators of faecal water contamination; they were used in the first European Bathing Water Quality Directive (EEC 1975) to control the microbiological water quality. But, recent reviews suggested *E. coli* as a better faecal coliform indicator of sanitary risks associated with bathing (Edberg *et al.* 2000; Fewtrell and Bartram 2001; Garcia-Armisen *et al.* 2007). Consequently, *E. coli* enumeration is today substituted for coliforms enumerations in the new European Bathing

J. Baudart et al. E. coli detection in seawater

Water Quality Directive (EEC 2006). Some authors have proposed using the measurement of an enzymatic activity specific to E. coli [β -D-glucuronidase (GLUase)] as an estimate of E. coli abundance (Fiksdal et al. 1994; George et al. 2000) because this enzymatic activity can be estimated in rapid assays without an intervening cultivation step. Good correlations in log-log plots were found between GLUase activity and E. coli concentrations estimated by a culture-based method both for coastal seawater (Lebaron et al. 2005) and freshwater (Farnleitner et al. 2001; Garcia-Armisen et al. 2005; Servais et al. 2005). In these studies, the direct measurement of GLUase activity was done using the substrate 4-methylumbelliferyl- β -D-glucuronide (MUG), and the activity was measured as the rate of production of fluorescent methylumbelliferone (MUF) (estimated by fluorometry), resulting from the hydrolysis of the substrate. This type of direct activity measurement can be done in as little as half an hour; it was thus proposed as a possible surrogate to culturebased methods for rapid detection of faecal pollution in bathing waters (Lebaron et al. 2005; Servais et al. 2005). When the GLUase activity measurement is used as a surrogate of E. coli enumeration, it is first measured and then converted to E. coli concentration using a standard curve, with the final abundance expressed in E. coli per 100 ml.

Since 2005, Veolia Water has commercialized in France a test called Coliplage® based on the measurement of GLUase activity to control the quality of bathing waters and to track sources of faecal contamination (Henry et al. 2008). With this test, samples are collected early in the morning and results are made available before noon. The water quality of numerous beaches in France was evaluated by this approach during the last two bathing seasons (2006 and 2007) because the authorities in charge of bathing areas management consider the rapidity of the Coliplage® method as a considerable advantage with regard to the classical approaches. When the Coliplage® data are compared to data obtained by the reference culture-based method presently in use (the standardized miniaturized Most Probable Number (MPN) method (ISO 9308-3 1998), some discrepancies were found between the estimates of E. coli numbers. In a few cases, the E. coli abundance estimated by the Coliplage® method significantly exceeded that estimated by the culture-based method. Different hypotheses have been proposed to explain these discrepancies, among which is the presence of nontarget cells (non-E. coli cells) having a GLUase activity that can result in an overestimated E. coli abundance using the Coliplage® procedure. Several authors have already suggested the possible interference of nontarget bacteria in the direct GLUase activity measurement (Palmer et al. 1993; Fiksdal et al. 1997; Van Poucke and

Nelis 1997); however, this hypothesis requires more investigations.

The objectives of the present paper were (i) to investigate the potential overestimation of *E. coli* concentration estimated by the Coliplage[®] method in regard to the reference MPN method and (ii) to determine from some samples, with an *E. coli* enumeration overestimated by Coliplage[®], whether the interference on the GLUase activity measurement could be attributed to nontarget bacteria present in the water.

Materials and methods

Sample collection

Samples were collected from 14 sites located on the French coastline during two summer bathing seasons (from 15 June to 15 September, 2006 and 2007). The number of beaches per site ranged between 1 and 12. A total of 72 beaches were studied (1401 samples total analysed). All samples were collected in sterile 0.5 l bottles stored at 4°C and analysed within 4 h.

The interference of nontarget bacteria on the GLUase activity measurement was investigated at a group of French coastal bathing sites (both lagoonal and open coastal sites) sampled between 2005 and 2007.

Escherichia coli enumeration

MPN miniaturized method

A standardized, miniaturized MPN method (ISO 9308-3 1998) using microplates (Biokar Diagnostics, Beauvais, France) was used for the enumeration of E. coli. In this method, based on the defined substrate approach (Edberg and Edberg 1988), 200 μ l aliquots of different dilutions (1/2, 1/20, ...) of each sample were added to microplate wells containing the substrate, MUG, in a dehydrated form. This substrate is hydrolysed by GLUase releasing the fluorescent compound MUF that is detectable under UV light. The microplates were incubated for 36-48 h at 44°C, and the MUF fluorescence was measured for each well under UV light. Escherichia coli abundance was based on the number of positive wells and a statistical analysis using Poisson's law. The detection limit of this method is 15 culturable E. coli per 100 ml. The expected coefficient of variation between replicates using this method is about 30% (Lebaron et al. 2005; Prats et al. 2008).

Coliplage® method

GLUase activity measurements were taken following the protocol proposed by George *et al.* (2000), but slightly modified. Seawater samples (100 ml) were filtered through 47-mm-diameter polycarbonate $0.2-\mu$ m-pore-size

E. coli detection in seawater

J. Baudart et al.

membranes (GTTP; Millipore), and the membranes were placed in 100-ml sterile Erlenmeyer flasks containing 10 ml of sterile phosphate buffer (pH 6·9). Next, 2 ml of MUG stock solution [55 mg of MUG (Sigma, St Louis, MO, USA) and 20 μ l of Triton X-100 in 50 ml of sterile water] was added to each flask (final MUG concentration of 0·6 mmol l⁻¹). The flasks were incubated in a water shaker bath at 44°C. Every 5 min for 20 min, a 2-ml aliquot was removed and added to a quartz cell and pH adjusted to between 10·5 and 11 by adding 40 μ l of 2 mol l⁻¹ NaOH (this pH corresponds to the fluorescence maximum for MUF).

The fluorescence intensities were measured with a Fluorescence Spectrophotometer (F-2500 Hitachi or RF 1501 Shimadzu) at an excitation wavelength of 362 nm and emission wavelength of 445 nm. The fluorometer was calibrated using a set of MUF standard solutions from 0 to 1000 nmol l⁻¹. The production rate of MUF (picomoles of MUF liberated per minute for 100 ml of sample filtered), expressing the enzymatic activity, was determined by least-squares linear regression when plotting MUF concentration vs incubation time. The GLUase activities, expressed in picomoles of MUF liberated per minute for 100 ml of sample filtered, were converted into E. coli concentrations by straight-line regressions in loglog plot between E. coli concentrations estimated by the MPN method and GLUase activities, as the one established for seawater samples by Lebaron et al. (2005).

Isolation of non-Escherichia coli GLUase positive (MUG+) bacteria

Non-E. coli MUG+ bacteria was investigated on the marine bathing water samples collected from the Vendean and Mediterranean coasts, for which the Coliplage® method gave a higher E. coli estimation than the MPN method. Cultivable bacteria were recovered from seawater samples by spreading 100 μ l of sampled water onto culture media supplemented with 70 mg l⁻¹ of MUG and incubating for 24-72 h at room temperature. Four different culture media were used for isolation: marine agar (Difco, BD, France), R2A agar (Difco) supplemented with sterile seawater (70%), Mineral salts Medium (MMO) agar, MMO (Stanier et al. 1966) supplemented with sterile seawater (70%) and nutrient agar without glucose (15.0 g peptone, 3.0 g yeast extract, 6.0 g NaCl, 12.0 g agar). MUG+ bacteria were isolated by randomly picking fluorescent colonies from the agar plates. The isolates were purified onto new agar plates. Each isolate was confirmed as nonfaecal coliform strains after spreading onto tergitol agar medium. The 16S rDNA genes of the 108 bacterial strains isolated were partially sequenced.

Nucleic acid extraction, 16S rDNA gene amplification and sequencing

DNA was extracted from colony using a thermal lysis protocol. A sample of each colonies was added to 50 µl of ultra pure water and incubated for 10 min at 94°C. The 16S rDNA genes were amplified from DNA by PCR using the primers SAdir (5'-AGAGTTTGATCATGGCT CAG-3') and S17 rev (5'-GTTACCTTGTTACGACTT-3'), which are specific for the 1.5-kb region of eubacteria 16S rDNA. The 50 μ l PCR mixture contained 5 μ l of lysis product, 0.2 μ l of each primer (50 μ mol l⁻¹), 5 μ l of PCR buffer 10x, 1 U of Super Tag DNA polymerase (HT Biotechnology Ltd, Cambridge, England) and 0.5 µl deoxynucleoside triphosphate mixture (20 mmol l⁻¹). The PCR programme consisted of 35 cycles at 94°C for 1 min, 50°C for 1 min and 72°C for 2 min followed by a final extension step at 72°C for 10 min. Amplification products were examined using agarose gel electrophoresis. A partial sequence (E. coli nucleotide numbering 28 and 905) for each isolate was obtained using the primer 907r (5'-CCG TCAATTCCTTTGAGTTT-3'). Sequencing reactions were performed by Macrogen (Seoul, Korea).

Phylogenic analyses

All nucleotide sequences were assembled, analysed and manually edited using BioEdit Sequence Alignment Editor Software (ver. 5.0.9; NC State University, Raleigh, NC, USA) (Hall 1999) and compared to sequences within the NCBI database (http://www.ncbi.nlm.nih.gov/) using Basic Local Alignment Search Tool – 2 sequences (Blast, http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi) (Tatusova and Madden 1999).

β -D-glucuronidase activity measurements on MUG+bacterial strains

In order to estimate the GLUase activity of the isolated MUG+ bacterial strains, they were cultivated in liquid medium. They were first grown overnight in Luria Bertoni broth without dextrose (10·0 g tryptone, 10·0 g NaCl, 10·0 g yeast extract, per litre), at 37°C for the *E. coli* strains and at 30°C for the non-*E. coli* strains. Cultures were centrifuged at 2795 g for 10 min; pellets were resuspended in sterile physiological water (9·0 g NaCl per litre) and homogenized. One per cent of the suspension was then grown in tryptic soy broth without dextrose (17·0 g biotrypcase, 3·0 g biosoyage, 2·7 g K₂HPO₄, 5·0 g NaCl, per litre, pH 7·3) supplemented with 0·4 g l⁻¹ of methyl- β -p-glucuronide (MetGlu) (Sigma) added as an inductor of GLUase activity (Tryland and Fiksdal 1998). The cultures were grown at 37°C for the *E. coli* strains

J. Baudart et al. E. coli detection in seawater

and at 30°C for the non-*E. coli* strains until stationary phase was reached (6 h for *E. coli* strains, several days for strains growing slowly). Induced cultures were centrifuged and resuspended and then homogenized in sterile physiological water, as described above. Aliquots of these suspensions were fixed with formaldehyde (2% final concentration), and total cell concentrations in the induced suspensions were determined by flow cytometry using the SybrGreen I procedure (Lebaron *et al.* 1998). GLUase assays were performed on aliquots of 10⁶ cells added to 200-ml sterile Erlenmeyer flasks containing sterile phosphate buffer and MUG solution as described previously.

According to the result of an experiment conducted to determine the saturating MUG concentration for pure strains, a 1·8-mmol l⁻¹ MUG concentration was used to investigate the GLUase activity of the isolated MUG+strains.

Results

Escherichia coli enumeration by the Coliplage[®] and the reference MPN methods: analysis of nonconcordance

The maximum allowable concentration of faecal coliforms is 2000 FC per 100 ml for bathing beaches in the European Union (EEC 1975). In France, however, *E. coli* are enumerated in place of faecal coliforms, but using the same guidelines as those established for faecal coliforms.

The Coliplage[®] and the reference standardized miniaturized MPN methods were used on 1401 samples from 72 beaches. We evaluated whether or not the *E. coli* concentration obtained by each method gave the same result with respect to the water quality threshold defined in the guidelines (2000 *E. coli* per 100 ml). The number of samples for which *E. coli* concentrations obtained by the Coliplage[®] method and the MPN method were not in agreement is listed in Table 1. Based on our evaluation criteria, nonconcordance between methods occurred 113 times, representing 8% of the total analysed samples. Per site, the percentage of nonconcordance ranged from 0% (five sites) to 41% (site J).

Diversity of non- Escherichia coli GLUase positive bacteria

The investigation into the diversity of non-*E. coli* GLUase positive bacteria was performed on samples from French coastal bathing sites. A total of 108 non-*E. coli* MUG+ strains were isolated from nonconcordant samples. The phylogenetic results are reported in Table 2. The isolated strains were affiliated with the following phylogenic classes: *Gammaproteobacteria* (66·7%), *Bacteroidetes* (32·4%) and *Actinobacteria* (0·9%). Most of the *Gammaproteobacteria* isolates (87·5%) were affiliated with 11 *Vibrio* species Four of these species (*Vibrio harveyi*, *Vibrio splendidus*, *Vibrio chagasii* and one unidentified) were highly represented (86% of the *Vibrio* isolates). Two GLUase positive *Bacteroidetes* species were also frequently

Table 1 Comparison of *Escherichia coli* concentrations measured with the maximum allowable level for bathing waters (2000 per 100 ml) as estimated by both the Coliplage[®] and the Most Probable Number (MPN) methods. Samples collected during the summer bathing seasons 2006 and 2007 on 72 beaches at 14 different sites on French coastlines

Site	Regional location of site	Number of beaches	Number of samples analysed each by Coliplage [®] and MPN methods	Number of samples for which <i>E. coli</i> (Coliplage®) >2000 100 ml ⁻¹ and <i>E. coli</i> (MPN) <2000 100 ml ⁻¹	Percentage of samples for which <i>E. coli</i> (Coliplage®) >2000 100 ml $^{-1}$ and <i>E. coli</i> (MPN) < 2000 100 ml $^{-1}$
Α	Picardy coast	2	217	7	3.23
В	Picardy coast	5	41	0	0.00
C	Picardy coast	1	164	2	1.22
D	Picardy coast	5	145	5	3.45
E	Normandy coast	12	350	16	4.57
F	South-britanny coast	6	6	0	0.00
G	Vendean coast	5	56	6	10.71
Н	Mediterranean coast	6	29	0	0.00
1	Mediterranean coast	4	44	0	0.00
J	Mediterranean coast	2	133	55	41.35
K	Mediterranean coast	6	32	8	25.00
L	Mediterranean coast	6	33	0	0.00
M	Mediterranean coast	8	85	1	1.18
Ν	Mediterranean coast	4	66	13	19.70
Total		72	1401	113	8.06

E. coli detection in seawater J. Baudart et al.

Table 2 List of non-*Escherichia coli* 4-methylumbelliferyl-β-p-glucuronide+ strains isolated from seawater samples collected on the Vendean and Mediterranean coasts and their phylogenetic affiliation

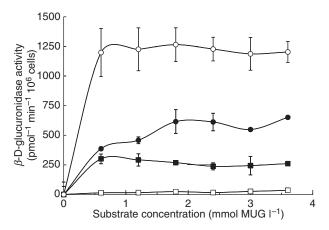
Vibrio harveyi Gammaproteobacteria 16 MA, NA Vibrio sp.** Gammaproteobacteria 16 MA, RZAS Vibrio splendidus Gammaproteobacteria 13 MA, RZAS Vibrio chagasii Gammaproteobacteria 11 MA Zobellia russellii Bacteroidetes 9 MA, RZAS, MMOS Maribacter dokdonensis Bacteroidetes 5 MA, RZAS Gramella echinicola Bacteroidetes 4 MA, RZAS Pseudoalteromonas sp.* Gammaproteobacteria 4 MA, RZAS Pseudoalteromonas macleodii Gammaproteobacteria 2 MA, RZAS Alteromonas macleodii Gammaproteobacteria 2 MA, RZAS Cytophaga sp.** Bacteroidetes 2 MA Flexibacter sp.* Bacteroidetes 2 MA Taxeobacter gelupurpurascens Bacteroidetes 2 MA Vibrio pomeroyi Gammaproteobacteria 2 MA Zobellia laminariae Bacteroidetes 2 MA Alteromonas addita Gammaproteobacteria 1 MA Zobellia laminariae Bacteroidetes 1 R2AS Bacteroidetes 1 R2AS Bacteroidetes 1 <t< th=""><th>Bacterial species</th><th>Phylogenetic class</th><th>Number of isolates</th><th>Isolation culture media</th></t<>	Bacterial species	Phylogenetic class	Number of isolates	Isolation culture media
Vibrio splendidusGammaproteobacteria13MA, R2ASVibrio chagasiiGammaproteobacteria11MAZobellia russelliiBacteroidetes9MA, R2AS, MMOSMaribacter dokdonensisBacteroidetes5MA, R2ASGramella echinicolaBacteroidetes4MA, R2ASPseudoalteromonas sp.*Gammaproteobacteria4MA, MMOSAlteromonas macleodiiGammaproteobacteria2MA, R2ASCytophaga sp.*Bacteroidetes2MAFlexibacter sp.*Bacteroidetes2MATaxeobacter gelupurpurascensBacteroidetes2MAVibrio pomeroyiGammaproteobacteria2MAZobellia laminariaeBacteroidetes2MA, MMOSAlteromonas additaGammaproteobacteria1MAAlteromonas additaGammaproteobacteria1MAAlteromonas additaGammaproteobacteria1NAAlteroidexter sp./Flexibacter sp.*Bacteroidetes1R2ASMaribacter forsetiiBacteroidetes1NAMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1MAVibrio alpinolyticusGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MA </td <td>Vibrio harveyi</td> <td>Gammaproteobacteria</td> <td>16</td> <td>MA, NA</td>	Vibrio harveyi	Gammaproteobacteria	16	MA, NA
Vibrio chagasiiGammaproteobacteria11MAZobellia russelliiBacteroidetes9MA, R2AS, MMOSMaribacter dokdonensisBacteroidetes5MA, R2ASGramella echinicolaBacteroidetes4MA, R2ASPseudoalteromonas sp.*Gammaproteobacteria4MA, MMOSAlteromonas macleodiiGammaproteobacteria2MA, R2ASCytophaga sp.*Bacteroidetes2MAElexibacter sp.*Bacteroidetes2MATaxeobacter gelupurpurascensBacteroidetes2MATaxeobacter gelupurpurascensBacteroidetes2MAVibrio pomeroyiGammaproteobacteria2MAZobellia laminariaeBacteroidetes2MA, MMOSAlteromonas additaGammaproteobacteria1MAArenibacter sp. Flexibacter sp.*Bacteroidetes1R2ASBrachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1MAMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1MAPolaribacter ingensiiBacteroidetes1MAPolaribacter flavusBacteroidetes1MAVibrio alginolyticusGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MA<	Vibrio sp.*	Gammaproteobacteria	16	MA, R2AS
Zobellia russelliiBacteroidetes9MA, R2AS, MMOSMaribacter dokdonensisBacteroidetes5MA, R2ASGramella echinicolaBacteroidetes4MA, R2ASPseudoalteromonas sp.*Gammaproteobacteria2MA, MMOSAlteromonas macleodiiGammaproteobacteria2MA, R2ASCytophaga sp.*Bacteroidetes2MAFlexibacter sp.*Bacteroidetes2MATaxeobacter gelupurpurascensBacteroidetes2MAVibrio pomeroyiGammaproteobacteria2MAZobellia laminariaeBacteroidetes2MAAlteromonas additaGammaproteobacteria1MAArenibacter sp./Flexibacter sp.*Bacteroidetes1R2ASBrachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1NAMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1MAPibocella pontiBacteroidetes1MAPolaribacter ingensiiBacteroidetes1MAPolaribacter flavusBacteroidetes1MAVibrio alyiensisGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio imidaeGammaproteobacteria1MA	Vibrio splendidus	Gammaproteobacteria	13	MA, R2AS
Maribacter dokdonensis Bacteroidetes Bactero	Vibrio chagasii	Gammaproteobacteria	11	MA
Gramella echinicola Bacteroidetes 4 MA, R2AS Pseudoalteromonas sp.* Gammaproteobacteria 4 MA, MMOS Alteromonas macleodii Gammaproteobacteria 2 MA, R2AS Cytophaga sp.* Bacteroidetes 2 MA, R2AS Cytophaga sp.* Bacteroidetes 2 MA, R2AS Taxeobacter gelupurpurascens Bacteroidetes 2 MA, R2AS Taxeobacter gelupurpurascens Bacteroidetes 2 MA, R2AS Vibrio pomeroyi Gammaproteobacteria 2 MA, MMOS Alteromonas addita Bacteroidetes 2 MA, MMOS Alteromonas addita Gammaproteobacteria 1 MA Arenibacter sp.*/Flexibacter sp.* Bacteroidetes 1 R2AS Brachybacterium conglomeratum Actinobacteria 1 NA Cellulophaga pacifica Bacteroidetes 1 R2AS Maribacter forsetii Bacteroidetes 1 MA Pedobacter cryoconitis Bacteroidetes 1 MA Pedobacter cryoconitis Bacteroidetes 1 MA Polaribacter okdonensis Bacteroidetes 1 MA Polaribacter irgensii Bacteroidetes 1 MA Salegentibacter flavus Bacteroidetes 1 MA Salegentibacter flavus Bacteroidetes 1 MA Salegentibacter flavus Gammaproteobacteria 1 MA Vibrio calviensis Gammaproteobacteria 1 MA Vibrio fortis Gammaproteobacteria 1 MA Vibrio imidae Gammaproteobacteria 1 MA Vibrio imidae Gammaproteobacteria 1 MA	Zobellia russellii	Bacteroidetes	9	MA, R2AS, MMOS
Pseudoalteromonas sp.*Gammaproteobacteria4MA, MMOSAlteromonas macleodiiGammaproteobacteria2MA, R2ASCytophaga sp.*Bacteroidetes2MAFlexibacter sp.*Bacteroidetes2MATaxeobacter gelupurpurascensBacteroidetes2NAVibrio pomeroyiGammaproteobacteria2MAZobellia laminariaeBacteroidetes2MA, MMOSAlteromonas additaGammaproteobacteria1MAArenibacter sp./Flexibacter sp.*Bacteroidetes1R2ASBrachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1MAMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter iflavusBacteroidetes1MAVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio inidaeGammaproteobacteria1MAVibrio midaeGammaproteobacteria1NA	Maribacter dokdonensis	Bacteroidetes	5	MA, R2AS
Alteromonas macleodiiGammaproteobacteria2MA, R2ASCytophaga sp.*Bacteroidetes2MAFlexibacter sp.*Bacteroidetes2MA, R2ASTaxeobacter gelupurpurascensBacteroidetes2NAVibrio pomeroyiGammaproteobacteria2MAZobellia laminariaeBacteroidetes2MA, MMOSAlteromonas additaGammaproteobacteria1MAArenibacter sp./Flexibacter sp.*Bacteroidetes1R2ASBrachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1MAMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1MAPibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1MAVibrio alginolyticusGammaproteobacteria1MAVibrio colviensisGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1MA	Gramella echinicola	Bacteroidetes	4	MA, R2AS
Alteromonas macleodiiGammaproteobacteria2MA, R2ASCytophaga sp.*Bacteroidetes2MAFlexibacter sp.*Bacteroidetes2MA, R2ASTaxeobacter gelupurpurascensBacteroidetes2NAVibrio pomeroyiGammaproteobacteria2MAZobellia laminariaeBacteroidetes2MA, MMOSAlteromonas additaGammaproteobacteria1MAArenibacter sp./Flexibacter sp.*Bacteroidetes1R2ASBrachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1MAMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1MAPibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1MAVibrio alginolyticusGammaproteobacteria1MAVibrio colviensisGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1MA	Pseudoalteromonas sp.*	Gammaproteobacteria	4	MA, MMOS
Cytophaga sp.*Bacteroidetes2MAFlexibacter sp.*Bacteroidetes2MA, R2ASTaxeobacter gelupurpurascensBacteroidetes2NAVibrio pomeroyiGammaproteobacteria2MAZobellia laminariaeBacteroidetes2MA, MMOSAlteromonas additaGammaproteobacteria1MAArenibacter sp./Flexibacter sp.*Bacteroidetes1R2ASBrachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1NAMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1MAPibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1MAVibrio alginolyticusGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio lentusGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA	Alteromonas macleodii		2	MA, R2AS
Taxeobacter gelupurpurascensBacteroidetes2NAVibrio pomeroyiGammaproteobacteria2MAZobellia laminariaeBacteroidetes2MA, MMOSAlteromonas additaGammaproteobacteria1MAArenibacter sp./Flexibacter sp.*Bacteroidetes1R2ASBrachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1R2ASMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1NAPibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irigensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1MAVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1MAVibrio lentusGammaproteobacteria1MAVibrio midaeGammaproteobacteria1R2AS	Cytophaga sp.*		2	MA
Taxeobacter gelupurpurascensBacteroidetes2NAVibrio pomeroyiGammaproteobacteria2MAZobellia laminariaeBacteroidetes2MA, MMOSAlteromonas additaGammaproteobacteria1MAArenibacter sp./Flexibacter sp.*Bacteroidetes1R2ASBrachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1R2ASMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1NAPibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irigensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1MAVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1MAVibrio lindaeGammaproteobacteria1MA	Flexibacter sp.*	Bacteroidetes	2	MA, R2AS
Zobellia laminariae Bacteroidetes 2 MA, MMOS Alteromonas addita Gammaproteobacteria 1 MA Arenibacter sp./Flexibacter sp.* Bacteroidetes 1 R2AS Brachybacterium conglomeratum Actinobacteria 1 NA Cellulophaga pacifica Bacteroidetes 1 MA Pedobacter forsetii Bacteroidetes 1 MA Pedobacter cryoconitis Bacteroidetes 1 NA Pibocella ponti Bacteroidetes 1 MA Polaribacter dokdonensis Bacteroidetes 1 MA Polaribacter irgensii Bacteroidetes 1 MA Polaribacter flavus Bacteroidetes 1 MA Salegentibacter flavus Bacteroidetes 1 MA Vibrio calviensis Gammaproteobacteria 1 MA Vibrio fisheri Gammaproteobacteria 1 MA Vibrio fortis Gammaproteobacteria 1 MA Vibrio fortis Gammaproteobacteria 1 MA Vibrio indiae Gammaproteobacteria 1 R2AS Vibrio midae R2AS Vibrio midae	Taxeobacter gelupurpurascens	Bacteroidetes	2	
Alteromonas additaGammaproteobacteria1MAArenibacter sp./Flexibacter sp.*Bacteroidetes1R2ASBrachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1R2ASMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1NAPibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1MAVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1MAVibrio inidaeGammaproteobacteria1R2AS	Vibrio pomeroyi	Gammaproteobacteria	2	MA
Arenibacter sp./Flexibacter sp.* Bacteroidetes 1 NA Cellulophaga pacifica Bacteroidetes 1 R2AS R2AS R2AS R2AS Rachybacterium conglomeratum Actinobacteria Bacteroidetes 1 R2AS Maribacter forsetii Bacteroidetes 1 NA Pedobacter cryoconitis Bacteroidetes 1 NA Pibocella ponti Bacteroidetes 1 NA Polaribacter dokdonensis Bacteroidetes 1 MA Polaribacter irgensii Bacteroidetes 1 MA Polaribacter irgensii Bacteroidetes 1 MA Salegentibacter flavus Bacteroidetes 1 MA Vibrio alginolyticus Gammaproteobacteria 1 MA Vibrio fisheri Gammaproteobacteria 1 MA Vibrio fortis Gammaproteobacteria 1 MA Vibrio fortis Gammaproteobacteria 1 MA Vibrio lentus Gammaproteobacteria 1 MA Vibrio indae	Zobellia laminariae	Bacteroidetes	2	MA, MMOS
Brachybacterium conglomeratumActinobacteria1NACellulophaga pacificaBacteroidetes1R2ASMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1NAPibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1R2ASVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1MAVibrio midaeGammaproteobacteria1R2AS	Alteromonas addita	Gammaproteobacteria	1	MA
Cellulophaga pacificaBacteroidetes1R2ASMaribacter forsetiiBacteroidetes1MAPedobacter cryoconitisBacteroidetes1NAPibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1R2ASVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1MAVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1R2AS	Arenibacter sp./Flexibacter sp.*	Bacteroidetes	1	R2AS
Maribacter forsetii Bacteroidetes 1 MA Pedobacter cryoconitis Bacteroidetes 1 MA Pibocella ponti Bacteroidetes 1 MA Polaribacter dokdonensis Bacteroidetes 1 MA Polaribacter irgensii Bacteroidetes 1 MA Polaribacter irgensii Bacteroidetes 1 MA Salegentibacter flavus Bacteroidetes 1 MA Salegentibacter flavus Bacteroidetes 1 MA Vibrio alginolyticus Gammaproteobacteria 1 MA Vibrio calviensis Gammaproteobacteria 1 MA Vibrio fisheri Gammaproteobacteria 1 MA Vibrio fortis Gammaproteobacteria 1 MA Vibrio fortis Gammaproteobacteria 1 MA Vibrio lentus Gammaproteobacteria 1 MA Vibrio indiae Gammaproteobacteria 1 NA	Brachybacterium conglomeratum	Actinobacteria	1	NA
Pedobacter cryoconitisBacteroidetes1NAPibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1R2ASVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1R2ASVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1R2AS	Cellulophaga pacifica	Bacteroidetes	1	R2AS
Pibocella pontiBacteroidetes1MAPolaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1R2ASVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1R2ASVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1R2AS	Maribacter forsetii	Bacteroidetes	1	MA
Polaribacter dokdonensisBacteroidetes1MAPolaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1R2ASVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1R2ASVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA	Pedobacter cryoconitis	Bacteroidetes	1	NA
Polaribacter irgensiiBacteroidetes1MASalegentibacter flavusBacteroidetes1R2ASVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1R2ASVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA	Pibocella ponti	Bacteroidetes	1	MA
Salegentibacter flavusBacteroidetes1R2ASVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1R2ASVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA	Polaribacter dokdonensis	Bacteroidetes	1	MA
Salegentibacter flavusBacteroidetes1R2ASVibrio alginolyticusGammaproteobacteria1MAVibrio calviensisGammaproteobacteria1R2ASVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA	Polaribacter irgensii	Bacteroidetes	1	MA
Vibrio calviensisGammaproteobacteria1R2ASVibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA		Bacteroidetes	1	R2AS
Vibrio fisheriGammaproteobacteria1MAVibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA	Vibrio alginolyticus	Gammaproteobacteria	1	MA
Vibrio fortisGammaproteobacteria1MAVibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA	Vibrio calviensis	Gammaproteobacteria	1	R2AS
Vibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA	Vibrio fisheri	Gammaproteobacteria	1	MA
Vibrio lentusGammaproteobacteria1R2ASVibrio midaeGammaproteobacteria1NA	Vibrio fortis	•	1	MA
Vibrio midae Gammaproteobacteria 1 NA	Vibrio lentus	•	1	R2AS
•	Vibrio midae	•	1	NA
· · · · · · · · · · · · · · · · · · ·	Vibrio parahaemolyticu	•	1	MA
Winogradskyella sp.* Bacteroidetes 1 R2AS		•	1	R2AS

MA, marine agar; NA, nutrient agar; R2AS, R2A agar supplemented with sterile seawater (70%); MMOS, Mineral salts Medium supplemented with sterile seawater (70%).

isolated and identified as *Zobellia russellii* (8·3% of total isolates) and *Maribacter dokdonensis* (4·6%).

β -D-glucuronidase activity of marine isolated bacteria

George *et al.* (2000) reported that the GLUase activity depends on substrate concentration (MUG) according to a Michaëlis–Menten relationship. Different MUG concentrations (ranging from 0 to 3·6 mmol l⁻¹) were tested on four *E. coli* and non-*E. coli* strains (*E. coli* ATCC25922, *E. coli* ATCC10536, *V. harveyi* type CM37 isolate and *Vibrio parahaemolyticus* type M3110B isolate) to optimize the MUG concentration and therefore the GLUase activity (Fig. 1). The highest GLUase activity for the different strains was obtained at a MUG concentration of 1·8 mmol l⁻¹. This concentration was used for testing other pure strains.


The specific GLUase activity of two *E. coli* and 20 nontarget (non-*E. coli* MUG+) strains was measured after induction by MetGlu (Fig. 2). Three GLUase negative strains (*Proteus vulgaris* type A232, *Enterobacter aerogenes* type ENT134 and *Bacillus subtilis* type BA 5.1) were also tested as a control. No detectable GLUase activity (below 7 pmol min⁻¹ per 10⁶ cells) was found for these strains.

The *E. coli* strains were successfully induced by 0·4 g l⁻¹ of MetGlu. The activity for these strains ranged from 269 pmol min⁻¹ per 10⁶ cells for *E. coli* ATCC 25922 to 615 pmol min⁻¹ per 10⁶ cells for *E. coli* ATCC 10536.

For nontarget strains, the activity was determined for the most abundant *Vibrio* strains and also for the two dominant *Bacteroidetes* species (*Z. russellii* and *M. dok-donensis*). Surprisingly, *Vibrio* strains were successfully

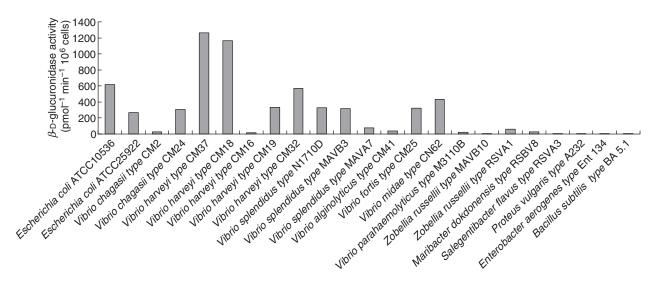
^{*}Identification was restricted to the genus level.

J. Baudart et al. E. coli detection in seawater

Figure 1 Mean β-D-glucuronidase activities of two *Escherichia coli* strains (\bullet) *E. coli* ATCC25922; (\blacksquare) *E. coli* ATCC10536 and two non-*E. coli* 4-methylumbelliferyl-β-D-glucuronide (MUG)+ strains (\bigcirc) *Vibrio harveyi* type CM37 isolate; (\square) *Vibrio parahaemolyticus* type M3110B isolate plotted against MUG concentrations.

induced by adding MetGlu to the growth medium; the reported GLUase activities were also highly variable.

Within the 14 *Vibrio* strains tested in this study, seven strains belonging to five different species (*V. chagasii*, *V. harveyi*, *V. splendidus*, *Vibrio fortis* and *Vibrio midae*) displayed activities on the same order of magnitude (between 304 pmol min⁻¹ per 10⁶ cells and 570 pmol - min⁻¹ per 10⁶ cells) as those of *E. coli* strains. Interestingly, two *V. harveyi* strains exhibited much higher activities (more than 1150 pmol min⁻¹ per 10⁶ cells) than even the most active *E. coli* strains. The other nontarget strains showed very low activities.


Discussion

The development of rapid methods for evaluating water microbiological quality allowing real-time management of bathing waters is a high-priority demand among stakeholders. In Europe, the new Bathing Water Quality Directive published in 2006 introduced the concept of active management of bathing water and recommended the evaluation of any potential sources of contamination of each bathing site (EEC 2006). The Coliplage® method has been used in France since 2005 for daily monitoring programmes because it offers the advantage of providing results in <1 h. However, using this method for closing or re-opening a beach after contamination requires a good agreement with the standardized culture-based method presently used in France [the standardized miniaturized MPN method (ISO 9308-3 1998)].

In our study, 8% of the samples analysed by Coliplage[®] estimated *E. coli* concentrations above the guideline of 2000 *E. coli* per 100 ml when the value obtained by the MPN method (for the same sample) was below the threshold. These differences may correspond to artefacts of the Coliplage[®] method or to *E. coli* cells that are not detected by the standardized method.

At least three hypotheses could explain the observa-

i The presence of cells with a detectable GLUase activity but unable to grow in the microplate. Garcia-Armisen *et al.* (2005) strongly suggested that the GLUase activity measurement took into account the activity of some nonculturable *E. coli* that could be present in marine waters. However, the quantification of active but nonculturable

Figure 2 β-p-glucuronidase activities of *Escherichia coli* strains and of non-*E. coli* 4-methylumbelliferyl-β-p-glucuronide+ strains isolated from seawater samples collected on the Vendean and Mediterranean coasts.

E. coli detection in seawater J. Baudart et al.

E. coli cells having a GLUase activity is impossible because of a lack of appropriate methods, but taking into account this population may be important for risk assessment.

ii The presence of a high proportion of aggregated *E. coli* or that attached to suspended solids can cause an underestimation of their numbers when evaluated by the MPN method, which is not the case when evaluated by the Coliplage® method. In the MPN method, several *E. coli* cells aggregated or attached to the same particle will be considered as a single *E. coli* cell, and thus the total abundance is underestimated. In this case, the Coliplage® method would be better for risk assessment purposes; however, this is not likely to explain the differences sometimes reported for samples with a low particle concentration.

iii The presence of nontarget cells (non-*E. coli* cells) with a GLUase activity can overestimate the *E. coli* concentration determined by the Coliplage[®] procedure. These non-*E. coli* cells presenting a GLUase activity are not accounted for by the MPN as they do not grow in the culture medium.

The third hypothesis has been poorly investigated in the marine environment. The samples collected on the French coasts (from lagoons and different coastal sites) also showed the most important disagreement between the two methods. Therefore, these sites were selected for the isolation of strains. Of the non-E. coli GLUase positive strains that were isolated, most of the selected strains clustered in only two phylogenetic bacterial classes : Gammaproteobacteria and Bacteroidetes. There was a high proportion of Gammaproteobacteria that were dominated by Vibrio species. Some reports also suggested that the GLUase enzyme could be present in non-E. coli cells. Davies et al. (1994) mentioned the possibility of an interference by aquatic plant and algal cells when present in high numbers for the test based on GLUase activity measurements. Other authors showed the presence of the enzyme GLUase in various non-E. coli bacterial strains and suggested a possible interference of such nontarget bacteria in the direct GLUase activity measurement because this procedure lacks a selective growth step (Palmer et al. 1993; Fiksdal et al. 1997; Van Poucke and Nelis 1997). Finally, Tryland and Fiksdal (1998) demonstrated that some isolates from aquatic systems (Bacillus spp. and Aerococcus viridans) had a level of glucuronidase activity similar to an E. coli strain. The potential interference of autochthonous bacteria as Vibrio on GLUase activity measurement was previously reported by Pisciotta et al. (2002) for marine samples using the Colilert-18 assay (incubation of the sample for 18 h in a defined substrate medium containing MUG). Our results show that some Vibrio species have similar and even higher specific glucuronidase activity than E. coli strains. In our study, five different species (*V. chagasii*, *V. harveyi*, *V. splendidus*, *V. fortis*, *V. midae*) were observed within the GLUase positive strains, and the first three species were also the most abundant.

The Vibrio genus is often reported as a dominant phylogenetic group in clone libraries, particularly in the marine environment (Thompson et al. 2004). These ubiquitous species include some that are pathogenic for humans or fishes (Dumontet et al. 2000). They can survive under stressful conditions (Colwell 1996, 2000), and many species are positively correlated to seawater temperature (Blackwell and Olivier 2008). Unfortunately, data on the abundance of Vibrio species in the natural environment are scarce because of the lack of methods for their quantification. Quantitative PCR methods for the enumeration of Vibrio species are difficult to develop because many species are very similar (Fukui and Sawabe 2008). Our results suggest that the specific GLUase activity of Vibrio species can vary between species and even between strains for a given species. Similar variations have also been reported for E. coli but more importantly, the specific activity of some Vibrio species was much greater than that of the most active E. coli cells tested in this study. Although we have no data on the concentration of Vibrio cells in the samples, we can assume that the concentration of each different species was at least 1000 cells in every 100 ml and probably even higher because each colony was detected after spreading 0.1 ml of natural seawater on the plate. Considering their GLUase activity, it means that these viable and culturable Vibrio cells may generate false-positive E. coli counts at concentrations very close to or above the maximum allowable concentration for bathing waters (2000 E. coli per 100 ml). The three most abundant Vibrio species (V. chagasii, V. harveyi and V. splendidus) were also among the non-E. coli MUG+ isolates in the Mediterranean waters tested, and some strains of V. harveyi in particular, were more active than E. coli. The GLUase activities of other non-E. coli and non-Vibrio species were very low; based on our results, they probably create little interference with the E. coli signal.

In conclusion, we reported a first qualitative investigation on disagreement between Coliplage[®] and the MPN results and showed that some *Vibrio* species can potentially interfered on the direct measurement of *E. coli* when the GLUase activity is targeted. Nevertheless, further studies are now required to provide additional information, about the circumstances under which marine *Vibrio* species could be the source of a significant overestimation of the *E. coli* concentration by direct GLUase activity measurement. If the interference is confirmed, appropriate treatments should be developed to remove the interfering signal in future work.

J. Baudart *et al.*

Acknowledgements

We are grateful to R. Zimmerman and M. Mottier for their technical assistance and to Jennifer Guarini for language improvements. We also thank the 'District de la Côte Vermeille' for partial funding of sea-bathing microbiological analyses and the town's partners of Veolia.

References

- Blackwell, K.D. and Olivier, J.D. (2008) The ecology of *Vibrio vulnificus*, *Vibrio cholerae*, and *Vibrio parahaemolyticus* in North Carolina estuaries. *J Microbiol* **46**, 146–153.
- Colwell, R.R. (1996) Global climate and infectious disease: the cholerae paradigm. *Science* **274**, 2025–2031.
- Colwell, R.R. (2000) Bacterial death revisited. In *Non-Culturable Microorganisms in the Environment* ed. Colwell, R.R. and Grimes, D.J. pp. 325–342. Washington, DC: American Society for Microbiology.
- Davies, C.M., Apte, S.C., Peterson, S.M. and Stauber, J.L. (1994) Plant and algal interference in bacterial β -D-glucuronidase assays. *Appl Environ Microbiol* **60**, 3959–3964.
- Dumontet, S., Krovacek, K., Suenson, S.S., Pasquale, V., Baloda, S.B. and Figliuolo, G. (2000) Prevalence and diversity of *Aeromonas* and *Vibrio* spp. in coastal water of Southern Italy. *Comp Immunol Microbiol Infect Dis* **23**, 53–72.
- Edberg, S.C. and Edberg, M.M. (1988) A defined substrate technology for the enumeration of microbial indicators of environmental pollution. *Yale J Biol Med* **61**, 389–399.
- Edberg, S.C., Rice, E.W., Karlin, R.J. and Allen, M.J. (2000) *Escherichia coli*: the best biological drinking water indicator for public health protection. *J Appl Microbiol* **88**, 106S–116S.
- EEC (1975)European Community Council Directive concerning the quality of bathing waters (No. 76/160/EEC). Official Journal of the European Communities. No. L.31/2.
- EEC (2006) European Community Council Directive concerning the quality of bathing waters (No.2006/7/CE). Official Journal of the European Communities. No. L.64/37.
- Farnleitner, A.H., Hocke, L., Beiwl, C., Kavka, G.G., Zechmeister, T., Kirschner, A.K.T. and Mach, R.L. (2001) Rapid enzymatic detection of *Escherichia coli* contamination in polluted river water. *Lett Appl Microbiol* **33**, 246–250.
- Fewtrell, L. and Bartram, J. (2001) Water Quality: Guidelines, Standards and Health. World Health Organization Water Series. London, UK: IWA Publishing.
- Fiksdal, L., Pommepuy, M., Caprais, M.-P. and Midttun, I. (1994) Monitoring of fecal pollution in coastal waters by use of rapid enzymatic techniques. *Appl Environ Microbiol* **60**, 1580–1584.
- Fiksdal, L., Tryland, I. and Nelis, H. (1997) Rapid detection of coliform bacteria and influence of non-target bacteria. Wat Sci Technol 35, 415–418.
- Fukui, Y. and Sawabe, T. (2008) Rapid detection of Vibrio harveyi in seawater by real-time PCR. Microbes Environ 23, 172–176.

Garcia-Armisen, T., Lebaron, P. and Servais, P. (2005) β -D-glucuronidase activity assay to assess viable *Escherichia coli* abundance in freshwaters. *Lett Appl Microbiol* **40**, 278–282.

- Garcia-Armisen, T., Prats, J. and Servais, P. (2007) Comparison of culturable fecal coliforms and *Escherichia coli* enumeration in freshwaters. *Can J Microbiol* **53**, 798–801
- George, I., Petit, M. and Servais, P. (2000) Use of enzymatic methods for rapid enumeration of coliforms in freshwaters. J Appl Microbiol 88, 404–413.
- Hall, T.A. (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp Set* **41**, 95–98.
- Henry, A., Baudart, J., Scherpereel, G., Servais, P., Lebaron, P., Alloway, C., Essemiani, K. and Delabre, K. (2008) Coliplage[®] an alternative method for the real time monitoring of *E. coli* numbers in bathing waters. *AWWA*, *WQTC 2008 Conference Proceedings*, Cincinnati, Ohio.
- ISO 9308-3 (1998) Water quality. Detection and Enumeration of Escherichia coli and Coliform Bacteria Part 3: Miniaturized Method (Most Probable Number) for the Detection and Enumeration of *E. coli* in Surface and Wastewater. Geneva, Switzerland: International Organization for Standardization (ISO).
- Lebaron, P., Parthuisot, N. and Catala, P. (1998) Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. *Appl Environ Microbiol* **64**, 1725–1730.
- Lebaron, P., Henry, A., Lepeuple, A.-S., Pena, G. and Servais, P. (2005) An operational method for real-time monitoring of *E. coli* in bathing waters. *Mar Pollut Bull* **50**, 652–659.
- Noble, R.T. and Weisberg, S.B. (2005) A review of technologies for rapid detection of bacteria in recreational waters. *J Water Health* **3**, 381–392.
- Palmer, C.J., Tsai, Y.-L., Lee Lang, A. and Sangermano, L.R. (1993) Evaluation of Colilert-marine water for detection of total coliforms and *Escherichia coli* in the marine environment. *Appl Environ Microbiol* 59, 786–790.
- Pisciotta, J.M., Rath, D.F., Stanek, P.A., Flanery, D.M. and Harvood, V.J. (2002) Marine bacteria cause false-positive results in the Colilert-18 rapid identification test for *Escherichia coli* in Florida waters. *Appl Environ Microbiol* **68**, 539–544.
- Prats, J., Garcia-Armisen, T., Larrea, J. and Servais, P. (2008) Comparison of culture-based methods to enumerate *Escherichia coli* in tropical and temperate freshwaters. *Lett Appl Microbiol* **46**, 243–246.
- Servais, P., Garcia-Armisen, T., Lepeuple, A.-S. and Lebaron, P. (2005) An early warning method to detect faecal contamination of river waters. *Ann Microbiol* 55, 67–72.
- Stanier, R.Y., Palleroni, N.J. and Doudoroff, M. (1966) The aerobic pseudomonads: a taxonomic study. *J Gen Microbiol* **43**, 159–271.

E. coli detection in seawater J. Baudart et al.

- Tatusova, T.A. and Madden, T.L. (1999) Blast 2 sequences a new tool for comparing protein and nucleotide sequences. *FEMS Microbiol Lett* **174**, 247–250.
- Thompson, F.L., Iida, T. and Swings, J. (2004) Biodiversity of vibrios. *Microbiol Mol Biol Rev* **68**, 403–431.
- Tryland, I. and Fiksdal, L. (1998) Enzyme characteristics of β -D-galactosidase and β -D-glucuronidase-positive bacteria
- and their interference in rapid methods for detection of waterborne coliforms and *Escherichia coli*. *Appl Environ Microbiol* **64**, 1018–1023.
- Van Poucke, S.O. and Nelis, H.J. (1997) Limitations of highly sensitive enzymatic presence-absence tests for detection of waterborne coliforms and *Escherichia coli*. *Appl Environ Microbiol* **63**, 771–774.