# Evaluation of sinks and sources of CO<sub>2</sub> in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves

Goulven G. Laruelle, <sup>1</sup> Hans H. Dürr, <sup>2</sup> Caroline P. Slomp, <sup>1</sup> and Alberto V. Borges<sup>3</sup>

Received 21 April 2010; revised 25 June 2010; accepted 7 July 2010; published 13 August 2010.

[1] The exchange of CO<sub>2</sub> between the atmosphere and the global coastal ocean was evaluated from a compilation of air-water CO<sub>2</sub> fluxes scaled using a spatially-explicit global typology of inner estuaries (excluding outer estuaries such as large river deltas) and continental shelves. The computed emission of CO<sub>2</sub> to the atmosphere from estuaries ( $\pm 0.27 \pm 0.23$  PgC yr<sup>-1</sup>) is  $\sim 26\%$  to  $\sim 55\%$  lower than previous estimates while the sink of atmospheric CO<sub>2</sub> over continental shelf seas  $(-0.21 \pm 0.36 \text{ PgC yr}^{-1})$  is at the low end of the range of previous estimates (-0.22 to  $-1.00 \text{ PgC yr}^{-1}$ ). The air-sea CO<sub>2</sub> flux per surface area over continental shelf seas ( $-0.7 \pm 1.2 \text{ molC m}^{-2} \text{ yr}^{-1}$ ) is the double of the value in the open ocean based on the most recent CO<sub>2</sub> climatology. The largest uncertainty of scaling approaches remains in the availability of CO<sub>2</sub> data to describe the spatial variability, and to capture relevant temporal scales of variability. Citation: Laruelle, G. G., H. H. Dürr, C. P. Slomp, and A. V. Borges (2010), Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves, Geophys. Res. Lett., 37, L15607, doi:10.1029/2010GL043691.

## 1. Introduction

[2] While the atmospheric CO<sub>2</sub> sink is reasonably wellconstrained for the open ocean, with estimates ranging between -1.4 PgC yr<sup>-1</sup> and -2.2 PgC yr<sup>-1</sup> [e.g., *Gruber et* al., 2009; Takahashi et al., 2009], CO<sub>2</sub> flux estimates for the coastal ocean are subject to large uncertainties [Borges, 2005; Borges et al., 2005; Cai et al., 2006; Chen and Borges, 2009]. The global CO<sub>2</sub> uptake by continental shelf seas has been evaluated by several authors based on the global extrapolation of a flux value from a single continental shelf sea [Tsunogai et al., 1999; Thomas et al., 2004] or from the compilation of literature data in several continental shelf seas [Borges, 2005; Borges et al., 2005; Cai et al., 2006; Chen and Borges, 2009], and values range between -0.22 PgC yr<sup>-1</sup> and -1.00 PgC yr<sup>-1</sup>.

[3] Inner estuaries and other near-shore ecosystems are

sink from continental shelf seas, ranging between +0.4 PgC yr<sup>-1</sup> and +0.6 PgC yr<sup>-1</sup> [Abril and Borges, 2004; Borges, 2005; Borges et al., 2005; Chen and Borges, 2009]. This range of flux values reflects the heterogeneity and complexity of these highly active biogeochemical environments at the interface between the land and the ocean, but also demonstrates the insufficient data coverage both in time and space, and the lack of appropriate spatially-explicit numerical models for carbon cycling in the global coastal ocean.

[4] As an alternative, scaling approaches can be used where a reasonable flux value for a coastal system is multiplied by the respective surface area [Abril and Borges, 2004; Borges, 2005; Borges et al., 2005; Cai et al., 2006; Chen and Borges, 2009]. The success of such scaling approaches not only depends on the quality and quantity of the measurements and how representative they are for a given coastal environment, but also on the accurate determination of the respective surface area. In this study, we evaluate sources and sinks of CO<sub>2</sub> in the global coastal ocean using a scaling approach, based on surface areas from a spatiallyexplicit coastal typology of both estuaries and continental shelf seas.

# 2. Budget Calculations

[5] We calculated the exchange of CO<sub>2</sub> between inner estuaries and the atmosphere based on a compilation of 62 published annual air-water CO2 fluxes based on pCO2 measurements (Table S1 of the auxiliary material), and the surface areas of four estuarine types, based on morphological differences [Dürr et al., 2010]: I - small deltas and small estuaries, II - tidal systems and embayments, III - lagoons, IV - fjords and fjärds. Note that outer estuarine plumes protruding onto continental shelves were not considered as estuaries. This is the case for large-river deltaic estuaries (LDE) [Bianchi and Allison, 2009] such as the Amazon and the Changjiang. Average air-water CO<sub>2</sub> fluxes were calculated for each estuarine type and extrapolated globally, based on the type-specific surface areas (Table 1). The airwater CO<sub>2</sub> fluxes representative for each type are based on 19, 36, 6 and 1 estimates for Types I, II, III, IV, respectively.

[6] The typology of continental shelf seas relies on 138 units with surface areas calculated using a geographical information system. The off-shore limit of the continental shelf is set to 200 m depth [Walsh, 1988; Wollast, 1998] and the related isobath was extracted from the 1' resolution global bathymetry of Smith and Sandwell [1997]. Each shelf unit was defined by extrapolating perpendicularly the limits

L15607 1 of 6

net sources of CO<sub>2</sub> to the atmosphere [e.g., Frankignoulle et al., 1998; Borges et al., 2003] and may account for a global emission of CO<sub>2</sub> of a similar order of magnitude as the CO<sub>2</sub>

<sup>&</sup>lt;sup>1</sup>Department of Earth Sciences-Geochemistry, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands.

<sup>&</sup>lt;sup>2</sup>Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands.

<sup>&</sup>lt;sup>3</sup>Chemical Oceanography Unit, University of Liège, Liège, Belgium.

<sup>&</sup>lt;sup>1</sup>Auxiliary materials are available in the HTML. doi:10.1029/ 2010GL043691.

**Table 1.** Air-Water CO<sub>2</sub> Fluxes per Surface Area and Scaled Globally for Four Estuarine Types<sup>a</sup>

|                                        | Surface Area (10 <sup>6</sup> km <sup>2</sup> ) | Air-Water CO <sub>2</sub> Flux (molC m <sup>-2</sup> yr <sup>-1</sup> ) | Air-Water CO <sub>2</sub> Flux (PgC yr <sup>-1</sup> ) |
|----------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------|
| Small deltas and estuaries (Type I)    | 0.084                                           | $25.7 \pm 15.8$                                                         | $0.026 \pm 0.016$                                      |
| Tidal systems and embayments (Type II) | 0.276                                           | $28.5 \pm 24.9$                                                         | $0.094 \pm 0.082$                                      |
| Lagoons (Type III)                     | 0.252                                           | $17.3 \pm 16.6$                                                         | $0.052 \pm 0.050$                                      |
| Fjords and fjärds (Type IV)            | 0.456                                           | $17.5 \pm 14.0^{b}$                                                     | $0.096 \pm 0.077$                                      |
| Total                                  | 1.067                                           | $21.0 \pm 17.6$                                                         | $0.268 \pm 0.225$                                      |

<sup>&</sup>lt;sup>a</sup>Air-water CO<sub>2</sub> fluxes per surface area in molC m<sup>-2</sup> yr<sup>-1</sup> and scaled globally in PgC yr<sup>-1</sup> based on averages of individual estimates given in Table S1, A positive value represents a source of CO<sub>2</sub> to the atmosphere.

of coastal segments from the shoreline [Meybeck et al., 2006]. These segments were designed by identifying homogeneous stretches of coast according to a set of parameters such as morphology, lithology, oceanic currents and climate, not biased by national or political boundaries. A type was attributed to each continental shelf sea unit: Type 1 corresponds to enclosed shelves; Type 2 includes Western and Eastern boundary currents characterized by coastal upwelling and are separated according to the oceanic basin (Pacific, Atlantic and Indian); Type 3 consists of all other open continental shelf areas, ranked by climatic zones (Type 3a (tropical): 0–30°, Type 3b (temperate): 30–60°, Type 3c (polar): 60–90°). A total of 37 published air-water CO<sub>2</sub> fluxes were compiled (Table S2) and scaled by types based on their respective surface areas (Table 2).

[7] We excluded studies in estuaries and continental shelf seas that did not provide an adequate representation of the annual net CO<sub>2</sub> flux. Since it not possible to evaluate the accuracy of the individual computed air-water CO<sub>2</sub> fluxes given by the different studies, the standard deviation of the means for each continental shelf type and each estuarine type were propagated to provide an estimate of the uncertainty on the scaled fluxes.

#### 3. Results

- [8] A detailed description of the estuarine typology we used is given by  $D\ddot{u}rr$  et al. [2010]. In brief, fjords and fjärds (Type IV) are dominant at latitudes north of 45°N and south of 45°S (Figure 1a) and are the most extensive of the four estuarine types (~43% of the total surface area). Lagoons (Type III, ~24% of the total surface area) are dominant in the tropics and subtropics of the Northern Hemisphere (0°–45°N). Small deltas (Type I, ~8% of the total surface area) and tidal systems (Type II, ~26% of the total surface area) show no clear latitudinal pattern. The total surface area of estuaries is  $1.1 \ 10^6 \ \text{km}^2$ .
- [9] The surface area of continental shelves totals 24.7 10<sup>6</sup> km<sup>2</sup> with a contribution of 6% by enclosed shelves (Type 1), 9% by coastal upwelling systems (Type 2) and 82% by the open continental shelves (Types 3a,b,c) (Figure 1b). About 75% of the surface area of continental shelf seas is located in the Northern Hemisphere, and ~45% is located north of 45°N.
- [10] The emission of  $CO_2$  to the atmosphere from estuarine environments shows two maxima, one at the equator and another at ~65°N (Figure 2a). These two maxima correspond to a small peak in surface area (associated to Types I, II and III with high air-water  $CO_2$  fluxes) and a large peak in surface area (associated to Type IV with a lower air-water  $CO_2$  flux), respectively (Figure 2c). The overall emission of  $CO_2$  to the atmosphere from estuarine environments is

estimated at  $+0.27 \pm 0.23$  PgC yr<sup>-1</sup> (Table 1). Tidal systems (Type II) and fjords and fjärds (Type IV) contribute equally (~35%) to the global estuarine CO<sub>2</sub> emission, while lagoons (Type III) and small deltas (Type I) contribute 20% and 10% to the global estuarine CO<sub>2</sub> emission, respectively. About 79% of the total CO<sub>2</sub> emission to the atmosphere from estuaries occurs in the Northern Hemisphere, comparable to the areal extent (81%). The contribution to the total CO<sub>2</sub> emission by estuaries along climatic zones is relatively homogeneous: 32% for tropical systems, 31% for temperate systems, and 37% for high latitude systems, for 29, 31 and 40% of area, respectively.

[11] The exchange of CO<sub>2</sub> between continental shelf seas and the atmosphere as a function of latitude shows a clear asymmetry with regions between 30°S and 30°N (Figure 2d) acting as sources of CO<sub>2</sub> to atmosphere and temperate and high latitude regions (south of 30°S, north of 30°N) acting as sinks for atmospheric CO<sub>2</sub> (Figure 2b). The continental shelf seas of the Northern Hemisphere are a net sink of CO<sub>2</sub>

**Table 2.** Air-Water CO<sub>2</sub> Fluxes per Surface Area and Scaled Globally for Different Types of Continental Shelves Along Three Climatic Zones<sup>a</sup>

|                     | Surface<br>Area<br>(10 <sup>6</sup> km <sup>2</sup> ) | Air-Water<br>CO <sub>2</sub> Flux<br>(molC m <sup>-2</sup> yr <sup>-1</sup> ) | Air-Water<br>CO <sub>2</sub> Flux<br>(PgC yr <sup>-1</sup> ) |
|---------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|
| Polar (>60°)        |                                                       |                                                                               | _                                                            |
| Enclosed            | 0.189                                                 | $-0.8 \pm 1.1$                                                                | $-0.002 \pm 0.003$                                           |
| Open Shelf          | 5.477                                                 | $-3.3 \pm 1.7$                                                                | $-0.216 \pm 0.111$                                           |
| Upwelling Pacific   | 0.086                                                 | $3.2 \pm 2.4$                                                                 | $0.003 \pm 0.002$                                            |
| Sub-total           | 5.752                                                 | $-3.1 \pm 1.7$                                                                | $-0.214 \pm 0.116$                                           |
| Temperate (30°-60°) |                                                       |                                                                               |                                                              |
| Enclosed            | 1.410                                                 | $-0.8 \pm 1.1$                                                                | $-0.014 \pm 0.019$                                           |
| Open Shelf          | 7.170                                                 | $-1.0 \pm 1.0$                                                                | $-0.086 \pm 0.087$                                           |
| Upwelling Pacific   | 0.293                                                 | $3.2 \pm 2.4$                                                                 | $0.011 \pm 0.008$                                            |
| Upwelling Atlantic  | 0.086                                                 | $-1.6 \pm 1.0$                                                                | $-0.002 \pm 0.001$                                           |
| Upwelling Indian    | 0.123                                                 | $0.9 \pm 1.2^{b}$                                                             | $0.001 \pm 0.002$                                            |
| Sub-total           | 9.082                                                 | $-0.8 \pm 1.1$                                                                | $-0.090 \pm 0.117$                                           |
| Tropical (0-30°)    |                                                       |                                                                               |                                                              |
| Enclosed            | 0.231                                                 | $-0.8 \pm 1.1$                                                                | $-0.002 \pm 0.003$                                           |
| Open Shelf          | 7.909                                                 | $0.9 \pm 1.0$                                                                 | $0.083 \pm 0.097$                                            |
| Upwelling Pacific   | 0.515                                                 | $3.2 \pm 2.4$                                                                 | $0.020 \pm 0.015$                                            |
| Upwelling Atlantic  | 0.715                                                 | $-1.6 \pm 1.0$                                                                | $-0.014 \pm 0.009$                                           |
| Upwelling Indian    | 0.520                                                 | $0.9 \pm 1.2^{b}$                                                             | $0.006 \pm 0.008$                                            |
| Sub-total           | 9.890                                                 | $0.8 \pm 1.1$                                                                 | $0.093 \pm 0.131$                                            |
| Total               | 24.724                                                | $-0.7 \pm 1.2$                                                                | $-0.211 \pm 0.364$                                           |

 $<sup>^{</sup>a}$ Air-water CO $_{2}$  fluxes per surface area in molC m $^{-2}$  yr $^{-1}$  based on averages of individual estimates given in Table S2 and scaled globally in PgC yr $^{-1}$ . A positive value represents a source of CO $_{2}$  to the atmosphere.  $^{b}$ Standard deviation on the mean of seasonal fluxes at one site (Oman coast), while for the others the standard deviation is on the mean across

<sup>&</sup>lt;sup>b</sup>The standard deviation was estimated as  $\pm 80\%$  based on the values of the other 3 types.

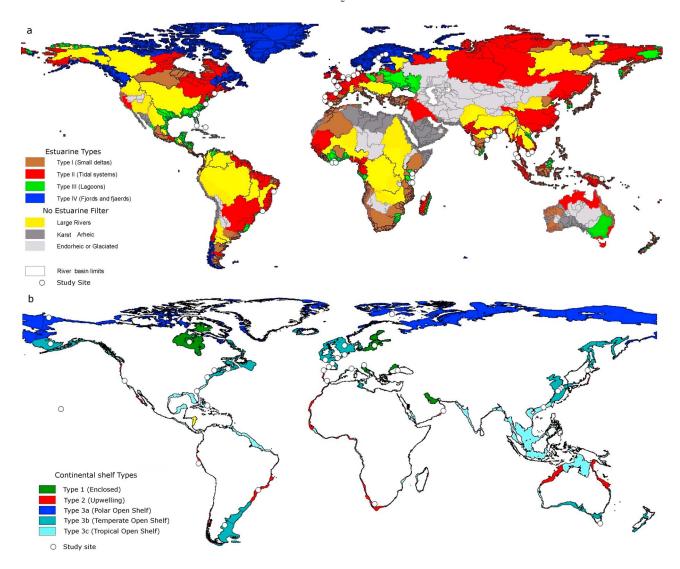
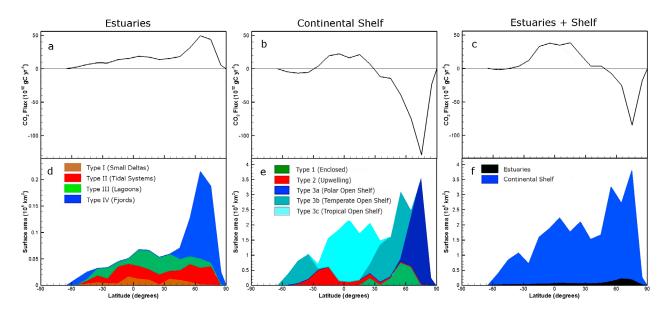



Figure 1. Typology of (a) estuarine environments (modified from Dürr et al. [2010]) and (b) continental shelf seas.


of  $-0.24~PgC~yr^{-1}$  and the continental shelf seas of the Southern Hemisphere are a weak source of  $CO_2$  of  $+0.03~PgC~yr^{-1}$ . Globally, continental shelf seas are a net sink of atmospheric  $CO_2$  of  $-0.21 \pm 0.36~PgC~yr^{-1}$ .

[12] The integrated air-water CO<sub>2</sub> flux in the global coastal ocean (estuaries and continental shelves) is close to neutral (+0.06 PgC yr<sup>-1</sup>). The latitudinal pattern of a CO<sub>2</sub> source in low latitudes and sink of CO<sub>2</sub> at temperate and high latitudes prevails when integrating both continental shelves and estuaries (Figure 2f).

## 4. Discussion

[13] The general patterns of air-water CO<sub>2</sub> fluxes in the coastal ocean in the present study are similar to those reported by previous studies [Borges, 2005; Borges et al., 2005; Cai et al., 2006; Chen and Borges, 2009]. Continental shelf seas in the tropics are sources of CO<sub>2</sub> to the atmosphere, while temperate and high latitude continental shelf seas are sinks for atmospheric CO<sub>2</sub>. The overall emission of CO<sub>2</sub> from estuarine environments is of the same

order of magnitude as the sink of CO2 of continental shelf seas. Integrated CO<sub>2</sub> fluxes from both continental shelf seas and estuarine environments are more intense in the Northern than in the Southern Hemisphere. An improvement in our study with respect to previous ones is that coastal upwelling systems are separated by ocean basins. Indeed, based on published data with reasonable or full annual coverage, coastal upwelling systems in the Pacific and Indian Oceans are sources of CO<sub>2</sub> to the atmosphere, while coastal upwelling systems in the Atlantic Ocean are sinks of atmospheric CO<sub>2</sub> (Table S2). This is related to the fact that oxygen minimum zones (OMZ) associated to coastal upwelling systems are shallow in the Pacific and Indian Oceans, and are deeper or absent in the Atlantic Ocean. The upwelling source waters in coastal upwelling areas associated to a shallow OMZ are sources of CO2 to the atmosphere as denitrification leads to excess of dissolved inorganic carbon relative to nitrogen [Friederich et al., 2008; Borges, 2010]. Due to the scarceness of data, we chose to keep the extrapolation scheme of *Borges* [2005] and Borges et al. [2005] by latitudinal bands of 30° irre-



**Figure 2.** Latitudinal distribution of the (a–c) air-water  $CO_2$  fluxes (in  $10^{12}$  g C yr<sup>-1</sup>) and (d–f) surface areas (in  $10^6$  km<sup>2</sup>) in estuaries (Figures 2a and 2d) and continental shelf seas (Figures 2b and 2e) and the global coastal ocean (Figures 2c and 2f). A positive value represents a source of  $CO_2$  to the atmosphere.

spective of oceanic basins or biogeochemical provinces as applied by *Cai et al.* [2006]. Moreover, the air-sea CO<sub>2</sub> fluxes in open continental shelf seas (Type 3) show a relatively regular pattern as a function of latitude (Figure S1).

[14] There are marked differences between the present and previous studies in the globally integrated air-water CO2 flux values for both continental shelf seas and estuarine environments. The sink of atmospheric CO<sub>2</sub> over continental shelf seas  $(-0.21 \pm 0.36 \text{ PgC yr}^{-1})$  is at the low end of the range of previously published estimates (-0.22 to -0.45 PgC yr<sup>-1</sup>) based on compilations from different shelf systems [Borges, 2005; Borges et al., 2005; Cai et al., 2006; Chen and Borges, 2009], and distinctly lower than the estimate based on the global extrapolation of the air-sea CO<sub>2</sub> flux from the East China Sea [-1.00 PgC yr<sup>-1</sup> Tsunogai et al., 1999]. Note that the value of air-water CO<sub>2</sub> flux in the East China Sea given by Tsunogai et al. [1999] of -2.9 molC m<sup>-2</sup> yr<sup>-1</sup> is higher than the most recent evaluations in the East China Sea (-0.9 to -2.1 molC m<sup>-2</sup> yr<sup>-1</sup> (Table S1)). The total surface area of continental shelf seas used in the present study (24.7 10<sup>6</sup> km<sup>2</sup>) is lower than the one used by Borges [2005], Borges et al. [2005] and Cai et al. [2006]  $(25.8 \ 10^6 \ \text{km}^2 \ \text{based on the work by } Walsh$ [1988]) and than the one used by Chen and Borges [2009] (30.0 10<sup>6</sup> km<sup>2</sup>). Furthermore, Borges [2005] and Borges et al. [2005] used a total surface area of continental shelf seas located between 30°N and 30°S (3 10<sup>6</sup> km<sup>2</sup>) that was under-estimated compared to the one of the present typology (10 10<sup>6</sup> km<sup>2</sup>). The use of skewed surface areas in these studies led to an overestimation of the sink of CO<sub>2</sub>, as the global air-water  $CO_2$  flux per surface area was -1.17 and -1.44 molC m<sup>-2</sup> yr<sup>-1</sup> for tropical and temperate shelf seas, respectively. The global air-water CO<sub>2</sub> flux per surface area in the present study ( $-0.71 \pm 1.23 \text{ molC m}^{-2} \text{ yr}^{-1}$ ) is identical to the one computed by Cai et al. [2006] and close to the one by Chen and Borges [2009] ( $-0.92 \text{ molC m}^{-2} \text{ yr}^{-1}$ ).

The air-water  $CO_2$  flux per surface area over continental shelf seas is the double of the value in the open ocean based on the most recent  $CO_2$  climatology (-0.35 molC m<sup>-2</sup> yr<sup>-1</sup> [*Takahashi et al.* 2009]).

[15] The emission of CO<sub>2</sub> from estuaries given by the present study  $(0.27 \pm 0.23 \text{ PgC yr}^{-1})$  is lower than previous estimates that range between +0.36 and +0.60 PgC yr<sup>-1</sup> [Abril and Borges, 2004; Borges, 2005; Borges et al., 2005; Chen and Borges, 2009]. This is due to the fact that previous global scaling attempts of the CO2 emission from estuaries used the average of air-water CO<sub>2</sub> fluxes across estuarine types, and due to smaller (older) data-sets possibly biased towards tidal European (often polluted) systems. Hence, the average air-water CO<sub>2</sub> fluxes used for scaling ranged between +32.1 and +38.2 molC m<sup>-2</sup> yr<sup>-1</sup>, which is higher than the global average value of  $+21.0 \pm 17.6$  molC m<sup>-2</sup> yr<sup>-1</sup> given in Table 1 that takes into account the relative surface area of different estuarine types. This is mainly due to the fact that a large fraction of the surface area of estuarine environments corresponds to fjords and fjärds that are characterized by lower air-water CO<sub>2</sub> flux rates than Types I and II. Further, the global surface area of estuarine environments based on the typology of Dürr et al. [2010] of  $\sim 1.1 \cdot 10^6 \text{ km}^2$  is lower than the value of 1.4  $10^6 \text{ km}^2$  given by Woodwell et al. [1973] used by Abril and Borges [2004]. The scaling of estuarine CO<sub>2</sub> emissions by *Borges* [2005], Borges et al. [2005] and Chen and Borges [2009] was based on a global estuarine surface area of 0.94 10<sup>6</sup> km<sup>2</sup>, also derived from the values given by Woodwell et al. [1973] but excluding inter-tidal areas associated to marshes and mangroves.

[16] Our typology of continental shelf seas could be further improved by explicitly distinguishing between coastal upwelling systems with and without an OMZ. The estuarine typology could be improved by distinguishing between micro-tidal and macro-tidal systems, since the former are

usually highly stratified and are lower sources of CO<sub>2</sub> to the atmosphere than the latter that are usually permanently wellmixed [e.g., Borges, 2005; Koné et al., 2009]. However, the degree of detail in a typology depends on the availability of appropriate data for each type. At present, the lack of sufficient data is the major limitation in the quantification of the spatial and temporal variability of CO<sub>2</sub> fluxes in coastal environments. In estuarine environments, there is a fair amount of data to characterize tidal systems (Type II) and small deltas (Type I). However, for fjords and fjärds (Type IV), that represent 43% of the total estuarine surface area, adequate air-water CO<sub>2</sub> flux data are only available from one location. For lagoons (Type III), most of the available data were obtained from 5 contiguous systems located in Ivory Coast (~5°N) although these estuarine ecosystems are ubiquitous at all latitudes (Figure 1).

[17] We did not attempt to explicitly scale CO<sub>2</sub> fluxes in river plumes (or outer estuaries). Data with adequate spatial and temporal coverage in these systems to robustly evaluate air-sea CO2 fluxes are scarce. Some outer estuaries act as sources of CO2 to the atmosphere such as the Scheldt (+1.9 molC m<sup>-2</sup> yr<sup>-1</sup> [Borges and Frankignoulle, 2002]), the Loire (+10.5 molC m<sup>-2</sup> yr<sup>-1</sup> [de la Paz et al., 2010]), the Kennebec (+0.9 molC m<sup>-2</sup> yr<sup>-1</sup> [Salisbury et al., 2009]), while others act as sinks for atmospheric CO<sub>2</sub> such as the Amazon ( $-0.5 \text{ molC m}^{-2} \text{ yr}^{-1}$  [*Körtzinger*, 2003]) and the Changjiang ( $-1.9 \text{ molC m}^{-2} \text{ yr}^{-1}$  [*Zhai and Dai*, 2009]). The direction of the annual net flux of CO<sub>2</sub> in outer estuaries is, to a large extent, related to the presence or the absence of haline stratification that promotes export of organic matter across the pycnocline and enhances light availability for primary production [Borges, 2005]. Haline stratification generally occurs in high freshwater discharge systems, hence, LDE systems (Amazon, Changjiang) act as sinks of CO<sub>2</sub>, while smaller systems that are generally devoid of haline stratification (Scheldt, Loire, Kennebec) act as sources of CO<sub>2</sub> to the atmosphere. Hence, a typological approach taking into account physical and biogeochemical characteristics that drive a net annual sink or source of CO<sub>2</sub> is required to estimate the global surface of outer estuaries such as LDE and scale globally the CO2 fluxes from these environments, in addition to more observations in different

[18] The data availability in continental shelf seas is strongly biased towards the temperate regions of the Northern Hemisphere, while coastlines of the Russian Arctic, eastern South America, eastern Africa, large sections of western Africa, and most of Antarctica are dramatically under-sampled. Finally, pCO<sub>2</sub> temporal variability ranges from daily [Dai et al., 2009] to inter-annual [Friederich et al., 2002; Borges et al., 2008a, 2008b] scales. The (in) adequate representation of the full range of temporal variability can impact the evaluation of the overall net annual air-sea CO<sub>2</sub> fluxes. For a more robust evaluation of CO<sub>2</sub> fluxes in continental shelf seas, an intensive, integrated, international and interdisciplinary program of observational efforts is required.

[19] **Acknowledgments.** This work was funded by Utrecht University (High Potential Project G-NUX) and the Netherlands Organisation for Scientific Research (NWO Vidi grant 864.05.004). It is a contribution to EU IP CARBOOCEAN (511176), EU IP SESAME (GOCE-2006-

036949), EU CSA COCOS (212196) and COST Action 735. AVB is a research associate at the FRS-FNRS.

## References

Abril, G., and A. V. Borges (2004), Carbon dioxide and methane emissions from estuaries, in *Greenhouse Gases Emissions From Natural Environments and Hydroelectric Reservoirs: Fluxes and Processes*, edited by A. Tremblay et al., pp. 187–207, Springer, Berlin.
Bianchi, T. S., and M. A. Allison (2009), Large-river delta-front estuaries

Bianchi, T. S., and M. A. Allison (2009), Large-river delta-front estuaries as natural "recorders" of global environmental change, *Proc. Natl. Acad. Sci. U. S. A.*, 106(20), 8085–8092.

Borges, A. V. (2005), Do we have enough pieces of the jigsaw to integrate CO<sub>2</sub> fluxes in the coastal ocean?, *Estuaries*, 28(1), 3–27, doi:10.1007/BF02732750.

Borges, A. V. (2010), Present day carbon dioxide fluxes in the coastal ocean and possible feedbacks under global change, in *Oceans and the Atmospheric Carbon Content*, edited by P. M. da Silva Duarte and J. M. Santana Casiano, in press.

Borges, A. V., and M. Frankignoulle (2002), Distribution and air-water exchange of carbon dioxide in the Scheldt plume off the Belgian coast, *Biogeochemistry*, 59(1–2), 41–67, doi:10.1023/A:1015517428985.

Borges, A. V., S. Djenidi, G. Lacroix, J. Théate, B. Delille, and M. Frankignoulle (2003), Atmospheric CO<sub>2</sub> flux from mangrove surrounding waters, *Geophys. Res. Lett.*, 30(11), 1558, doi:10.1029/2003GL017143.

Borges, A. V., B. Delille, and M. Frankignoulle (2005), Budgeting sinks and sources of CO<sub>2</sub> in the coastal ocean: Diversity of ecosystems counts, *Geophys. Res. Lett.*, 32, L14601, doi:10.1029/2005GL023053.

Borges, A. V., K. Ruddick, L.-S. Schiettecatte, and B. Delille (2008a), Net ecosystem production and carbon dioxide fluxes in the Scheldt estuarine plume, *BMC Ecol.*, *8*, 15, doi:10.1186/1472-6785-8-15.

Borges, A. V., B. Tilbrook, N. Metzl, A. Lenton, and B. Delille (2008b), Inter-annual variability of the carbon dioxide oceanic sink south of Tasmania *Biogeosciences* 5, 141–155, doi:10.5194/bg-5-141-2008

Tasmania, *Biogeosciences*, 5, 141–155, doi:10.5194/bg-5-141-2008. Cai, W.-J., M. H. Dai, and Y. C. Wang (2006), Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis, *Geophys. Res. Lett.*, 33, L12603, doi:10.1029/2006GL026219.

Chen, C. T. A., and A. V. Borges (2009), Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO<sub>2</sub>, *Deep Sea Res.*, *Part II*, 56(8–10), 578–590, doi:10.1016/j.dsr2.2009.01.001.

Dai, M., Z. Lu, W. Zhai, B. Chen, Z. Cao, K. Zhou, W.-J. Cai, and C.-T. A. Chen (2009), Diurnal variations of surface seawater pCO<sub>2</sub> in contrasting coastal environments, *Limnol. Oceanogr.*, 54(3), 735–745.

de la Paz, M., X. A. Padín, A. F. Ríos, and F. F. Pérez (2010), Surface fCO<sub>2</sub> variability in the Loire plume and adjacent shelf waters: High spatiotemporal resolution study using ships of opportunity, *Mar. Chem.*, 118, 108–118, doi:10.1016/j.marchem.2009.11.004.

Dürr, H. H., G. G. Laruelle, C. M. van Kempen, C. P. Slomp, M. Meybeck and H. Middelkoop (2010), World-wide typology of near-shore coastal systems: Defining the estuarine filter of riverine inputs to the oceans, *Estuaries Coasts*, in press.

Frankignoulle, M., G. Åbril, A. Borges, I. Bourge, C. Canon, B. Delille, E. Libert, and J.-M. Théate (1998), Carbon dioxide emission from European estuaries, *Science*, 282, 434–436, doi:10.1126/science.282.5388.434.

Friederich, G. E., P. M. Walz, M. G. Burczynski, and F. P. Chavez (2002), Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño-La Niña event, *Prog. Oceanogr.*, *54*(1–4), 185–203, doi:10.1016/S0079-6611(02)00049-6.

Friederich, G. E., J. Ledesma, O. Ulloa, and F. P. Chavez (2008), Air–sea carbon dioxide fluxes in the coastal southeastern tropical Pacific, *Prog. Oceanogr.*, 79(2–4), 156–166, doi:10.1016/j.pocean.2008.10.001.

Gruber, N., et al. (2009), Oceanic sources, sinks, and transport of atmospheric CO<sub>2</sub>, *Global Biogeochem. Cycles*, 23, GB1005, doi:10.1029/2008GB003349.

Koné, Y. J. M., G. Abril, K. N. Kouadio, B. Delille, and A. V. Borges (2009), Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa), *Estuaries Coasts*, 32, 246–260, doi:10.1007/s12237-008-9121-0.

Körtzinger, A. (2003), A significant CO<sub>2</sub> sink in the tropical Atlantic Ocean associated with the Amazon river plume, *Geophys. Res. Lett.*, 30(24), 2287, doi:10.1029/2003GL018841.

Meybeck, M., H. H. Dürr, and C. J. Vörosmarty (2006), Global coastal segmentation and its river catchment contributors: A new look at land-ocean linkage, Global Biogeochem. Cycles, 20, GB1S90, doi:10.1029/2005GB002540

Salisbury, J., D. Vandemark, C. Hunt, J. Campbell, B. Jonsson, A. Mahadevan, W. McGillis, and H. Xue (2009), Episodic riverine influence on surface DIC in the coastal Gulf of Maine, *Estuarine Coastal Shelf Sci.*, 82, 108–118, doi:10.1016/j.ecss.2008.12.021.

- Smith, W. H. F., and D. T. Sandwell (1997), Global sea floor topography from satellite altimetry and ship depth soundings, *Science*, 277(5334), 1956–1962, doi:10.1126/science.277.5334.1956.
- Takahashi, T., et al. (2009), Climatological mean and decadal change in surface ocean pCO<sub>2</sub>, and net sea-air CO<sub>2</sub> flux over the global oceans, *Deep Sea Res.*, *Part II*, 56(8–10), 554–577, doi:10.1016/j. dsr2.2008.12.009.
- Thomas, H., Y. Bozec, K. Elkalay, and H. J. W. de Baar (2004), Enhanced open ocean storage of CO<sub>2</sub> from shelf sea pumping, *Science*, 304(5673), 1005–1008, doi:10.1126/science.1095491.
- Tsunogai, S., S. Watanabe, and T. Sato (1999), Is there a "continental shelf pump" for the absorption of atmospheric CO<sub>2</sub>?, *Tellus, Ser. B*, 51, 701–712, doi:10.1034/j.1600-0889.1999.t01-2-00010.x.
- Walsh, J. J. (1988), On the Nature of Continental Shelves, Academic, San Diego, Calif.
- Wollast, R. (1998), Evaluation and comparison of the global carbon cycle in the coastal zone and in the open ocean, in *The Sea*, vol. 10, *The Global Coastal Ocean: Ideas and Observations on Progress in the Study of the*

- Seas, edited by K. H. Brink and A. R. Robinson, pp. 213–252, John Wiley, Hoboken, N. J.
- Woodwell, G. M., P. H. Rich, and C. A. S. Hall (1973), Carbon in estuaries, in *Carbon and the Biosphere*, edited by G. M. Woodwell and E. V. Pecan, *Brookhaven Symp. Biol.*, 24, 221–240.
- Zhai, W., and M. Dai (2009), On the seasonal variation of air–sea CO<sub>2</sub> fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea, *Mar. Chem.*, 117(1–4), 2–10, doi:10.1016/j.marchem.2009.02.008.
- A. V. Borges, Chemical Oceanography Unit, University of Liège, Place du 6-Août, 17, B-4000 Liège, Belgium.
- H. H. Dürr, Department of Physical Geography, Faculty of Geosciences, Utrecht University, Heidelberglaan 2, NL-3508 TC, Utrecht, Netherlands. G. G. Laruelle and C. P. Slomp, Department of Earth Sciences-Geochemistry, Faculty of Geosciences, Utrecht University, Budapestlaan 4, NL-3584 CD Utrecht, Netherlands. (g.laruelle@geo.uu.nl)