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Abstract

Ocean acidification (OA) caused by anthropogenic CO2 emission is projected for thousands of years to come, and sig-

nificant effects are predicted for many marine organisms. While significant evolutionary responses are expected dur-

ing such persistent environmental change, most studies consider only short-term effects. Little is known about the

transgenerational effects of parental environments or natural selection on the capacity of populations to counter detri-

mental OA effects. In this study, six laboratory populations of the calanoid copepod Pseudocalanus acuspes were estab-

lished at three different CO2 partial pressures (pCO2 of 400, 900 and 1550 latm) and grown for two generations at

these conditions. Our results show evidence of alleviation of OA effects as a result of transgenerational effects in

P. acuspes. Second generation adults showed a 29% decrease in fecundity at 900 latm CO2 compared to 400 latm
CO2. This was accompanied by a 10% increase in metabolic rate indicative of metabolic stress. Reciprocal transplant

tests demonstrated that this effect was reversible and the expression of phenotypic plasticity. Furthermore, these tests

showed that at a pCO2 exceeding the natural range experienced by P. acuspes (1550 latm), fecundity would have

decreased by as much as 67% compared to at 400 latm CO2 as a result of this plasticity. However, transgenerational

effects partly reduced OA effects so that the loss of fecundity remained at a level comparable to that at 900 latm CO2.

This also relieved the copepods from metabolic stress, and respiration rates were lower than at 900 latm CO2. These

results highlight the importance of tests for transgenerational effects to avoid overestimation of the effects of OA.
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Introduction

Marine organisms function in close interplay with

the surrounding water. They are adapted to handle

challenges visited upon them by predictable changes

in water chemistry, and any environmental change

is followed by physiological regulation of intracellu-

lar chemistry (P€ortner et al., 2004; Zhang et al., 2012).

However, while this maintenance of cellular homo-

eostasis allows acclimatization to environmental fluc-

tuations, it comes with an energetic cost. Animals

experiencing significant environmental changes must

alter their energy distribution to accommodate these

changes, and during unfavourable conditions, such

alterations may ultimately subtract from the energy

available for growth and reproduction (Stumpp

et al., 2011; Fitzer et al., 2013).

Distribution of assimilated energy is determined,

through natural selection, by a set of heritable alloca-

tion ‘rules’ that maximizes fitness of the individual in a

given environment (Glazier & Calow, 1992; Niewiarow-

ski & Roosenburg, 1993). But for any particular set of

rules, the pattern of allocation need not be invariant.

During environmental changes, phenotypic shifts in

traits governing energy allocation may arise when

different patterns of allocation increase lifetime repro-

ductive success (Lardies & Bozinovic, 2006). Such phe-

notypic shifts are in many cases primarily mediated by

plastic physiological reactions to the environment (Gie-

napp et al., 2008; Sunday et al., 2014), but there is, how-

ever, a limit to phenotypic plasticity. Unexpected

environmental changes may impose energetic costs of

plasticity beyond sustainable levels (DeWitt et al.,

1998), or the changes may fall entirely outside the phe-

notypic plasticity space of the organism. Under these

circumstances, organisms with other allocation rule sets

may be favoured (Mitton, 1997; DeWitt & Scheiner,

2004). Should such environmental changes persist they

may invoke irreversible transgenerational shifts in rates

of growth and reproduction in affected populations.

At present, widespread ocean acidification (OA) is

occurring. Driven by an increase in global atmosphericCorrespondence: Peter Thor, tel. + 47 40613027,

fax + 47 77750501, e-mail: peter.thor@npolar.no
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pCO2 from 280 latm at pre-industrial times to the pres-

ent day 400 latm (IPCC, 2013), the global ocean mean

surface pH has decreased from 8.13 to the present day

8.05. Ocean models predict a continuation of this trend

with a further decrease in 0.4 pH units by the year 2100

(Caldeira & Wickett, 2005; Cao et al., 2007). These

changes, which are predicted to persist for thousands

of years to come, will expose marine organisms to dra-

matically changed chemical conditions, and significant

effects are predicted for many marine animals (Kroeker

et al., 2010; Dupont & P€ortner, 2013).

Significant transgenerational responses are expected

during such persistent environmental change (Sunday

et al., 2011). Nevertheless, most studies have investi-

gated only short-term physiological effects (Kelly &

Hofmann, 2013). For copepods, adults have shown little

physiological response to OA in some studies (Kuriha-

ra, 2008; Mayor et al., 2012; McConville et al., 2013; Zer-

voudaki et al., 2014), while earlier larval stages and

eggs seem more vulnerable (Fitzer et al., 2012; Cripps

et al., 2014). Only a few previous studies on effects in

offspring and following generations exist for copepods.

One showed impairment of larval development beyond

the second generation in Tisbe battagliai with signifi-

cantly reduced copepodite size and changes in the

chemical composition of the exoskeleton cuticle (Fitzer

et al., 2012). Another study showed no effects on egg

production and hatching success in Acartia tsuensis

(Kurihara & Ishimatsu, 2008).

Little is known about the transgenerational effects of

parental environments, adaptation by genetic selection,

or epigenetic changes in the offspring and the capacity

of these processes to alleviate OA effects (Lim & Bru-

net, 2013; Munday et al., 2013; Sunday et al., 2014).

While the studies mentioned above do provide infor-

mation on changes from one generation to the next,

they fail to discover if these changes originated in trans-

generational effects (including genetic adaptation) or

they were caused by phenotypic plasticity in each gen-

eration. Another study tested for parental effects by egg

transplantation between environments (Vehmaa et al.,

2012). This study showed significant negative maternal

effects of pH on egg-hatching success in Acartia sp.

Thus, effects can be transmitted between generations,

but again the study did not test for the origin or possi-

ble multigenerational consequences (including adapta-

tion) of these effects. A few studies on other animal

groups highlight the key role of adaptation and pheno-

typic plasticity. Reciprocal transplants of benthic poly-

chaetes inhabiting areas containing underwater CO2

vents have shown metabolic adaptation to high pCO2 in

Platyneries dumerilii but phenotypic plasticity in

Amphiglena mediterranea (Calosi et al., 2013). This study

showed that adaptation and phenotypic plasticity are

equally viable strategies to tackle elevated pCO2 envi-

ronments. Another study on the sea urchin Strongylo-

centrotus purpuratus has shown that such adaptation

may arise from natural selection for larvae with specific

alleles in genes related to membrane composition and

ion transport (Pespeni et al., 2013).

In this study, we investigated transgenerational

effects of OA in the calanoid copepod Pseudocalanus

acuspes. Copepods of the Pseudocalanus genus are very

abundant and widely distributed in temperate, subarc-

tic, and Arctic waters (Aarbakke et al., 2011) and at

times they contribute more than one-third of the total

zooplankton biomass in the North Atlantic (Head et al.,

2003; Thor et al., 2005; Drif et al., 2010). For this study,

OA effects on fecundity and metabolism were tested at

three different pCO2s (400, 900 and 1550 latm) during

two generations. The possibility that transgenerational

effects could counter OA effects was tested by measur-

ing egg production rates, egg clutch sizes and respira-

tion rates during reciprocal transplant tests (DeWitt &

Scheiner, 2004). While these tests detect transgenera-

tional effects, they cannot distinguish between genetic

adaptation and other transgenerational effects.

Throughout this study, we therefore use the term

‘transgenerational’ in its literal sense to describe the

transmission of trait changes from one generation to

the next. As such, the term covers genetic, epigenetic,

somatic and any other detectable trait change transmit-

ted to the next generation.

Materials and methods

Copepods were caught in the Gullmar Fjord, Skagerrak

(58°160N, 11°260E) by oblique tows of a 200 lm WP-2 plankton

net equipped with a closed cod end. The net was towed from

approximately 40 m to the surface. On board, the net samples

were diluted in 25 L of 0.3 lm filtered sea water produced

from water collected at 40 m. Samples were then brought to a

cold room at the nearby Sven Lov�en Centre for Marine

Science, Kristineberg (SLC-K) set to the ambient water temper-

ature during sampling (5 °C). In the laboratory, approximately

1000 adult Pseudocalanus spp. were sorted into two 40-L hold-

ing tanks until incubation start. The exclusive presence of

P. acuspes was ensured by pipetting a subsample of approxi-

mately 100 individuals into RNAlater for molecular species

identification by PCR. DNA was extracted using the DNeasy

tissue DNA extraction kit (Qiagen), and PCR was run using

primers specific for P. acuspes, P. minutus and P. elongatus

(Gudmundsdottir, 2008; Grabbert et al., 2010).

CO2 incubations

Six unique copepod laboratory populations were established

by transferring approximately 200 adults (generation F0) to

40-L experimental tanks containing 0.3 lm filtered sea water.

The water was then adjusted to three different pCO2s during

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 2261–2271
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3 days (Table 1). F0 females were allowed to produce eggs for

2 weeks. At this time, no F1 copepodites had yet appeared.

Tank volumes were then reduced to 10 L by siphoning off

approximately 30 L from the inside of a large 50-lm sieve

inserted into the tanks, all F0 adults removed, and the F1 gen-

eration was introduced into new clean tanks. This procedure

was repeated for the transition from F1 to F2. The copepods

were reared at a 12 h/12 h light/dark cycle at 5 °C until gen-

eration F2 reached maturity (137 days). Satiating food concen-

trations were achieved by pumping exponentially growing

Rhodomonas baltica into the tanks (Table 1). Water was chan-

ged every second week by siphoning off 30 L as above and

reintroducing copepods into new clean tanks.

pH was controlled by pH computers (Aqua Medic, Ger-

many) in populations 3–6. The computers monitored pH and

adjusted it to target levels by dynamically controlling

bubbling of pure CO2 into the tanks. CO2 was administered to

the bottom of the tanks at 1 bubble s�1 next to the aeration

bubbling, which was kept at 4 bubbles s�1 to efficiently mix

carbonized water into the tanks. The electrodes were placed

inside the stream of bubbles to achieve fast responses and pre-

vent undershooting target pHs during bubbling. Once a week,

pHTS was measured with a Metrohm 827 pH meter (Metrohm,

Switzerland) calibrated against a four-point temperature TRIS

standard curve, and total alkalinity was measured by titration

of 25 mL samples in a SI Analytics Titroline potentiometric

titrator (Riebesell et al., 2010). pCO2s were calculated in CO2SYS

version 1.4 (Lewis & Wallace, 1998). Food concentrations were

measured every second day on an Elzone 5380 electronic

particle counter.

Transgenerational effects were tested by measuring egg

production rates, clutch sizes, and respiration rates during

reciprocal transplant tests on F2 adults. Copepods were trans-

planted from 400 to 900 and 1550 latm CO2 and from 900 to

400 latm CO2, and from 1550 to 400 latm CO2 (arrows in

Figs 1 and 3 show transplant directions). For this purpose,

each 400 latm laboratory population was divided by volume

in thirds, and every third was reintroduced to new tanks and

adjusted to 400 latm CO2, 900 latm CO2 and 1550 latm CO2.

Similarly, halves of each of the 900 and 1550 latm laboratory

populations were reintroduced to new tanks and adjusted to

400 latm CO2 and their original pCO2. Transplanted popula-

tions then consisted purely of adults. Incubations of all

original populations and transplants were then continued for

21 days to allow fertilization of unfertilized females and

ensure a full egg production cycle before measurements. Egg

production rates, egg clutch sizes and respiration rates were

measured immediately thereafter.

The importance of phenotypic plasticity and transgenera-

tional transmission of trait changes was estimated from

changes in egg production, egg clutch size and respiration

caused by transplantation. Phenotypic plasticity was inferred

when changes were statistically similar in both transplant

directions. Accordingly, transgenerational effects were

inferred from statistically dissimilar changes between the two

transplant directions (DeWitt & Scheiner, 2004).

Egg production and respiration measurements

Rates of respiration and egg production were measured in 10

or 6 replicate samples from all original populations and their

transplants (10 replicates in original populations and six rep-

licates in transplants). In each replicate, five egg-carrying

females were transferred to 1.6-mL vials fitted with fluores-

cent O2 foil discs (PSt3 spots, PreSens Precision Sensing,

Germany) and filled with sea water adjusted to the corre-

sponding pCO2. Vials were then sealed with Teflon caps, and

O2 concentrations were measured at 0, 3 and 6 h using a Fi-

box 3 optode system. Respiration rates (nmol O2 ind
�1 day�1)

were calculated by subtracting the average oxygen depletion

rate measured in five controls from the oxygen depletion rate

in the vials holding copepods, multiplying by vial volume

and dividing by number of individuals in each vial. Prior

testing of the optode system at 5 °C showed a 2 min 95%

reaction time, that is the period of time taken before the out-

put reached within 5% of the final oxygen concentration

value (as estimated by exponential regression). Therefore, at

every sampling, oxygen concentrations were read for 3 min,

and an average of values read during the last minute was

used for calculations.

Subsequently, all females were transferred to Petri dishes

containing 0.3 lm filtered sea water, photographed under a

stereoscope and incubated for 12–18 days for daily counts

of carried eggs. One drop of R. baltica was administered to

each dish every third day to prevent female mortality (final

Table 1 Average experimental conditions during the incubation period

Population

Temperature pCO2

pHTS

AT Food conc.

°C latm lmol kg�1 lgC L�1

1 5.68 � 0.50a 410 � 96a 8.05 � 0.07a 2382 � 205a 692 � 229a

2 5.74 � 0.45a 402 � 118a 8.07 � 0.09a 2454 � 100a 761 � 173a

3 5.36 � 0.76a 890 � 107b 7.75 � 0.09b 2491 � 93a 876 � 422a

4 5.67 � 0.37a 909 � 221b 7.75 � 0.10b 2473 � 121a 769 � 225a

5 5.53 � 0.66a 1549 � 251c 7.54 � 0.08c 2470 � 93a 707 � 240a

6 5.55 � 0.45a 1558 � 272c 7.54 � 0.14c 2547 � 165a 736 � 138a

pHTS is total scale pH, AT is total alkalinity, and pCO2 is CO2 partial pressure. Food concentrations were transformed to lgC L�1

according to Montagnes et al. (1994). Superscript letters indicate groups of values with no significant difference (1-factor ANOVAs

with Holm–Sidak post hoc test: P < 0.05).
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concentration ca. 300 lgC L�1). Egg production rates (eggs

ind�1 day�1) were calculated as the slopes of linear regres-

sions on daily egg counts (day�1) multiplied by initial number

of eggs counted on the photographs (eggs female�1) assuming

egg production rates to equal hatching rates (Runge & Roff,

2000).

Data analysis

Because the design of the reciprocal transplantations included

only two environmental states, the phenotypic changes were

analysed as character state changes. This is opposed to the

reaction norm analysis model, which would otherwise be used

to test for phenotypic reactions to continuous scale variables

such as pCO2/pH. However, it has been shown that the two

models are mathematically similar, the character state model

being a special case of the reaction norm model (de Jong,

1995), and to avoid using the implicit regression analysis of

the reaction norm model on two-point data, we applied the

character state model. Accordingly, differences in means of

egg production rates, clutch sizes and respiration rates were

tested among populations (both original and transplant

populations) by ANOVA. For these tests, the experimental units

were the random samples of five females from each popula-

tion (Hurlbert, 1984). Replication of populations enabled

conclusions that observed differences were caused by diver-

gent due to the pCO2 and not by chance events during the

incubations. This was taken into account by applying an

ANOVA design where ‘population’ was nested within ‘pCO2’

population(pCO2). Levene’s test was used to assure

homoscedasticity.

Results

Egg production and respiration in original populations

After two generations, egg production rates were sig-

nificantly depressed at 900 and 1550 latm CO2 com-

pared to at 400 latm CO2. Rates were 0.945 � 0.183

eggs ind�1 day�1 (mean � SD) at 400 latm CO2, 0.681

� 0.078 eggs ind�1 day�1 at 900 latm CO2 and 0.668

� 0.240 eggs ind�1 day�1 at 1550 latm CO2 (Fig. 1a,

filled circles) (1-factor nested ANOVA, pCO2: F6,57 = 16.1,

P < 0.001, population(pCO2): F6,57 = 0.99, P = 0.44, Stu-

dent–Newman–Keul’s post hoc test) (Table 2). While

there were no significant differences in egg diameter

relative to female prosome length among laboratory

populations (0.124 � 0.054, mean � SD) (1-factor

nested ANOVA: F2,15 = 0.345, P = 0.71), mean egg clutch

sizes were also significantly reduced from 19.0 � 2.1

eggs ind�1 at 400 latm CO2 to 16.7 � 2.0 eggs ind�1 at

900 latm CO2 and 17.2 � 1.2 eggs ind�1 at 1550 latm
CO2 (Fig. 1b, filled circles) (1-factor nested ANOVA,

pCO2: F6,57 = 18.3, P < 0.001 and population(pCO2):

F6,57 = 0.28, P = 0.95, Student–Newman–Keul’s post hoc

test) (Table 2).

Egg-hatching rates were constant during the 12–
18 days the eggs and females were kept in Petri dishes

so that the fraction of eggs remaining in clutches

decreased linearly with time in all populations (Fig. 2)

(linear regressions: P < 0.05). Egg-hatching rates

(slopes in Fig. 2) decreased significantly with increas-

ing pCO2 among original populations (1-factor nested

ANOVA, pCO2: F6,57 = 3.88, P = 0.003, population (pCO2):

F6,57 = 1.10, P = 0.38). All eggs were hatched after

17 days, which indicates that the 21 days acclimation

period after the transplantations were sufficient to

allow full acclimation of egg production rates. Hence,

assuming equal rates of egg production and hatching,

an assumption necessary for estimates of egg produc-

tion in egg-carrying copepods (Runge & Roff, 2000), all

(a)

(b)

Fig. 1 (a) Egg production rates (EPR) and (b) egg clutch sizes in

Pseudocalanus acuspes incubated at three pCO2s for two genera-

tions (137 days). Filled circles show results for second genera-

tion females of the originally incubated laboratory populations,

and open circles show results for second generation females

3 weeks after transplantation to alternate pCO2s (n = 6 or 10 for

each treatment). Error bars depict 95% confidence intervals.

Arrows between filled and open circles show transplant direc-

tions. Arrows from 400 latm CO2 to 1550 latm CO2 are trun-

cated to the left for clarity (shown by the dash). Significant and

nonsignificant changes (Student–Newman–Keul’s and Holm–Si-

dak post hoc tests) are showed by solid and hatched arrows,

respectively. Significant differences between transplant and ori-

ginal target populations are shown by vertical lines with point

ends.
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eggs were produced after the transplantations. Thus,

egg production rates completely reflected the trans-

plant environment.

Oxygen concentrations decreased between 14% and

21% during the 6-h respiration rate incubations, and all

individuals appeared unharmed at the end of the

incubation period. Respiration rates were signifi-

cantly higher in the original 900 latm populations (1-

factor nested ANOVA, pCO2: F6,53 = 7.49, P < 0.001,

population (pCO2): F6,53 = 0.56, P = 0.68, Student–New-

man–Keul’s post hoc test) (Table 2). They increased from

3.63 � 0.31 nmol O2 ind�1 day�1 at 400 latm CO2 to

4.15 � 0.27 nmol O2 ind
�1 day�1 at 900 latm CO2, but

then decreased to 3.07 � 0.53 nmol O2 ind�1 day�1 at

1550 latm CO2 (Fig. 3, filled circles).

Effects of reciprocal transplants

The reciprocal transplant tests showed significant

effects in egg production rates and clutch sizes, but not

in respiration rates (Figs 1 and 3). All transplantations

induced significant changes in egg production rates

(solid arrows in Fig. 1a). Furthermore, egg production

rates were fully reversible between 400 and 900 latm
CO2. There were no significant differences between

rates in the 400 to 900 latm transplants and rates in the

original 900 latm populations. Similarly, there were no

differences between rates in the 900 to 400 latm trans-

plants and original 400 latm populations. Thus,

changes in egg production rates were the result of phe-

notypic plasticity at this level of OA. On the other hand,

while there were no significant differences between the

1550 to 400 latm transplants and original 400 latm
populations, we found significant differences between

the 400 to 1550 latm transplants and original

1550 latm populations. Hence, changes in egg produc-

tion rates were not reversible between 400 to 1550 latm
CO2 indicating transgenerational transmission of

changes in egg production rates. Clutch sizes showed

similar effects. Although clutch sizes did not change

significantly in the 900 to 400 latm transplants, all

other transplantations had significant effects. This indi-

cates that changes in clutch sizes were also induced by

phenotypic plasticity between 400 to 900 latm CO2, but

the result of transgenerational effects between 400 and

1500 latm CO2. The 400 to 1550 latm transplants

showed a decrease in egg production rate to 0.31 eggs

ind�1 day�1 and clutch size to 9.86 � 2.03 eggs ind�1.

These correspond to decreases of 67% and 43%, respec-

tively. In comparison, the original 1550 latm popula-

tions showed values for egg production rate and clutch

size that were only 29% and 10% lower than in the

400 latm populations.

Although the original 400 and 900 latm populations

showed significantly different respiration rates, there

were no significant differences between any of the two

transplants and the original populations at the target

pCO2 (Table 2). Hence, the differences in respiration

rates between the 400 latm and 900 latm populations

were caused by phenotypic plasticity. On the other

hand, the 400 to 1550 latm transplants did show rates

significantly different than in the original 1550 latm
populations (Table 2). There was no difference between

the reciprocal transplants and the original populations

(the 1550 to 400 latm transplants and the original

400 latm populations), and this indicates a transgener-

ational development of different reaction norms of

respiration at this level of OA.

Discussion

Pseudocalanus acuspes experienced significantly dimin-

ished fecundity when subjected to increased pCO2

during two generations. But most importantly, trans-

Table 2 Results of Student–Newman–Keul’s post hoc tests

following ANOVA tests on (a) egg production rates, (b) egg

clutch sizes and (c) respiration rates

Treatment n

Subsets

1 2 3 4

(a) Egg production rate (eggs female�1 day�1)

400 10 0.945

900 to 400 6 0.935

1550 to 400 6 0.962

900 10 0.681

400 to 900 10 0.641

1550 10 0.668

400 to 1550 6 0.307

(b) Egg clutch size (eggs female�1)

400 10 19.0 19.0

900 to 400 6 19.2 19.2

1550 to 400 6 21.0

900 10 16.7 16.7

400 to 900 10 15.9

1550 10 17.2 17.2

400 to 1550 6 9.9

(c) Respiration rate (nmol O2 ind
�1 day�1)

400 10 3.63 3.63

900 to 400 6 3.89 3.89

1550 to 400 6 3.37 3.37

900 10 4.15

400 to 900 10 3.94 3.94

1550 10 3.07

400 to 1550 6 3.91 3.91

Similar results were obtained with Holm–Sidak post hoc tests.

n is number of replicates. Significantly, equal groups are

arranged into subsets and values show average rates.

Observed power ≥ is 0.99 for all three tests.
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generational effects partly alleviated this loss at

1550 latm CO2, and the magnitude of the negative

response was only half of what would have resulted

from a response caused solely by phenotypic plasticity.

All changes between 400 to 900 latm CO2 were fully

reversible and attributable to phenotypic plasticity;

hence, our data suggest that transgenerational effects

set in at pCO2s above the present range of environmen-

tal variability (400–900 latm CO2, Dorey et al., 2013).

The observed depressed egg production rates con-

trast with some previous short-term effect studies (<1
generation) in pelagic copepods. Studies on different

copepod species have shown no effects on mortality,

egg production or larval development up to 2000 latm
CO2 (Kurihara et al., 2004; Kurihara & Ishimatsu, 2008;

Mayor et al., 2012; McConville et al., 2013). The cope-

pod exoskeleton contains little CaCO3, so no direct

impairment by shell dissolution or decreased rates of

calcification is expected. However, variations in other

physiological processes in affected organisms, calcifiers

and non-calcifiers alike, may instigate diminished

performance. Recently, reduced egg production and

increased naupliar mortality were observed in A. tonsa

(Cripps et al., 2014), a species otherwise known to toler-

Fig. 2 Decline in mean (�SD) number of eggs clutch�1 during the 12- to 18-day incubations for hatching rate estimates. Original labo-

ratory populations (left panels) and transplants (right panels). Lines show mean slopes of all replicates (n = 6 or 10 for each replicate).

The slopes correspond to mean hatching rates (day�1), which were used to calculate egg production rates.

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 2261–2271

2266 P. THOR & S. DUPONT



ate wide changes in water chemistry (Calliari et al.,

2006). Cripps et al. (2014) found significantly increased

naupliar mortality and significantly decreased egg-

hatching success already at 1000 latm CO2 and very

severe effects at 2000 latm CO2. Moreover, Lewis et al.

(2013) found increased mortality in Arctic Calanus gla-

cialis nauplii and Oithona similis nauplii and adults

already at 700 latm CO2. They observed more severe

effects in O. similis than in C. glacialis, and they argue

that O. similis is adapted to a more narrow range of pH

due to the more shallow vertical migration patterns of

this species. Both P. acuspes and A. tonsa show similar

shallow migration compared to the Calanus species.

One possible explanation for the observed subopti-

mal performance may be less than optimal energy allo-

cation due to environmental stress. For instance, due to

the increased metabolic rates at 1271 latm CO2, sea

urchin pluteus larvae were not able to allocate more

than 39–45% of the available energy to growth, while

larvae growing under present-day conditions could

allocate 78–80% of the available energy (Stumpp et al.,

2011). Such reallocation has also been hypothesized for

the copepod Tispe battagliai. By combining data for

growth, cuticle composition and nauplii production,

Fitzer et al. (2012) argued that copepods will preferen-

tially reallocate energy resources to maintain the repro-

ductive output at the expense of larval growth. Our

results showed considerable decoupling of respiration

and production so that respiration rates were

significantly higher at 900 latm CO2 compared to

400 latm CO2 despite the decrease in egg production

rate. As a result, the ratio between respiration and egg

production was twice as high in the 900 latm popula-

tions as in the 400 latm populations. In unstressed

individuals, respiration and production are coupled

through specific dynamic action effects (SDA, i.e.

increase in metabolic rate due to biosynthesis during

food intake) and any change in production is inevitably

followed by a similar change in respiration (Thor,

2000). The respiratorial decoupling observed in the

900 latm populations suggests increased metabolic

costs associated with elevated pCO2. Several previous

studies of other environmental stressors in copepods

support this notion. For instance, copepods experienc-

ing changes in prey quality exhibit significantly altered

SDA (Thor et al., 2002), and the respiration/egg pro-

duction ratio (another proxy for SDA effects) increases

in copepods experiencing stress related to decreasing

salinity (Calliari et al., 2006).

Knowledge on the influence of OA on cellular meta-

bolic processes in copepods is scarce, and it is difficult

to pinpoint what metabolic changes may be responsible

for the decreased performance in P. acuspes. One may

speculate that increased metabolism curtailed from

increased expenses for maintaining homoeostasis. Sea

urchins, Strongylocentrotus droebachiensis, experience

increased protein metabolism during prolonged expo-

sure to increased pCO2, and Stumpp et al. (2012)

concluded that this is to support homoeostasis by

enhanced net proton extrusion. In most aquatic crusta-

ceans, decreased cytosolic pH is counteracted primarily

by ion exchange over the cell membrane (Henry &

Wheatly, 1992). This process demands energy, and in

Krill, Euphausia superba, elevated pCO2 induces

increased activity of enzymes involved in cycling of

ATP and NADH, along with a decrease in body protein

content (Saba et al., 2012). We hypothesise that P. acus-

pes may have experienced similar effects at 900 latm
CO2 and that this caused the observed decrease in egg

production and increase in respiration rates.

The reciprocal transplantation tests allowed discrimi-

nation of effects into transgenerational effects and

effects caused by phenotypic plasticity. These tests

showed that the 29% decrease in egg production rate

was partly a result of transgenerational effects. Without

such effects, egg production rates would have

decreased by as much as 67%. No previous studies

address the importance of transgenerational effects to

counter pH stress in copepods. Previous multigenera-

tional studies have revealed deleterious effects in larval

development during consecutive generations in the

copepod Tispe battagliai (Fitzer et al., 2012), but no

Fig. 3 Respiration rates in Pseudocalanus acuspes incubated at

three pCO2s for two generations (137 days). Filled circles show

rates for second generation females of the originally incubated

laboratory populations, and open circles show rates for second

generation females 3 weeks after transplantation to alternate

pCO2s (n = 6 or 10 for each treatment). Error bars depict 95%

confidence intervals. Arrows between filled and open circles

show transplant directions. Significant and nonsignificant

changes (Student–Newman–Keul’s and Holm–Sidak post hoc

tests) are showed by solid and hatched arrows, respectively.

Significant differences between transplant and original target

populations are shown by vertical lines with point ends.
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effects on egg production or larval development in

another copepod species, Acartia tsuensis (Kurihara &

Ishimatsu, 2008). Fitzer et al. (2012) applied a model to

predict changes in larval development through the

coming 100 years. Because this study applied a multi-

generational approach, it incorporated possible evolu-

tionary or transgenerational effects (although these

could not be detected in the applied experimental

design). This approach is probably the best we can offer

in terms of predictions for the future without knowl-

edge on transgenerational effects. However, as men-

tioned by the authors themselves, the model assumes

an inability of the copepods to adapt. Much emphasis

has been put on the importance of adaptation during

future global change (Munday et al., 2013; Sunday et al.,

2014). We found transgenerational effects already after

two generations, which could be a result of adaptation.

Consequently, predictions based on models like the one

applied by Fitzer et al. (2012) will overestimate OA

effects. Moreover, the transgenerational effects at

1550 latm CO2 induced an entirely different reaction to

pCO2 variations, with less steep reaction norms. The

implication is that future generations will experience

dampened reactions of fecundity also to natural short-

term (<1 generation) variations in pH/pCO2. The eco-

logical ramifications are that future OA, at least to the

level of 1550 latm CO2, may induce more resilience

towards pH variability in P. acuspes. But whether or not

this will override any other negative effects imposed

by, for example, coselection in fitness-related traits

responsible for buffering of other environmental vari-

ables remains to be seen.

Zooplankton, including copepods, are able to adapt

to environmental changes (Dam, 2013). Acartia

hudsonica has shown transgenerational alleviation of

detrimental effects of frequent blooms of toxic dinofla-

gellates in traits such as ingestion, development and

egg production (Colin & Dam, 2002), and subsequent

studies indicate that these effects were in fact due to

adaptation through evolutionary selection (Avery &

Dam, 2007). Moreover, while Tigriopus californicus has

shown surprisingly little capacity for adaptation to

increasing temperature (Kelly et al., 2012), Scottolana

canadensis shows significant latitudinal transgenera-

tional differentiation in development, adult body size

and somatic growth. Unfortunately, this study did not

provide any clue to the origin of the transgenerational

effects; whether they are a result of natural selection or

some nongenetic transgenerational transmission of

trait changes (Lonsdale & Levinton, 1985). The

observed transgenerational effects in the present study

may be a consequence of both. There are indications in

previous studies that suggest the possibility of evolu-

tionary adaptation to OA in invertebrates. Allelic shifts

in genes coding for enzymes involved in membrane

composition and cellular homoeostasis have been

observed in sea urchin pluteus larvae during OA per-

turbation experiments (Pespeni et al., 2013). These

shifts allowed physiological compensation to such a

degree that normal developmental and morphological

progress was upheld at 900 latm CO2. Adaptation

through evolutionary selection can be fast and occur

even from one generation to the next in invertebrates.

The oligochaete Tubifex tubifex showed increased Hg

tolerance after exposure for only one generation (Vidal

& Horne, 2009). This tolerance was maintained in sub-

sequent outcrosses with nontolerant control groups, a

clear indication of natural selection for Hg tolerance.

Accordingly, one could hypothesize that the changes

observed in the present study were based in natural

selection. But, they could also occur as a result of

parental effects or nongenetic somatic and epigenetic

transmission of trait changes (Lim & Brunet, 2013; Sun-

day et al., 2014). Apart from the effects found in Acartia

sp. mentioned above (Vehmaa et al., 2012), such paren-

tal effects have been found in the oyster, Saccostrea

glomerata, where parental exposure to 900 latm CO2

had positive carry-over effects on larvae. Larvae

spawned from adults exposed to 900 latm CO2 were

larger and developed faster than larvae from nonex-

posed adults (Parker et al., 2012). Moreover, genetic

selection and nongenetic transgenerational effects are

not mutually exclusive. Nongenetic inheritance can

decouple phenotypic change from genetic change over

multiple generations, and this may allow adaptation to

catch up with fast environmental changes like OA

(Whitlock, 1995; Bonduriansky et al., 2012). Finally,

while we cannot rule out nongenetic transmission or

combined effects, estimated mortalities were suffi-

ciently high (>50% per generation) to allow significant

selection and hence genetic adaptation in all four origi-

nal high pCO2 populations.

It has been argued that individuals selected for

increased phenotypic plasticity resulting from changing

environments may experience increased energetic costs

(DeWitt et al., 1998) and that this may induce detrimen-

tal effects in the adapted population. However, the less

steep reaction norms of the 1550 latm populations (i.e.

the difference between original 1550 latm populations

and 1550 to 400 latm transplants) in both egg

production and hatching success suggest otherwise.

While individuals from the original 400 latm popula-

tions experienced severely reduced fecundity at

1550 latm CO2 (67% reduction), the 1550 latm popula-

tions upheld an only 29% diminished fecundity com-

pared to the 400 latm populations. Moreover, the

original 1550 latm populations avoided the increase

in respiration rates experienced by the 900 latm
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populations. Rather, respiration followed the decrease

in egg production and was more tightly coupled to egg

production probably through SDA effects (Thor, 2000).

We hypothesize that the transgenerational effects may

have altogether relieved the copepods from the meta-

bolic stress they would otherwise have experienced at

1550 latm CO2.

The three tested scenarios allowed us to cover

present day as well as near-future environmental

oceanic pCO2 variability (400–900 latm CO2) and

beyond (1550 latm CO2). In the Gullmar Fjord, aver-

age pH varies between 8.04 and 8.17 pH units. How-

ever, pH variation is high, and values as low as 7.57

pH units have been recorded. The shift of all the

values by 0.4 pH units, as projected for 2100, predict

values ranging from pH 8.28 to 7.17, with a mean

annual value of pH 7.71 (Dorey et al., 2013). Our

tested scenarios therefore correspond to (i) average

pH experienced today (pH 8.05, pCO2 400 latm); (ii)

average pH in 2100 and extreme of present natural

variability (pH 7.75, pCO2 900 latm); and (iii)

extreme pH in 2100 and outside of present natural

variability (pH 7.54, pCO2 1550 latm). Thus, our

results suggest that P. acuspes react with phenotypic

plasticity through increased respiration and re-alloca-

tion of resources within present day’s environment.

When exposed to elevated pCO2 beyond present

day’s natural variability, transgenerational effects set

in so that the copepods are able to avoid further

decreases in fecundity.

Pseudocalanus acuspes exists in great numbers, and

any serious effects on the genetic diversity of the global

standing population are hard to imagine. But, the

effects found in the present study may have other eco-

logical implications. While a 29% decrease in fecundity

is serious in terms of biomass production and trophic

transport of matter, the 67% reduction without trans-

generational buffering would have been catastrophic.

Calanoid copepods constitute some 80% of the global

zooplankton biomass (Mauchline, 1998), they support

global fish stocks due to their importance as prey for

many species during their larval life (Last, 1980), and

Pseudocalanus constitute one of the most abundant gen-

era. Stock recruitments of mackerel, Scomber scombrus,

have been shown to covary with copepod biomass

through at least two decades in the Gulf of St. Law-

rence, and the emergence of two exceptional strong

year classes were directly correlated with high abun-

dances of calanoid copepods (Runge et al., 1999; Cas-

tonguay et al., 2008). Such effects have also been

observed in the North Sea where survival of larval cod,

Gadus morhua, has been shown to depend on size and

abundance of their copepod prey (Beaugrand et al.,

2003). In the Baltic Sea deep basins, increase in rainfall

since the 1980s and lack of intrusion of high saline

water from the North Sea have affected reproduction

and maturation of a sibling species P. elongatus (Moll-

mann et al., 2003). Investigations of stomach contents

showed that herring, Clupea harengus, have been forced

to revert to less favourable prey than P. elongatus dur-

ing this period, and this has had serious implications

for herring growth and development. In view of this,

OA effects in copepods will not only affect copepod

populations per se but have repercussions up through

the food web. On the other hand, the transgenerational

alleviation of OA effects found here may partly release

the constraints of OA on the pelagic ecosystem.
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